Herbal Medicines as Potential Immune Boosters against Coronavirus Diseases | Bentham Science
Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Herbal Medicines as Potential Immune Boosters against Coronavirus Diseases

Author(s): Salome Amarachi Chime* and Chika Phoebe Madumere

Volume 9, Issue 2, 2023

Published on: 12 September, 2022

Article ID: e290322202751 Pages: 11

DOI: 10.2174/2215083808666220329122149

Open Access Journals Promotions 2
Abstract

Coronavirus disease COVID-19 is causing havoc globally, infecting millions of people and has led to the deaths of people in thousands. COVID-19 attacks persons with low immune systems, especially neonates and geriatrics. Hence, boosting immunity may be one of the best options during this pandemic. There is a need to explore the possible herbal drugs to boost the immunity of people as a result of the rising cases of deaths due to COVID-19. However, the rationale for the use of herbal drugs is that each herb has the possibility of treating many health conditions. A single herb could have antiviral, antibacterial, and anti-inflammatory properties. Herbs may be one possible source of a true cure for COVID-19. Herbal drugs are from renewable sources and pose less danger of possible adverse effects compared to synthetic drugs. Because COVID-19 has no true cure presently, man should resort to herbal drugs given by nature. Herbal drugs are highly potent and efficacious; hence, the early men treated their ailments with herbs. However, their use has been limited by poor pharmaceutical design into dosage forms that would be acceptable to people. Herbal drugs could be formulated as teas, decoctions, infusions, and, more recently, tablets, capsules, microparticles, nanoparticles, and phytosomes, amongst others. Different herbal plants with possible immune booster effects will be discussed in this work, and how they can be formulated into stable and acceptable dosage forms will be explored.

Keywords: SARS Coronaviruses, COVID-19, drug delivery systems, herbal drugs, immune boosters, RNA.

[1]
Ilkay EO, Deniz FSS. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against sars-cov-2? Nat Prod Bioprospect 2020; 10(4): 171-86.
[http://dx.doi.org/10.1007/s13659-020-00250-4]
[2]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[3]
Islam MT, Sarkar C, El-Kersh DM, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res 2020; 34(10): 2471-92.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[4]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17.
[5]
WHO report. Q&A on coronaviruses (COVID-19). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses Accessed 27th October, 2020.
[6]
Huang J, Su D, Feng Y, Liu K, Song Y. Antiviral herbs-present and future. Infect Disord Drug Targets 2014; 14(1): 61-73.
[http://dx.doi.org/10.2174/1871526514666140827102154]
[7]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[8]
Panyod S, Ho CT, Sheen LY. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J Tradit Complement Med 2020; 10(4): 420-7.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.004] [PMID: 32691006]
[9]
Ogbonna JDN, Kenechukwu FC, Attama AA, Chime SA. Different approaches to formulation of herbal extracts/phytopharmaceut-icals/bioactive phytoconstituents - a review. Int J Pharm Sci Rev Res 2012; 16(1): 1-8.
[10]
Zhang L, Shen FM, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis 2020; 71(15): 882-3.
[http://dx.doi.org/10.1093/cid/ciaa112]
[11]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9]
[12]
Di Gennaro F, Pizzol D, Marotta C, et al. Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Int J Environ Res Public Health 2020; 17(8): E2690.
[http://dx.doi.org/10.3390/ijerph17082690] [PMID: 32295188]
[13]
Bedford J, Enria D, Giesecke J, et al. For the WHO strategic and technical advisory group for infectious hazards. COVID-19: Towards controlling of a pandemic. Lancet 2020; 395(10229): 1015-8.
[15]
Centers for Disease Control and Prevention. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html Accessed 29th July, 2020.
[16]
Li Q, Guan X, Wu P, et al. Early Transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[17]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[18]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[19]
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin Infect Dis 2020; 71(15): 889-90.
[http://dx.doi.org/10.1093/cid/ciaa330]
[20]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[21]
Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med 2020; 382(17): 1663-5.
[http://dx.doi.org/10.1056/NEJMc2005073] [PMID: 32187458]
[22]
Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 2020; 63(5): 706-11.
[http://dx.doi.org/10.1007/s11427-020-1661-4] [PMID: 32146694]
[23]
Liu W, Zhang Q, Chen J, et al. Detection of Covid-19 in children in early January 2020 in Wuhan, China. N Engl J Med 2020; 382(14): 1370-1.
[http://dx.doi.org/10.1056/NEJMc2003717] [PMID: 32163697]
[24]
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[25]
Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA 2020; 323(13): 1313-4.
[http://dx.doi.org/10.1001/jama.2020.2131] [PMID: 32058570]
[26]
Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics 2020; 145(6): e20200702.
[http://dx.doi.org/10.1542/peds.2020-0702] [PMID: 32179660]
[27]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[28]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[29]
Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ 2020; 725: 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[30]
Wang J. Fast identification of possible drug treatment of Coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model 2020; Apr 21 60(6): 3277-86.
[http://dx.doi.org/10.26434/chemrxiv.11875446.v1]
[31]
Wang L, Wang Y, Ye D, Liu Q. A review of the 2019 novel coronavirus (COVID-19) based on current evidence. Int J Antimicrob Agents 2020; 56(3): 106137.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106137] [PMID: 32826129]
[32]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[33]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[34]
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248: 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[35]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[36]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[37]
Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020; 20(4): 400-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[38]
Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol 2020; 17(5): 536-8.
[http://dx.doi.org/10.1038/s41423-020-0385-z] [PMID: 32132669]
[39]
Yagi A, Yu BP. Immune Modulation of Aloe vera: Acemannan and Gut Microbiota Modulator. J Gastroenterol Hepatol Res 2015; 4(8): 1707-21.
[http://dx.doi.org/10.17554/j.issn.2224-3992.2015.04.525]
[40]
Arshad MS, Khan U, Sadiq A, et al. Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Sci Nutr 2020; 00(8): 1-6.
[http://dx.doi.org/10.1002/fsn3.1719] [PMID: 32837716]
[41]
Lawson LD. Garlic: A review of its medicinal effects and indicated active compounds phytomedicines of Europe chemistry and biological activity series 691. Washington, DC: Am Chem Soc 1998; pp. 176-209.
[http://dx.doi.org/10.1021/bk-1998-0691.ch014]
[42]
Moyers S. Garlic in Health, History and World Cuisine. St. Petersburg, FL: Suncoast Press 1996; pp. 1-36.
[43]
Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007; 15: 108-15.
[44]
Onyechi JO, Chime SA, Onyishi IV, Brown SA, Eleigwe PO, Onunkwo GC. Formulation and evaluation of Allium sativum tablets for improved oral delivery. Int J Pharm Sci Rev Res 2013; 22(2): 6-10.
[45]
Deresse D. Antibacterial Effect of Garlic (Allium sativum) on Staphylococcu aureus: An in vitro Study. Asian J Med Sci 2010; 2(2): 62-5.
[46]
Kemper KJ. Garlic (Allium sativum). Longwood Herbal Task Force 2000; pp. 1-49.
[47]
Herbazest®. Garlic nutrition. Available from: https://www.pinterest.com/pin/493355334176737989/ Accessed 29th July 2020.
[48]
Banihani SA. Ginger and Testosterone. Biomolecules 2018; 8(4): 1-8.
[http://dx.doi.org/10.3390/biom8040119] [PMID: 30360442]
[49]
Park M, Bae J, Lee DS. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res 2008; 22(11): 1446-9.
[http://dx.doi.org/10.1002/ptr.2473] [PMID: 18814211]
[50]
Danwilai K, Konmun J, Sripanidkulchai B, Subongkot S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Manag Res 2017; 9: 11-8.
[http://dx.doi.org/10.2147/CMAR.S124016] [PMID: 28203106]
[51]
Jeena K, Liju VB, Kuttan R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J Physiol Pharmacol 2013; 57(1): 51-62.
[PMID: 24020099]
[52]
Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed Pharmacother 2018; 106: 381-9.
[http://dx.doi.org/10.1016/j.biopha.2018.06.148] [PMID: 29966984]
[53]
Zhu J, Chen H, Song Z, Wang X, Sun Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018; 2018: 5692962.
[http://dx.doi.org/10.1155/2018/5692962] [PMID: 29541142]
[54]
Wang Z, Hasegawa J, Wang X, et al. Protective effects of ginger against aspirin-induced gastric ulcers in rats. Yonago Acta Med 2011; 54(1): 11-9.
[PMID: 24031124]
[55]
Nicoll R, Henein MY. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int J Cardiol 2009; 131(3): 408-9.
[http://dx.doi.org/10.1016/j.ijcard.2007.07.107] [PMID: 18037515]
[56]
Cuya T, Baptista L, Celmar Costa Franca T. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: Implications for alzheimer disease. J Biomol Struct Dyn 2017; 1-13.
[PMID: 29096599]
[57]
Liu Q, Liu J, Guo H, et al. [6]-gingerol: A novel AT₁ antagonist for the treatment of cardiovascular disease. Planta Med 2013; 79(5): 322-6.
[http://dx.doi.org/10.1055/s-0032-1328262] [PMID: 23479389]
[58]
de Lima RMT, Dos Reis AC, de Menezes APM, et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018; 32(10): 1885-907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[59]
Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 2008; 56(6): 1955-62.
[http://dx.doi.org/10.1021/jf072591j] [PMID: 18284200]
[60]
LaColla P, Tramontano E, Musiu C, Marongiu ME, Novellino E, Greco G. Curcumin-like derivatives with potent activity againstHIV-1 integrase: Synthesis, biological evaluation and molecular modeling. Antiviral Res 1998; 37(3): 57-7.
[61]
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[63]
Ramadan MF. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int J Food Sci Technol 2007; 42(10): 1208-18.
[http://dx.doi.org/10.1111/j.1365-2621.2006.01417.x]
[64]
Takruri HRH, Dameh MAF. Study of the nutritional value of black cumin seeds (Nigella sativa L). J Sci Food Agric 1998; 76(3): 404-10.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199803)76:3<404:AID-JSFA964>3.0.CO;2-L]
[65]
Ahmad J. Tripathi, S. Manik, L. Umar, and J. Rabia, Preliminary phytochemical studies of the miracle herb of the century, Nigella sativa L. (black seed). Indo Am J Pharmaceutical Res 2013; 3(4): 3000-7.
[66]
Javed S, Shahid AA, Haider MS. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J Med Plants Res 2010; 6(5): 768-75.
[67]
Mamun MA, Absar N. Major nutritional compositions of black cumin seeds cultivated in Bangladesh and the physicochemical characteristics of its oil. Int Food Res J 2018; 25(6): 2634-9.
[68]
Ghahramanloo KH, Kamalidehghan B, Akbari JH, Teguh WR, Majidzadeh K, Noordin MI. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. Extracted using supercritical fluid extraction and solvent extraction. Drug Des Devel Ther 2017; 11: 2221-6.
[http://dx.doi.org/10.2147/DDDT.S87251]
[69]
Haseena S, Aithal M, Das KK, Saheb SH. Phytochemical analysis of Nigella sativa and its effect on reproductive system. J Pharm Sci Res 2015; 7(8): 514-7.
[70]
Botnick W. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules 2012; 17(9): 10159-77.
[71]
Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med 2019; 2019: 1528635.
[http://dx.doi.org/10.1155/2019/1528635] [PMID: 31214267]
[72]
Damle M. Glycyrrhiza glabra (Liquorice) - a potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
[73]
Ju HS, Li XJ, Zhao BL, Han ZW, Xin WJ. Effects of glycyrrhiza flavonoid on lipid peroxidation and active oxygen radicals Yao Xue Xue Bao 1989; 24(11): 807-12.
[PMID: 2618676]
[74]
Alonso J. Tratado de Fitofármacos y Nutracéuticos. In: Barcelona, Corpus 2004; pp. 905-11. Available from: www.fitoterapia.net
[75]
Badam L. In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. J Commun Dis 1997; 29(2): 91-9.
[PMID: 9282507]
[76]
Pompei R, Pani A, Flore O, Marcialis MA, Loddo B. Antiviral activity of glycyrrhizic acid. Experientia 1980; 36(3): 304.
[http://dx.doi.org/10.1007/BF01952290] [PMID: 6245914]
[77]
Pompei R, Flore O, Marccialis MA, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979; 281(5733): 689-90.
[http://dx.doi.org/10.1038/281689a0] [PMID: 233133]
[78]
Aadam L. In vitro studies on the effect of glycyrrhizin from Glycyrrhizin glabra on some RNA and DNA viruses. Indian J Pharmacol 1994; 26: 194-9.
[79]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[80]
De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 2000; 20(5): 323-49.
[http://dx.doi.org/10.1002/1098-1128(200009)20:5<323:AID-MED1>3.0.CO;2-A] [PMID: 10934347]
[81]
Surjushe A, Vasani R, Saple DG. Aloe vera: A short review. Indian J Dermatol 2008; 53(4): 163-6.
[http://dx.doi.org/10.4103/0019-5154.44785] [PMID: 19882025]
[82]
Davis RH, DiDonato JJ, Johnson RW, Stewart CB. Aloe vera, hydrocortisone, and sterol influence on wound tensile strength and anti-inflammation. J Am Podiatr Med Assoc 1994; 84(12): 614-21.
[http://dx.doi.org/10.7547/87507315-84-12-614] [PMID: 7853156]
[83]
Yagi A, Kabash A, Okamura N, Haraguchi H, Moustafa SM, Khalifa TI. Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in Aloe vera. Planta Med 2002; 68(11): 957-60.
[http://dx.doi.org/10.1055/s-2002-35666] [PMID: 12451482]
[84]
Shida T, Yagi A, Nishimura H, Nishioka I. Effect of Aloe extract on peripheral phagocytosis in adult bronchial asthma. Planta Med 1985; 18(3): 273-5.
[http://dx.doi.org/10.1055/s-2007-969480] [PMID: 4034752]
[85]
Yagi A, Shida T, Nishimura H. Effect of amino acids in Aloe extract on phagocytosis by peripheral neutrophil in adult bronchial asthma. Arerugi 1987; 36(12): 1094-101.
[PMID: 3451730]
[86]
Vinson JA, Al Kharrat H, Andreoli L. Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine 2005; 12(10): 760-5.
[http://dx.doi.org/10.1016/j.phymed.2003.12.013] [PMID: 16323295]
[87]
Ayerza R, Coates W. Dietary levels of chia: Influence on hen weight, egg production and sensory quality, for two strains of hens. Br Poult Sci 2002; 43(2): 283-90.
[http://dx.doi.org/10.1080/00071660120121517] [PMID: 12047094]
[88]
Ayerza R, Coates W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop Sci 2004; 44(3): 131-5.
[http://dx.doi.org/10.1002/ts.154]
[89]
Cahill J. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ Bot 2003; 57(4): 604-18.
[http://dx.doi.org/10.1663/0013-0001(2003)057[0604:EOCSHL]2.0.CO;2]
[90]
Ullah R, Nadeem M, Khalique A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J Food Sci Technol 2016; 53(4): 1750-8.
[http://dx.doi.org/10.1007/s13197-015-1967-0] [PMID: 27413203]
[91]
Chia seeds. Herbazest. Available from: https://www.herbazest. com/herbs/chia Accessed 29th July, 2020.
[92]
Sharma A, Gupta A. Sakshi Singh AmlaBatra, “Tinospora cordifolia (Willd.) Hook. F. & Thomson - A plant with immense economic potential. J Chem Pharm Res 2010; 2(5): 327-33.
[93]
Sinha K, Mishra NP, Singh J, Khanuja SPS. Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic application. Indian J Tradit Knowl 2004; 3(3): 257-70.
[94]
Sonkamble VV, Kamble LH. Antidiabetic potential and identification of phytochemicals from Tinospora cordifolia. Am J Phytomed Clin Ther 2015; 3: 97-110.
[95]
Goel HC, Prasad J, Singh S, et al. Radioprotective potential of an herbal extract of Tinospora cordifolia. J Radiat Res (Tokyo) 2004; 45(1): 61-8.
[http://dx.doi.org/10.1269/jrr.45.61] [PMID: 15133291]
[96]
Sengupta S, Mukherjee A, Goswami R, Basu S. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia. J Enzyme Inhib Med Chem 2009; 24(3): 684-90.
[http://dx.doi.org/10.1080/14756360802333075] [PMID: 18951283]
[97]
Salkar K, Chotalia C, Salvi R. Tinospora cordifolia: An antimicrobial and immunity enhancer plant. Int J Sci Res 2017; 6: 1603-7.
[98]
Mahima AR, Rahal A, Prakash A, Verma AK, Kumar V, Roy D. Proximate and elemental analyses of Tinospora cordifolia stem. Pak J Biol Sci 2014; 17(5): 744-7.
[http://dx.doi.org/10.3923/pjbs.2014.744.747] [PMID: 26031012]
[99]
Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial effects of cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015; 7(9): 7729-48.
[http://dx.doi.org/10.3390/nu7095359] [PMID: 26378575]
[100]
Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P. Efficacy and safety of ‘true’ cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: A systematic review and meta-analysis. Diabet Med 2012; 29(12): 1480-92.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03718.x] [PMID: 22671971]
[101]
Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 2006; 104(1-2): 119-23.
[http://dx.doi.org/10.1016/j.jep.2005.08.059] [PMID: 16213119]
[102]
Brierley SM, Kelber O. Use of natural products in gastrointestinal therapies. Curr Opin Pharmacol 2011; 11(6): 604-11.
[http://dx.doi.org/10.1016/j.coph.2011.09.007] [PMID: 21996284]
[103]
Al-Jiffri O, El-Sayed Z, Al-Sharif F. Urinary tract infection with Esherichia coli and antibacterial activity of some plants extracts. Int J Microbiol Res 2011; 2: 1-7.
[104]
Shumaila G, Mahpara S. Proximate Composition and Mineral Analysis of Cinnamon. Pak J Nutr 2009; 8(9): 1456-60.
[http://dx.doi.org/10.3923/pjn.2009.1456.1460]
[105]
Gutierrez RM. Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med Chem 2016; 6(1): 2161-44.
[http://dx.doi.org/10.4172/2161-0444.1000316]
[106]
Smith BD. The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 1997; 276(5314): 932-4.
[http://dx.doi.org/10.1126/science.276.5314.932]
[107]
Stevenson DG, Eller FJ, Wang L, Jane JL, Wang T, Inglett GE. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J Agric Food Chem 2007; 55(10): 4005-13.
[http://dx.doi.org/10.1021/jf0706979] [PMID: 17439238]
[108]
Glew RH, Glew RS, Chuang LT, et al. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum Nutr 2006; 61(2): 51-6.
[http://dx.doi.org/10.1007/s11130-006-0010-z] [PMID: 16770692]
[109]
Rabrenovic CC, Dimic EB, Novakovic MM, Tesevic VV, Basic ZN. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pipo L.) seeds. Food Sci Technol 2014; 55: 521-7.
[110]
Chime SA, Onyishi VI, Momoh MA, Onunkwo GC. Formulation and evaluation of ethanolic extract of Cryptolepis sanguinolenta root tablets. Inno J Ayurv Sci 2014; 2(3): 10-3.
[111]
Chime SA, Onyishi IV, Ugwoke PU, Attama AA. Evaluation of the properties of Gongronema latifolium in phospholipon 90H based solid lipid microparticles (SLMs): An antidiabetic study. J Diet Suppl 2014; 11(1): 7-18.
[http://dx.doi.org/10.3109/19390211.2013.859212] [PMID: 24409977]
[112]
Chime SA, Brown SA, Ugwoke CEC, Agubata CO, Ubah JO, Onunkwo GC. Formulation of methanolic extract of Cymbopogon citratus tablets: In vitro evaluation. Drug Inven Today 2012; 4(7): 397-400.
[113]
Chime SA, Ugwoke CE, Onyishi IV, Brown SA, Ugwu CE, Onunkwo GC. Formulation and evaluation of Cymbopogon citrates dried leaf-powder tablets. Afr J Pharm Pharmacol 2012; 6(48): 3274-9.
[http://dx.doi.org/10.5897/AJPP12.575]

© 2024 Bentham Science Publishers | Privacy Policy