Lipid-based Nanoparticles for the Targeted Delivery of Anticancer Drugs: A Review | Bentham Science
Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Lipid-based Nanoparticles for the Targeted Delivery of Anticancer Drugs: A Review

Author(s): Hamed Khodaverdi, Maryam Shokrian Zeini, Mehrdad Moosazadeh Moghaddam*, Soheil Vazifedust, Mostafa Akbariqomi and Hamid Tebyaniyan

Volume 19, Issue 10, 2022

Published on: 30 March, 2022

Page: [1012 - 1033] Pages: 22

DOI: 10.2174/1567201819666220117102658

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is one of the leading causes of mortality worldwide. Although chemotherapeutic agents have been effectively designed to increase the survival rates of some patients, the designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeatedly administering current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. The lipid-based nanoparticles (LBNPs) are a large and complex class of substances utilized to manage various diseases, especially cancers. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility. Solid lipid NPs and non-structured lipid carriers have lately received a lot of interest. In addition, several reports focused on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in applying LBNPs have been shown to deliver different therapeutic agents to cancerous cells and be a quite successful candidate in cancer therapy.

Keywords: Cancer, drug, lipid-based carriers, targeted delivery, nanoparticle, non-structured lipid carriers, targeted delivery.

Graphical Abstract
[1]
WHO. National cancer control programmes: Policies and managerial guidelines. 2002. Available from: https://apps.who.int/iris/handle/10665/42494
[2]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med., 2017, 1(2), 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[3]
Song, W.; Musetti, S.N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.017] [PMID: 28961532]
[4]
Lai, A.Y.; Sorrentino, J.A.; Dragnev, K.H.; Weiss, J.M.; Owonikoko, T.K.; Rytlewski, J.A.; Hood, J.; Yang, Z.; Malik, R.K.; Strum, J.C.; Roberts, P.J. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J. Immunother. Cancer, 2020, 8(2), e000847.
[http://dx.doi.org/10.1136/jitc-2020-000847] [PMID: 33004541]
[5]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. (Review). Int. J. Oncol., 2019, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[6]
Chen, D-H.; Zhang, X-S. Targeted therapy: resistance and resensitization. Chin. J. Cancer, 2015, 34(11), 496-501.
[http://dx.doi.org/10.1186/s40880-015-0047-1] [PMID: 26370727]
[7]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[8]
Taghipour-Sabzevar, V. Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: An in vitro study. J. Nanopart. Res., 2020, 22(5), 1-16.
[http://dx.doi.org/10.1007/s11051-020-04838-2]
[9]
Colone, M.; Calcabrini, A.; Stringaro, A. Drug delivery systems of natural products in oncology. Molecules, 2020, 25(19), 4560.
[http://dx.doi.org/10.3390/molecules25194560] [PMID: 33036240]
[10]
De Blaey, C.; Polderman, J. Rationales in the Design of Rectal and Vaginal Delivery Forms of Drugs. In: Medicinal Chemistry; Ariëns, E.J., Ed.; , 1980; pp. 237-266.
[http://dx.doi.org/10.1016/B978-0-12-060309-1.50011-2]
[11]
Calder, P.C.; Waitzberg, D.L.; Klek, S.; Martindale, R.G. Lipids in parenteral nutrition: Biological aspects. JPEN J. Parenter. Enteral Nutr., 2020, 44(Suppl. 1), S21-S27.
[http://dx.doi.org/10.1002/jpen.1756] [PMID: 32049394]
[12]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[13]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[14]
Xin, Y.; Yin, M.; Zhao, L.; Meng, F.; Luo, L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol. Med., 2017, 14(3), 228-241.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0052] [PMID: 28884040]
[15]
Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M.T.; Sajid, A.; Mathew, B.; Uddin, M.S.; Aleya, L.; Abdel-Daim, M.M. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19151-19168.
[http://dx.doi.org/10.1007/s11356-019-05211-0] [PMID: 31079299]
[16]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[17]
Pathak, Y.V. Surface modification of nanoparticles for targeted drug delivery; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-06115-9]
[18]
Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25(9), 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[19]
Salehi, B.; Selamoglu, Z.; S Mileski, K.; Pezzani, R.; Redaelli, M.; Cho, W.C.; Kobarfard, F.; Rajabi, S.; Martorell, M.; Kumar, P.; Martins, N.; Subhra Santra, T.; Sharifi-Rad, J. Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules, 2019, 9(12), 773.
[http://dx.doi.org/10.3390/biom9120773] [PMID: 31771220]
[20]
Liu, Y.; Chen, S.; Sun, J.; Zhu, S.; Chen, C.; Xie, W.; Zheng, J.; Zhu, Y.; Xiao, L.; Hao, L.; Wang, Z.; Chang, S. Folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles for dual-mode imaging and photo-sonodynamic/photothermal therapy of ovarian cancer in vitro and in vivo. Mol. Pharm., 2019, 16(10), 4104-4120.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00339] [PMID: 31517495]
[21]
Li, C.; Li, T.; Huang, L.; Yang, M.; Zhu, G. Self-assembled lipid nanoparticles for ratiometric codelivery of cisplatin and siRNA targeting XPF to combat drug resistance in lung cancer. Chem. Asian J., 2019, 14(9), 1570-1576.
[http://dx.doi.org/10.1002/asia.201900005] [PMID: 30843348]
[22]
Sethuraman, V.; Janakiraman, K.; Krishnaswami, V.; Natesan, S.; Kandasamy, R. In vivo synergistic anti-tumor effect of lumefantrine combined with pH responsive behavior of nano calcium phosphate based lipid nanoparticles on lung cancer. Eur. J. Pharm. Sci., 2021, 158, 105657.
[http://dx.doi.org/10.1016/j.ejps.2020.105657] [PMID: 33271276]
[23]
Kon, E.; Hazan-Halevy, I.; Rosenblum, D.; Cohen, N.; Chatterjee, S.; Veiga, N.; Raanani, P.; Bairey, O.; Benjamini, O.; Nagler, A.; Peer, D. Resveratrol enhances mRNA and siRNA lipid nanoparticles primary CLL cell transfection. Pharmaceutics, 2020, 12(6), 520.
[http://dx.doi.org/10.3390/pharmaceutics12060520] [PMID: 32517377]
[24]
Jyotsana, N.; Sharma, A.; Chaturvedi, A.; Budida, R.; Scherr, M.; Kuchenbauer, F.; Lindner, R.; Noyan, F.; Sühs, K.W.; Stangel, M.; Grote-Koska, D.; Brand, K.; Vornlocher, H.P.; Eder, M.; Thol, F.; Ganser, A.; Humphries, R.K.; Ramsay, E.; Cullis, P.; Heuser, M. Lipid nano-particle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann. Hematol., 2019, 98(8), 1905-1918.
[http://dx.doi.org/10.1007/s00277-019-03713-y] [PMID: 31104089]
[25]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[http://dx.doi.org/10.3390/ph6111361] [PMID: 24287462]
[26]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[27]
Gregoriadis, G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol., 1995, 13(12), 527-537.
[http://dx.doi.org/10.1016/S0167-7799(00)89017-4] [PMID: 8595139]
[28]
Glukhova, O.E. Liposome drug delivery system across endothelial plasma membrane: Role of distance between endothelial cells and blood flow rate. Molecules, 2020, 25(8), 1875.
[http://dx.doi.org/10.3390/molecules25081875] [PMID: 32325705]
[29]
Gu, Z.; Da Silva, C.G.; Van der Maaden, K.; Ossendorp, F.; Cruz, L.J. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics, 2020, 12(11), 1054.
[http://dx.doi.org/10.3390/pharmaceutics12111054] [PMID: 33158166]
[30]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[31]
Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542.
[http://dx.doi.org/10.1038/nrd4003] [PMID: 23812271]
[32]
Tang, Z.; Feng, W.; Yang, Y.; Wang, Q. Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. Drug Des. Devel. Ther., 2019, 13, 3281-3290.
[http://dx.doi.org/10.2147/DDDT.S211168] [PMID: 31571830]
[33]
Asadpour, O.; Rahbarizadeh, F. Phospholipase-Cγ1 signaling protein down-regulation by oligoclonal-VHHs based immuno-liposome: A potent metastasis deterrent in HER2 positive breast cancer cells. Cell J., 2020, 22(1), 30-39.
[http://dx.doi.org/10.22074/cellj.2020.6704] [PMID: 31606964]
[34]
Okamoto, Y.; Taguchi, K.; Sakuragi, M.; Imoto, S.; Yamasaki, K.; Otagiri, M. Preparation, characterization, and in vitro/in vivo evaluation of paclitaxel-bound albumin-encapsulated liposomes for the treatment of pancreatic cancer. ACS Omega, 2019, 4(5), 8693-8700.
[http://dx.doi.org/10.1021/acsomega.9b00537] [PMID: 31459959]
[35]
Bolger, G.T.; Licollari, A.; Bagshaw, R.; Tan, A.; Greil, R.; Vcelar, B.; Majeed, M.; Sordillo, P. Intense uptake of liposomal curcumin by multiple myeloma cell lines: Comparison to normal lymphocytes, red blood cells and chronic lymphocytic leukemia cells. Anticancer Res., 2019, 39(3), 1161-1168.
[http://dx.doi.org/10.21873/anticanres.13225] [PMID: 30842145]
[36]
Ghosh, S.; Lalani, R.; Maiti, K.; Banerjee, S.; Patel, V.; Bhowmick, S.; Misra, A. Optimization and efficacy study of synergistic vincristine coloaded liposomal doxorubicin against breast and lung cancer. Nanomedicine (Lond.), 2020, 15(26), 2585-2607.
[http://dx.doi.org/10.2217/nnm-2020-0169] [PMID: 33090073]
[37]
Baskararaj, S.; Panneerselvam, T.; Govindaraj, S.; Arunachalam, S.; Parasuraman, P.; Pandian, S.R.K.; Sankaranarayanan, M.; Mohan, U.P.; Palanisamy, P.; Ravishankar, V.; Kunjiappan, S. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech, 2020, 10(3), 136.
[http://dx.doi.org/10.1007/s13205-020-2132-7] [PMID: 32158632]
[38]
Lee, H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics, 2020, 12(6), 533.
[http://dx.doi.org/10.3390/pharmaceutics12060533] [PMID: 32531886]
[39]
Chambers, L.M.; Pendlebury, A.; Rose, P.G.; Yao, M.; DeBernardo, R. Efficacy and toxicity of prolonged pegylated liposomal doxorubicin use in women with recurrent epithelial ovarian cancer. Gynecol. Oncol., 2020, 158(2), 309-315.
[http://dx.doi.org/10.1016/j.ygyno.2020.04.708] [PMID: 32499072]
[40]
Najlah, M.; Said Suliman, A.; Tolaymat, I.; Kurusamy, S.; Kannappan, V.; Elhissi, A.M.A.; Wang, W. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics, 2019, 11(11), 610.
[http://dx.doi.org/10.3390/pharmaceutics11110610] [PMID: 31739556]
[41]
Kou, L.; Huang, H.; Lin, X.; Jiang, X.; Wang, Y.; Luo, Q.; Sun, J.; Yao, Q.; Ganapathy, V.; Chen, R. Endocytosis of ATB0,+(SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opin. Drug Deliv., 2020, 17(3), 395-405.
[http://dx.doi.org/10.1080/17425247.2020.1723544] [PMID: 31990587]
[42]
Haggag, Y.; Abu Ras, B.; El-Tanani, Y.; Tambuwala, M.M.; McCarron, P.; Isreb, M.; El-Tanani, M. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin. Drug Deliv., 2020, 17(11), 1655-1669.
[http://dx.doi.org/10.1080/17425247.2020.1813714] [PMID: 32841584]
[43]
Li, S.; Chi, S.; Cheng, X.; Wu, C.; Xu, Q.; Qu, P.; Gao, W.; Liu, Y. Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides. Aquacult. Rep., 2020, 16, 100252.
[http://dx.doi.org/10.1016/j.aqrep.2019.100252]
[44]
Wang, Y.; Fu, M.; Liu, J.; Yang, Y.; Yu, Y.; Li, J.; Pan, W.; Fan, L.; Li, G.; Li, X.; Wang, X. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int. J. Nanomedicine, 2019, 14, 4071-4090.
[http://dx.doi.org/10.2147/IJN.S194304] [PMID: 31239668]
[45]
Zhao, Z.; Zhao, Y.; Xie, C.; Chen, C.; Lin, D.; Wang, S.; Lin, D.; Cui, X.; Guo, Z.; Zhou, J. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation. Chem. Phys. Lipids, 2019, 223, 104785.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.104785] [PMID: 31194968]
[46]
Ichihara, H.; Motomura, M.; Matsumoto, Y. Therapeutic effects and anti-metastasis effects of cationic liposomes against pancreatic cancer metastasis in vitro and in vivo. Biochem. Biophys. Res. Commun., 2019, 511(3), 504-509.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.116] [PMID: 30803757]
[47]
Jiang, L.; Wang, H.; Chen, S. Aptamer (AS1411)-conjugated liposome for enhanced therapeutic efficacy of miRNA-29b in ovarian cancer. J. Nanosci. Nanotechnol., 2020, 20(4), 2025-2031.
[http://dx.doi.org/10.1166/jnn.2020.17301] [PMID: 31492208]
[48]
Yu, S.; Bi, X.; Yang, L.; Wu, S.; Yu, Y.; Jiang, B.; Zhang, A.; Lan, K.; Duan, S. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J. Biomed. Nanotechnol., 2019, 15(6), 1135-1148.
[http://dx.doi.org/10.1166/jbn.2019.2751] [PMID: 31072423]
[49]
Paul, B.; Gaonkar, R.H.; Mukhopadhyay, R.; Ganguly, S.; Debnath, M.C.; Mukherjee, B. Garcinol-loaded novel cationic nanoliposomes: in vitro and in vivo study against B16F10 melanoma tumor model. Nanomedicine (Lond.), 2019, 14(15), 2045-2065.
[http://dx.doi.org/10.2217/nnm-2019-0022] [PMID: 31368402]
[50]
Zhang, H.; Yu, N.; Chen, Y.; Yan, K.; Wang, X. Cationic liposome codelivering PI3K pathway regulator improves the response of BRCA1-deficient breast cancer cells to PARP1 inhibition. J. Cell. Biochem., 2019, 120(8), 13037-13045.
[http://dx.doi.org/10.1002/jcb.28574] [PMID: 30873673]
[51]
Zhao, Y.; Xu, J.; Le, V.M.; Gong, Q.; Li, S.; Gao, F.; Ni, L.; Liu, J.; Liang, X. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol. Pharm., 2019, 16(11), 4696-4710.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00867] [PMID: 31589818]
[52]
Gabizon, A.A.; Tahover, E.; Golan, T.; Geva, R.; Perets, R.; Amitay, Y.; Shmeeda, H.; Ohana, P. Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients. Invest. New Drugs, 2020, 38(5), 1411-1420.
[http://dx.doi.org/10.1007/s10637-020-00897-3] [PMID: 31955309]
[53]
Tang, H.; Chen, J.; Wang, L.; Li, Q.; Yang, Y.; Lv, Z.; Bao, H.; Li, Y.; Luan, X.; Li, Y.; Ren, Z.; Zhou, X.; Cong, D.; Liu, Z.; Jia, J.; Chen, H.; Zhao, W.; Meng, Q.; Sun, F.; Pei, J. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int. J. Pharm., 2020, 573, 118806.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118806] [PMID: 31678519]
[54]
Ghandhariyoun, N.; Jaafari, M.R.; Nikoofal-Sahlabadi, S.; Taghdisi, S.M.; Moosavian, S.A. Reducing Doxorubicin resistance in breast cancer by liposomal FOXM1 aptamer: In vitro and in vivo. Life Sci., 2020, 262, 118520.
[http://dx.doi.org/10.1016/j.lfs.2020.118520] [PMID: 33010284]
[55]
Arthur, P.; Patel, N.; Surapaneni, S.K.; Mondal, A.; Gebeyehu, A.; Bagde, A.; Kutlehria, S.; Nottingham, E.; Singh, M. Targeting lung cancer stem cells using combination of Tel and Docetaxel liposomes in 3D cultures and tumor xenografts. Toxicol. Appl. Pharmacol., 2020, 401, 115112.
[http://dx.doi.org/10.1016/j.taap.2020.115112] [PMID: 32540278]
[56]
Asghari, H.; Lancet, J. Liposomal encapsulated cytarabine and daunorubicin (CPX-351) for older patients with acute myeloid leukemia. Leuk. Lymphoma, 2020, 61(6), 1305-1312.
[http://dx.doi.org/10.1080/10428194.2020.1719093] [PMID: 32037927]
[57]
Simionato, F.; Zecchetto, C.; Merz, V.; Cavaliere, A.; Casalino, S.; Gaule, M.; D’Onofrio, M.; Malleo, G.; Landoni, L.; Esposito, A.; Marchegiani, G.; Casetti, L.; Tuveri, M.; Paiella, S.; Scopelliti, F.; Giardino, A.; Frigerio, I.; Regi, P.; Capelli, P.; Gobbo, S.; Gabbrielli, A.; Bernardoni, L.; Fedele, V.; Rossi, I.; Piazzola, C.; Giacomazzi, S.; Pasquato, M.; Gianfortone, M.; Milleri, S.; Milella, M.; Butturini, G.; Salvia, R.; Bassi, C.; Melisi, D. A phase II study of liposomal irinotecan with 5-fluorouracil, leucovorin and oxaliplatin in patients with resectable pancreatic cancer: the nitro trial. Ther. Adv. Med. Oncol., 2020, 12, 1758835920947969.
[http://dx.doi.org/10.1177/1758835920947969] [PMID: 33403007]
[58]
Bang, Y.J.; Li, C.P.; Lee, K.H.; Chiu, C.F.; Park, J.O.; Shan, Y.S.; Kim, J.S.; Chen, J.S.; Shim, H.J.; Rau, K.M.; Choi, H.J.; Oh, D.Y.; Belanger, B.; Chen, L.T. Liposomal irinotecan in metastatic pancreatic adenocarcinoma in Asian patients: Subgroup analysis of the NAPOLI-1 study. Cancer Sci., 2020, 111(2), 513-527.
[http://dx.doi.org/10.1111/cas.14264] [PMID: 31789476]
[59]
Macarulla Mercadé, T.; Chen, L.T.; Li, C.P.; Siveke, J.T.; Cunningham, D.; Bodoky, G.; Blanc, J.F.; Lee, K.H.; Dean, A.; Belanger, B.; Wang-Gillam, A. Liposomal irinotecan+ 5-FU/LV in metastatic pancreatic cancer: Subgroup analyses of patient, tumor, and previous treatment characteristics in the pivotal NAPOLI-1 trial. Pancreas, 2020, 49(1), 62-75.
[http://dx.doi.org/10.1097/MPA.0000000000001455] [PMID: 31856081]
[60]
Burande, A.S.; Viswanadh, M.K.; Jha, A.; Mehata, A.K.; Shaik, A.; Agrawal, N.; Poddar, S.; Mahto, S.K.; Muthu, M.S. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech, 2020, 21(5), 151.
[http://dx.doi.org/10.1208/s12249-020-01671-7] [PMID: 32440910]
[61]
Mashreghi, M.; Zamani, P.; Moosavian, S.A.; Jaafari, M.R. Anti-Epcam aptamer (Syl3c)-functionalized liposome for targeted delivery of doxorubicin: In vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma. Nanoscale Res. Lett., 2020, 15(1), 101.
[http://dx.doi.org/10.1186/s11671-020-03334-9] [PMID: 32383027]
[62]
Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med., 2010, 363(20), 1938-1948.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[63]
Mu, Y.; Wang, D.; Bie, L.; Luo, S.; Mu, X.; Zhao, Y. Glypican-1-targeted and gemcitabine-loaded liposomes enhance tumor-suppressing effect on pancreatic cancer. Aging (Albany NY), 2020, 12(19), 19585-19596.
[http://dx.doi.org/10.18632/aging.103918] [PMID: 33035197]
[64]
Cao, M.; Long, M.; Chen, Q.; Lu, Y.; Luo, Q.; Zhao, Y.; Lu, A.; Ge, C.; Zhu, L.; Chen, Z. Development of β-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts. Pharm. Res., 2019, 36(8), 121.
[http://dx.doi.org/10.1007/s11095-019-2656-x] [PMID: 31214786]
[65]
Franco, M.S.; Roque, M.C.; de Barros, A.L.B.; de Oliveira Silva, J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother., 2019, 109, 1728-1739.
[http://dx.doi.org/10.1016/j.biopha.2018.11.011] [PMID: 30551427]
[66]
Han, G.; Shi, J.; Mi, L.; Li, N.; Shi, H.; Li, C.; Shan, B.; Yin, F. Clinical efficacy and safety of paclitaxel liposomes as first-line chemotherapy in advanced gastric cancer. Future Oncol., 2019, 15(14), 1617-1627.
[http://dx.doi.org/10.2217/fon-2018-0439] [PMID: 31038363]
[67]
Huang, J-R.; Lee, M.H.; Li, W.S.; Wu, H.C. Liposomal irinotecan for treatment of colorectal cancer in a preclinical model. Cancers (Basel), 2019, 11(3), 281.
[http://dx.doi.org/10.3390/cancers11030281] [PMID: 30818855]
[68]
Sheikhpour, M.; Sadeghizadeh, M.; Yazdian, F.; Mansoori, A.; Asadi, H.; Movafagh, A.; Shahraeini, S.S. Co-administration of curcumin and bromocriptine nano-liposomes for induction of apoptosis in lung cancer cells. Iran. Biomed. J., 2020, 24(1), 24-29.
[http://dx.doi.org/10.29252/ibj.24.1.24] [PMID: 31454860]
[69]
Licarete, E.; Rauca, V.F.; Luput, L.; Drotar, D.; Stejerean, I.; Patras, L.; Dume, B.; Toma, V.A.; Porfire, A.; Gherman, C.; Sesarman, A.; Banciu, M. Overcoming Intrinsic doxorubicin resistance in melanoma by anti-angiogenic and anti-metastatic effects of liposomal prednisolone phosphate on tumor microenvironment. Int. J. Mol. Sci., 2020, 21(8), 2968.
[http://dx.doi.org/10.3390/ijms21082968] [PMID: 32340166]
[70]
Lee, E.K.; Xiong, N.; Cheng, S.C.; Barry, W.T.; Penson, R.T.; Konstantinopoulos, P.A.; Hoffman, M.A.; Horowitz, N.; Dizon, D.S.; Stover, E.H.; Wright, A.A.; Campos, S.M.; Krasner, C.; Morrissey, S.; Whalen, C.; Quinn, R.; Matulonis, U.A.; Liu, J.F. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial. Gynecol. Oncol., 2020, 159(1), 72-78.
[http://dx.doi.org/10.1016/j.ygyno.2020.07.028] [PMID: 32771276]
[71]
Li, R.; Lin, Z.; Zhang, Q.; Zhang, Y.; Liu, Y.; Lyu, Y.; Li, X.; Zhou, C.; Wu, G.; Ao, N.; Li, L. injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl. Mater. Interfaces, 2020, 12(15), 17936-17948.
[http://dx.doi.org/10.1021/acsami.9b21528] [PMID: 32208630]
[72]
Sun, M.; Shi, Y.; Dang, U.J.; Di Pasqua, A.J. Phenethyl isothiocyanate and cisplatin co-encapsulated in a liposomal nanoparticle for treatment of non-small cell lung cancer. Molecules, 2019, 24(4), 801.
[http://dx.doi.org/10.3390/molecules24040801] [PMID: 30813352]
[73]
Zeng, Y-Y.; Zeng, Y.J.; Zhang, N.N.; Li, C.X.; Xie, T.; Zeng, Z.W. The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and β-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma. Molecules, 2019, 24(9), 1697.
[http://dx.doi.org/10.3390/molecules24091697] [PMID: 31052317]
[74]
Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180, 9-22.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.035] [PMID: 31015105]
[75]
Jin, X.; Yang, Q.; Cai, N.; Zhang, Z. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (Lond.), 2020, 15(1), 41-54.
[http://dx.doi.org/10.2217/nnm-2018-0479] [PMID: 31868113]
[76]
Shao, L.; Kahraman, N.; Yan, G.; Wang, J.; Ozpolat, B.; Ittmann, M. Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer. Prostate, 2020, 80(1), 65-73.
[http://dx.doi.org/10.1002/pros.23918] [PMID: 31614005]
[77]
Ashihara, K.; Terai, Y.; Tanaka, T.; Tanaka, Y.; Fujiwara, S.; Maeda, K.; Tunetoh, S.; Sasaki, H.; Hayashi, M.; Ohmichi, M. Pharmacokinetic evaluation and antitumor potency of liposomal nanoparticle encapsulated cisplatin targeted to CD24-positive cells in ovarian cancer. Oncol. Lett., 2020, 19(3), 1872-1880.
[http://dx.doi.org/10.3892/ol.2020.11279] [PMID: 32194682]
[78]
Zhou, Q.; Fu, Z. In vitro and in vivo study of a novel liposome-mediated dual drug delivery for synergistic lung cancer therapy via oral administration. OncoTargets Ther., 2020, 13, 12695-12703.
[http://dx.doi.org/10.2147/OTT.S276837] [PMID: 33328741]
[79]
Shukla, S.K.; Kulkarni, N.S.; Chan, A.; Parvathaneni, V.; Farrales, P.; Muth, A.; Gupta, V. Metformin-encapsulated liposome delivery system: An effective treatment approach against breast cancer. Pharmaceutics, 2019, 11(11), 559.
[http://dx.doi.org/10.3390/pharmaceutics11110559] [PMID: 31661947]
[80]
Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Farrales, P.T.; Kunda, N.K.; Muth, A.; Gupta, V. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics, 2020, 12(3), 206.
[http://dx.doi.org/10.3390/pharmaceutics12030206] [PMID: 32121070]
[81]
Ledezma-Gallegos, F.; Jurado, R.; Mir, R.; Medina, L.A.; Mondragon-Fuentes, L.; Garcia-Lopez, P. Liposomes co-encapsulating cisplatin/mifepristone improve the effect on cervical cancer: In vitro and in vivo assessment. Pharmaceutics, 2020, 12(9), 897.
[http://dx.doi.org/10.3390/pharmaceutics12090897] [PMID: 32971785]
[82]
Yu, J.S.; Shin, D.H.; Kim, J-S. Repurposing of fluvastatin as an anticancer agent against breast cancer stem cells via encapsulation in a hyaluronan-conjugated liposome. Pharmaceutics, 2020, 12(12), 1133.
[http://dx.doi.org/10.3390/pharmaceutics12121133] [PMID: 33255298]
[83]
Pu, Y.; Zhang, H.; Peng, Y.; Fu, Q.; Yue, Q.; Zhao, Y.; Guo, L.; Wu, Y. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer. Eur. J. Med. Chem., 2019, 183, 111720.
[http://dx.doi.org/10.1016/j.ejmech.2019.111720] [PMID: 31553933]
[84]
Rolle, F.; Bincoletto, V.; Gazzano, E.; Rolando, B.; Lollo, G.; Stella, B.; Riganti, C.; Arpicco, S. Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int. J. Pharm., 2020, 580, 119191.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119191] [PMID: 32142738]
[85]
Sasaki, K.; Kantarjian, H.; Wierda, W.; Ravandi-Kashani, F.; Jorgensen, J.; Wang, S.A.; Khoury, J.; Daver, N.; Burger, J.; Di Nardo, C.D.; Jain, N.; Short, N.J.; Estrov Md, Z.; Konopleva Md PhD, M.; Ohanian DO, M.; Garcia-Manero, G.; Kadia, T.; Alvarado-Valero, Y.; Yilmaz, M.; Pierce, S.; Garris, R.; Ingram, A.; Cortes, J.; OʼBrien, S.; Jabbour, E. Phase 2 study of hyper-CMAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. Am. J. Hematol., 2020, 95(7), 734-739.
[http://dx.doi.org/10.1002/ajh.25784] [PMID: 32170867]
[86]
Song, Y.Y.; Yuan, Y.; Shi, X.; Che, Y.Y. Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids Surf. B Biointerfaces, 2020, 190, 110966.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110966] [PMID: 32199263]
[87]
Gai, C.; Liu, C.; Wu, X.; Yu, M.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis., 2020, 11(9), 751.
[http://dx.doi.org/10.1038/s41419-020-02939-3] [PMID: 32929075]
[88]
Nassir, A.M.; Ibrahim, I.A.A.; Md, S.; Waris, M. Tanuja; Ain, M.R.; Ahmad, I.; Shahzad, N. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: In vitro and in vivo activity. Life Sci., 2019, 220, 136-146.
[http://dx.doi.org/10.1016/j.lfs.2019.01.053] [PMID: 30710640]
[89]
de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado Botelho, A.F.; Martins Melo, M.; de Miranda, M.C.; Assis Gomes, D.; Dantas Cassali, G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323.
[http://dx.doi.org/10.1016/j.biopha.2019.109323] [PMID: 31400669]
[90]
Kateh Shamshiri, M.; Jaafari, M.R.; Badiee, A. Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sci., 2021, 264, 118605.
[http://dx.doi.org/10.1016/j.lfs.2020.118605] [PMID: 33096119]
[91]
Dréau, D.; Moore, L.J.; Wu, M.; Roy, L.D.; Dillion, L.; Porter, T.; Puri, R.; Momin, N.; Wittrup, K.D.; Mukherjee, P. Combining the specific anti-MUC1 antibody TAB004 and lip-MSA-IL-2 limits pancreatic cancer progression in immune competent murine models of pancreatic ductal adenocarcinoma. Front. Oncol., 2019, 9, 330.
[http://dx.doi.org/10.3389/fonc.2019.00330] [PMID: 31114758]
[92]
Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int. J. Nanomedicine, 2020, 15, 8201-8215.
[http://dx.doi.org/10.2147/IJN.S261671] [PMID: 33122906]
[93]
Abedi Gaballu, F.; Abbaspour-Ravasjani, S.; Mansoori, B.; Yekta, R.; Hamishehkar, H.; Mohammadi, A.; Dehghan, G.; Shokouhi, B.; Ghahremani Dehbokri, S.; Baradaran, B. Comparative of in-vitro evaluation between erlotinib loaded nanostructured lipid carriers and liposomes against A549 lung cancer cell line. Iran. J. Pharm. Res., 2019, 18(3), 1168-1179.
[http://dx.doi.org/10.22037/ijpr.2019.1100775] [PMID: 32641930]
[94]
Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine, 2019, 20, 102013.
[http://dx.doi.org/10.1016/j.nano.2019.04.016] [PMID: 31103736]
[95]
Wang, F.; Zhang, Z. Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment. Pharm. Res., 2020, 37(12), 247.
[http://dx.doi.org/10.1007/s11095-020-02949-y] [PMID: 33216236]
[96]
Cano, M.E.; Lesur, D.; Bincoletto, V.; Gazzano, E.; Stella, B.; Riganti, C.; Arpicco, S.; Kovensky, J. Synthesis of defined oligohyaluronates-decorated liposomes and interaction with lung cancer cells. Carbohydr. Polym., 2020, 248, 116798.
[http://dx.doi.org/10.1016/j.carbpol.2020.116798] [PMID: 32919536]
[97]
Zappavigna, S.; Abate, M.; Cossu, A.M.; Lusa, S.; Campani, V.; Scotti, L.; Luce, A.; Yousif, A.M.; Merlino, F.; Grieco, P.; De Rosa, G.; Caraglia, M. Urotensin-II-targeted liposomes as a new drug delivery system towards prostate and colon cancer cells. J. Oncol., 2019, 2019, 9293560.
[http://dx.doi.org/10.1155/2019/9293560] [PMID: 31929800]
[98]
Yari, H.; Nkepang, G.; Awasthi, V. Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials (Basel), 2019, 12(5), 756.
[http://dx.doi.org/10.3390/ma12050756] [PMID: 30841602]
[99]
Pandolfi, L.; Frangipane, V.; Bocca, C.; Marengo, A.; Tarro Genta, E.; Bozzini, S.; Morosini, M.; D’Amato, M.; Vitulo, S.; Monti, M.; Comolli, G.; Scupoli, M.T.; Fattal, E.; Arpicco, S.; Meloni, F. Hyaluronic acid–decorated liposomes as innovative targeted delivery system for lung fibrotic cells. Molecules, 2019, 24(18), 3291.
[http://dx.doi.org/10.3390/molecules24183291] [PMID: 31509965]
[100]
Jin, X.; Lu, X.; Zhang, Z.; Lv, H. Indocyanine green-parthenolide thermosensitive liposome combination treatment for triple-negative breast cancer. Int. J. Nanomedicine, 2020, 15, 3193-3206.
[http://dx.doi.org/10.2147/IJN.S245289] [PMID: 32440118]
[101]
Verma, A.; Najahi-Missaoui, W.; Cummings, B.S.; Somanath, P.R. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase-1 and secreted phospholipase A2 suppress prostate cancer growth and metastasis. Oncol. Lett., 2020, 20(5), 179.
[http://dx.doi.org/10.3892/ol.2020.12040] [PMID: 32934746]
[102]
Lara, O.D.; Bayraktar, E.; Amero, P.; Ma, S.; Ivan, C.; Hu, W.; Wang, Y.; Mangala, L.S.; Dutta, P.; Bhattacharya, P.; Ashizawa, A.T.; Lopez-Berestein, G.; Rodriguez-Aguayo, C.; Sood, A.K. Therapeutic efficacy of liposomal Grb2 antisense oligodeoxynucleotide (L-Grb2) in preclinical models of ovarian and uterine cancer. Oncotarget, 2020, 11(29), 2819-2833.
[http://dx.doi.org/10.18632/oncotarget.27667] [PMID: 32754300]
[103]
Wang, J.; Liu, D.; Guan, S.; Zhu, W.; Fan, L.; Zhang, Q.; Cai, D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr. Polym., 2020, 235, 115981.
[http://dx.doi.org/10.1016/j.carbpol.2020.115981] [PMID: 32122511]
[104]
Kubeček, O.; Martínková, J.; Chládek, J.; Bláha, M.; Maláková, J.; Hodek, M.; Špaček, J.; Filip, S. Plasmafiltration as an effective method in the removal of circulating pegylated liposomal doxorubicin (PLD) and the reduction of mucocutaneous toxicity during the treatment of advanced platinum-resistant ovarian cancer. Cancer Chemother. Pharmacol., 2020, 85(2), 353-365.
[http://dx.doi.org/10.1007/s00280-019-03976-2] [PMID: 31728628]
[105]
Gkionis, L.; Campbell, R.A.; Aojula, H.; Harris, L.K.; Tirella, A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int. J. Pharm., 2020, 590, 119926.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119926] [PMID: 33010397]
[106]
Ghosh, S.; Lalani, R.; Maiti, K.; Banerjee, S.; Bhatt, H.; Bobde, Y.S.; Patel, V.; Biswas, S.; Bhowmick, S.; Misra, A. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine, 2021, 31, 102320.
[http://dx.doi.org/10.1016/j.nano.2020.102320] [PMID: 33075540]
[107]
Monk, B.J.; Herzog, T.J.; Wang, G.; Triantos, S.; Maul, S.; Knoblauch, R.; McGowan, T.; Shalaby, W.S.W.; Coleman, R.L. A phase 3 randomized, open-label, multicenter trial for safety and efficacy of combined trabectedin and pegylated liposomal doxorubicin therapy for recurrent ovarian cancer. Gynecol. Oncol., 2020, 156(3), 535-544.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.043] [PMID: 31924332]
[108]
Takahashi, Y.; Takei, Y.; Machida, S.; Taneichi, A.; Takahashi, S.; Yoshiba, T.; Koyanagi, T.; Tamura, K.; Saga, Y.; Fujiwara, H. Efficacy and toxicity of pegylated liposomal doxorubicin as therapy for recurrent ovarian cancer in relation to the number of previous chemotherapy regimens: Comparison with gemcitabine. J. Obstet. Gynaecol. Res., 2021, 47(2), 551-559.
[http://dx.doi.org/10.1111/jog.14558] [PMID: 33145906]
[109]
Fujiwara, H.; Ushijima, K.; Nagao, S.; Takei, Y.; Shimada, M.; Takano, M.; Yoshino, K.; Kawano, Y.; Hirashima, Y.; Nagase, S.; Nishio, S.; Nishikawa, T.; Ito, K.; Shoji, T.; Kimura, E.; Takano, T.; Sugiyama, T.; Kigawa, J.; Fujiwara, K.; Suzuki, M. A phase II randomized controlled study of pegylated liposomal doxorubicin and carboplatin vs. gemcitabine and carboplatin for platinum-sensitive recurrent ovarian cancer (GOTIC003/intergroup study). Int. J. Clin. Oncol., 2019, 24(10), 1284-1291.
[http://dx.doi.org/10.1007/s10147-019-01471-5] [PMID: 31127479]
[110]
Park, S.J.; Kim, J.; Kim, H.S.; Lee, J.W.; Chang, H.K.; Lee, K.H.; Kim, D.Y.; Kim, S.; Chang, S.J.; Han, S.S.; Park, S.Y.; Shim, S.H. Real world effectiveness and safety of pegylated liposomal doxorubicin in platinum-sensitive recurrent ovarian, fallopian, or primary peritoneal cancer: a Korean multicenter retrospective cohort study. J. Gynecol. Oncol., 2020, 31(2), e15.
[http://dx.doi.org/10.3802/jgo.2020.31.e15] [PMID: 31912673]
[111]
Madamsetty, V.S.; Pal, K.; Dutta, S.K.; Wang, E.; Thompson, J.R.; Banerjee, R.K.; Caulfield, T.R.; Mody, K.; Yen, Y.; Mukhopadhyay, D.; Huang, H.S. Design and evaluation of PEGylated liposomal formulation of a novel multikinase inhibitor for enhanced chemosensitivity and inhibition of metastatic pancreatic ductal adenocarcinoma. Bioconjug. Chem., 2019, 30(10), 2703-2713.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00632] [PMID: 31584260]
[112]
Sun, S.; Zou, H.; Li, L.; Liu, Q.; Ding, N.; Zeng, L.; Li, H.; Mao, S. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape. Int. J. Pharm., 2019, 568, 118518.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118518] [PMID: 31319147]
[113]
Dana, P.; Bunthot, S.; Suktham, K.; Surassmo, S.; Yata, T.; Namdee, K.; Yingmema, W.; Yimsoo, T.; Ruktanonchai, U.R.; Sathornsumetee, S.; Saengkrit, N. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111270.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111270] [PMID: 32777659]
[114]
Hu, Y.; Zhou, P.; Lin, Y.; Yang, D.; Wang, B. Anti-colorectal cancer effect via application of polyethylene glycol modified liposomal apatinib. J. Biomed. Nanotechnol., 2019, 15(6), 1256-1266.
[http://dx.doi.org/10.1166/jbn.2019.2770] [PMID: 31072433]
[115]
Wang, L.; Liang, T-T. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express, 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13568-020-00990-z] [PMID: 32185543]
[116]
Shin, J.H.; Shin, D.H.; Kim, J.S. Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells. Asian J. Pharm. Sci., 2020, 15(4), 472-481.
[http://dx.doi.org/10.1016/j.ajps.2019.03.001] [PMID: 32952670]
[117]
Ye, H.; Chu, X.; Cao, Z.; Hu, X.; Wang, Z.; Li, M.; Wan, L.; Li, Y.; Cao, Y.; Diao, Z.; Peng, F.; Liu, J.; Xu, L. A novel targeted therapy system for cervical cancer: Co-delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int. J. Nanomedicine, 2021, 16, 1051-1066.
[http://dx.doi.org/10.2147/IJN.S258316] [PMID: 33603368]
[118]
Wang, Y.; Gao, F.; Jiang, X.; Zhao, X.; Wang, Y.; Kuai, Q.; Nie, G.; He, M.; Pan, Y.; Shi, W.; Ren, S.; Yu, Q. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer. J. Biomed. Nanotechnol., 2019, 15(5), 966-978.
[http://dx.doi.org/10.1166/jbn.2019.2762] [PMID: 30890228]
[119]
Tang, B.; Peng, Y.; Yue, Q.; Pu, Y.; Li, R.; Zhao, Y.; Hai, L.; Guo, L.; Wu, Y. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur. J. Med. Chem., 2020, 193, 112204.
[http://dx.doi.org/10.1016/j.ejmech.2020.112204] [PMID: 32172035]
[120]
Huang, M.; Pu, Y.; Peng, Y.; Fu, Q.; Guo, L.; Wu, Y.; Zheng, Y. Biotin and glucose dual-targeting, ligand-modified liposomes promote breast tumor-specific drug delivery. Bioorg. Med. Chem. Lett., 2020, 30(12), 127151.
[http://dx.doi.org/10.1016/j.bmcl.2020.127151] [PMID: 32317211]
[121]
Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol., 2020, 56, 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[122]
Amoabediny, G.; Haghiralsadat, F.; Naderinezhad, S.; Helder, M.N.; Kharanaghi, E.A.; Arough, J.M.; Zandieh-Doulabi, B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int. J. Polym. Mater. Polym. Biomater., 2018, 67(6), 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[123]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 6847971.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[124]
Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv., 2013, 10(2), 261-272.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[125]
Arias, J.L.; Clares, B.; Morales, M.E.; Gallardo, V.; Ruiz, M.A. Lipid-based drug delivery systems for cancer treatment. Curr. Drug Targets, 2011, 12(8), 1151-1165.
[http://dx.doi.org/10.2174/138945011795906570] [PMID: 21443475]
[126]
Agarwal, S. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Advances, 2018, 8(57), 32621-32636.
[http://dx.doi.org/10.1039/C8RA06362A]
[127]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[128]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: appli-cations, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[129]
Jnaidi, R.; Almeida, A.J.; Gonçalves, L.M. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of glioblastoma multiforme. Pharmaceutics, 2020, 12(9), 860.
[http://dx.doi.org/10.3390/pharmaceutics12090860] [PMID: 32927610]
[130]
Rajpoot, K.; Jain, S.K. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J. Microencapsul., 2019, 36(7), 659-676.
[http://dx.doi.org/10.1080/02652048.2019.1665723] [PMID: 31495238]
[131]
Büyükköroğlu, G.; Şenel, B.; Yenilmez, E. Vaginal Suppositories with siRNA and paclitaxel-incorporated solid lipid nanoparticles for cervical cancer: Preparation and in vitro evaluation. In: RNA Interference and Cancer Therapy; Kumar, L.D., Ed.; Springer, Humana: NewYork, 2019; pp. 303-328.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_22]
[132]
Banerjee, I.; De, M.; Dey, G.; Bharti, R.; Chattopadhyay, S.; Ali, N.; Chakrabarti, P.; Reis, R.L.; Kundu, S.C.; Mandal, M. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater. Sci., 2019, 7(3), 1161-1178.
[http://dx.doi.org/10.1039/C8BM01403E] [PMID: 30652182]
[133]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of transresveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[134]
Zhang, S.; Zhang, Y.; Wang, Z.; Guo, T.; Hou, X.; He, Z.; He, Z.; Shen, L.; Feng, N. Temperature-sensitive gel-loaded composite nanomedicines for the treatment of cervical cancer by vaginal delivery. Int. J. Pharm., 2020, 586, 119616.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119616] [PMID: 32650113]
[135]
Üner, M.; Yener, G.; Ergüven, M. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater. Sci. Eng. C, 2019, 103, 109874.
[http://dx.doi.org/10.1016/j.msec.2019.109874] [PMID: 31349508]
[136]
Satari, N.; Taymouri, S.; Varshosaz, J.; Rostami, M.; Mirian, M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev. Ind. Pharm., 2020, 46(8), 1265-1277.
[http://dx.doi.org/10.1080/03639045.2020.1788063] [PMID: 32594775]
[137]
Yassemi, A.; Kashanian, S.; Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol., 2020, 25(4), 397-407.
[http://dx.doi.org/10.1080/10837450.2019.1703739] [PMID: 31893979]
[138]
Ss Pindiprolu, S.K.; Krishnamurthy, P.T.; Ghanta, V.R.; Chintamaneni, P.K. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine (Lond.), 2020, 15(16), 1551-1565.
[http://dx.doi.org/10.2217/nnm-2020-0003] [PMID: 32618501]
[139]
da Rocha, M.C.O.; da Silva, P.B.; Radicchi, M.A.; Andrade, B.Y.G.; de Oliveira, J.V.; Venus, T.; Merker, C.; Estrela-Lopis, I.; Longo, J.P.F.; Báo, S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnology, 2020, 18(1), 43.
[http://dx.doi.org/10.1186/s12951-020-00604-7] [PMID: 32164731]
[140]
Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; Baglio, M.; Abbate, B.; Iacoviello, G.; Evangelista, G.; Gilardi, M.C.; Bondì, M.L.; Forte, G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep., 2019, 9(1), 11134.
[http://dx.doi.org/10.1038/s41598-019-47553-2] [PMID: 31366901]
[141]
Ahmed, M.M.; Fatima, F.; Anwer, M.K.; Aldawsari, M.F.; Alsaidan, Y.S.M.; Alfaiz, S.A.; Haque, A.; Az, A.; Alhazzani, K. Development and characterization of Brigatinib loaded solid lipid nanoparticles: In-vitro cytotoxicity against human carcinoma A549 lung cell lines. Chem. Phys. Lipids, 2020, 233, 105003.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105003] [PMID: 33096096]
[142]
Eskiler, G.G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Talazoparib loaded solid lipid nanoparticles: Preparation, characterization and evaluation of the therapeutic efficacy in vitro. Curr. Drug Deliv., 2019, 16(6), 511-529.
[http://dx.doi.org/10.2174/1567201816666190515105532] [PMID: 31113350]
[143]
Bhagwat, G.S.; Athawale, R.B.; Gude, R.P.; Md, S.; Alhakamy, N.A.; Fahmy, U.A.; Kesharwani, P. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol., 2020, 11, 614290.
[http://dx.doi.org/10.3389/fphar.2020.614290] [PMID: 33329007]
[144]
Sun, T.; Gao, J.; Han, D.; Shi, H.; Liu, X. Fabrication and characterization of solid lipid nano-formulation of astraxanthin against DMBA-induced breast cancer via Nrf-2-Keap1 and NF-kB and mTOR/Maf-1/PTEN pathway. Drug Deliv., 2019, 26(1), 975-988.
[http://dx.doi.org/10.1080/10717544.2019.1667454] [PMID: 31556759]
[145]
Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina (Kaunas), 2019, 55(4), 114.
[http://dx.doi.org/10.3390/medicina55040114] [PMID: 31013662]
[146]
Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym., 2021, 252, 117180.
[http://dx.doi.org/10.1016/j.carbpol.2020.117180] [PMID: 33183627]
[147]
Affram, K.O.; Smith, T.; Ofori, E.; Krishnan, S.; Underwood, P.; Trevino, J.G.; Agyare, E. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J. Drug Deliv. Sci. Technol., 2020, 55, 101374.
[http://dx.doi.org/10.1016/j.jddst.2019.101374] [PMID: 31903101]
[148]
Fathy Abd-Ellatef, G-E.; Gazzano, E.; Chirio, D.; Hamed, A.R.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; Sapino, S.; Ramadan Fahmy, S.; Gallarate, M.; Abdel-Hamid, A.Z.; Riganti, C. Curcumin-loaded solid lipid nanoparticles bypass P-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics, 2020, 12(2), 96.
[http://dx.doi.org/10.3390/pharmaceutics12020096] [PMID: 31991669]
[149]
Amerigos Daddy JC, K.; Chen, M.; Raza, F.; Xiao, Y.; Su, Z.; Ping, Q. Co-encapsulation of mitoxantrone and β-elemene in solid lipid nanoparticles to overcome multidrug resistance in leukemia. Pharmaceutics, 2020, 12(2), 191.
[http://dx.doi.org/10.3390/pharmaceutics12020191]
[150]
Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nano-particles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005] [PMID: 30965023]
[151]
Rajpoot, K.; Jain, S.K. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int. J. Biol. Macromol., 2020, 151, 830-844.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.132] [PMID: 32061847]
[152]
Sabapati, M.; Palei, N.N. C K, A.K.; Molakpogu, R.B. Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies. Drug Dev. Ind. Pharm., 2019, 45(4), 577-586.
[http://dx.doi.org/10.1080/03639045.2019.1569027] [PMID: 30663427]
[153]
Shen, M-Y.; Liu, T.I.; Yu, T.W.; Kv, R.; Chiang, W.H.; Tsai, Y.C.; Chen, H.H.; Lin, S.C.; Chiu, H.C. Hierarchically targetable polysaccha-ride-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials, 2019, 197, 86-100.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.019] [PMID: 30641267]
[154]
Yang, Y.; Huang, Z.; Li, J.; Mo, Z.; Huang, Y.; Ma, C.; Wang, W.; Pan, X.; Wu, C. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv. Healthc. Mater., 2019, 8(23), e1900965.
[http://dx.doi.org/10.1002/adhm.201900965] [PMID: 31664795]
[155]
Mao, M.; Liu, S.; Zhou, Y.; Wang, G.; Deng, J.; Tian, L. Nanostructured lipid carrier delivering chlorins e6 as in situ dendritic cell vaccine for immunotherapy of gastric cancer. J. Mater. Res., 2020, 35(23), 3257-3264.
[http://dx.doi.org/10.1557/jmr.2020.227] [PMID: 33424109]
[156]
Borges, G.S.M.; Silva, J.O.; Fernandes, R.S.; de Souza, Â.M.; Cassali, G.D.; Yoshida, M.I.; Leite, E.A.; de Barros, A.L.B.; Ferreira, L.A.M. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci., 2019, 232, 116678.
[http://dx.doi.org/10.1016/j.lfs.2019.116678] [PMID: 31344429]
[157]
Guo, S.; Zhang, Y.; Wu, Z.; Zhang, L.; He, D.; Li, X.; Wang, Z. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed. Pharmacother., 2019, 118, 109225.
[http://dx.doi.org/10.1016/j.biopha.2019.109225] [PMID: 31325705]
[158]
Makeen, H.A.; Mohan, S.; Al-Kasim, M.A.; Attafi, I.M.; Ahmed, R.A.; Syed, N.K.; Sultan, M.H.; Al-Bratty, M.; Alhazmi, H.A.; Safhi, M.M.; Ali, R.; Intakhab Alam, M. Gefitinib loaded nanostructured lipid carriers: characterization, evaluation and anti-human colon cancer activity in vitro. Drug Deliv., 2020, 27(1), 622-631.
[http://dx.doi.org/10.1080/10717544.2020.1754526] [PMID: 32329374]
[159]
Zhou, J.; Sun, M.; Jin, S.; Fan, L.; Zhu, W.; Sui, X.; Cao, L.; Yang, C.; Han, C. Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells. Drug Deliv., 2019, 26(1), 281-289.
[http://dx.doi.org/10.1080/10717544.2019.1580799] [PMID: 30880491]
[160]
Kamel, A.E.; Fadel, M.; Louis, D. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int. J. Nanomedicine, 2019, 14, 5073-5085.
[http://dx.doi.org/10.2147/IJN.S210484] [PMID: 31371948]
[161]
Kebebe, D.; Wu, Y.; Zhang, B.; Yang, J.; Liu, Y.; Li, X.; Ma, Z.; Lu, P.; Liu, Z.; Li, J. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer. Int. J. Nanomedicine, 2019, 14, 6179-6195.
[http://dx.doi.org/10.2147/IJN.S202424] [PMID: 31447559]
[162]
Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[163]
Iqbal, B.; Ali, J.; Ganguli, M.; Mishra, S.; Baboota, S. Silymarin-loaded nanostructured lipid carrier gel for the treatment of skin cancer. Nanomedicine (Lond.), 2019, 14(9), 1077-1093.
[http://dx.doi.org/10.2217/nnm-2018-0235] [PMID: 31050580]
[164]
Maroufi, N.F.; Vahedian, V.; Mazrakhondi, S.A.M.; Kooti, W.; Khiavy, H.A.; Bazzaz, R.; Ramezani, F.; Pirouzpanah, S.M.; Ghorbani, M.; Akbarzadeh, M.; Hajipour, H.; Ghanbarzadeh, S.; Sabzichi, M. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(1), 1-11.
[http://dx.doi.org/10.1007/s00210-019-01692-5] [PMID: 31372697]
[165]
Mathur, P.; Sharma, S.; Rawal, S.; Patel, B.; Patel, M.M. Fabrication, optimization, and in vitro evaluation of docetaxel-loaded nanostructured lipid carriers for improved anticancer activity. J. Liposome Res., 2020, 30(2), 182-196.
[http://dx.doi.org/10.1080/08982104.2019.1614055] [PMID: 31060404]
[166]
Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Mohamad, N.E.; Abu, N.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Antitumor and anti-metastatic effects of citral-loaded nanostructured lipid carrier in 4T1-induced breast cancer mouse model. Molecules, 2020, 25(11), 2670.
[http://dx.doi.org/10.3390/molecules25112670] [PMID: 32526880]
[167]
Poonia, N.; Kaur Narang, J.; Lather, V.; Beg, S.; Sharma, T.; Singh, B.; Pandita, D. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces, 2019, 181, 756-766.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.004] [PMID: 31234063]
[168]
Rawal, S.; Bora, V.; Patel, B.; Patel, M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv. Transl. Res., 2021, 11(5), 2030-2051.
[http://dx.doi.org/10.1007/s13346-020-00866-6] [PMID: 33215254]
[169]
Zhang, Q.; Zhao, J.; Hu, H.; Yan, Y.; Hu, X.; Zhou, K.; Xiao, S.; Zhang, Y.; Feng, N. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int. J. Pharm., 2019, 569, 118595.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118595] [PMID: 31394189]
[170]
Yin, J.; Hou, Y.; Song, X.; Wang, P.; Li, Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine, 2019, 14, 4045-4057.
[http://dx.doi.org/10.2147/IJN.S210057] [PMID: 31213814]
[171]
Wang, C.; Shi, X.; Song, H.; Zhang, C.; Wang, X.; Huang, P.; Dong, A.; Zhang, Y.; Kong, D.; Wang, W. Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials, 2021, 268, 120579.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120579] [PMID: 33278683]
[172]
Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull., 2020, 10(2), 150-165.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[173]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[174]
Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100.
[http://dx.doi.org/10.1089/jmf.2019.0286] [PMID: 32580673]
[175]
Michy, T.; Massias, T.; Bernard, C.; Vanwonterghem, L.; Henry, M.; Guidetti, M.; Royal, G.; Coll, J.L.; Texier, I.; Josserand, V.; Hurbin, A.A. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers (Basel), 2019, 11(11), 1760.
[http://dx.doi.org/10.3390/cancers11111760] [PMID: 31717427]
[176]
Cao, C.; Wang, Q.; Liu, Y. Lung cancer combination therapy: doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des. Devel. Ther., 2019, 13, 1087-1098.
[http://dx.doi.org/10.2147/DDDT.S198003] [PMID: 31118562]
[177]
Kim, C.H.; Kang, T.H.; Kim, B.D.; Lee, T.H.; Yoon, H.Y.; Goo, Y.T.; Choi, Y.S.; Kang, M.J.; Choi, Y.W. Enhanced docetaxel delivery using sterically stabilized RIPL peptide-conjugated nanostructured lipid carriers: In vitro and in vivo antitumor efficacy against SKOV3 ovarian cancer cells. Int. J. Pharm., 2020, 583, 119393.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119393] [PMID: 32376445]
[178]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery appli-cations in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[179]
Mohanty, A.; Uthaman, S.; Park, I-K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules, 2020, 25(19), 4377.
[http://dx.doi.org/10.3390/molecules25194377] [PMID: 32977707]
[180]
Shi, J.; Xiao, Z.; Votruba, A.R.; Vilos, C.; Farokhzad, O.C. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7027-7031.
[http://dx.doi.org/10.1002/anie.201101554] [PMID: 21698724]
[181]
Massoumi, B. PEGylated hollow pH‐responsive polymeric nanocapsules for controlled drug delivery. Polym. Int., 2020, 69(5), 519-527.
[http://dx.doi.org/10.1002/pi.5987]
[182]
Chen, Y.; Deng, Y.; Zhu, C.; Xiang, C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2020, 127, 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[183]
Hanafy, N.A.N.; El-Kemary, M.; Leporatti, S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel), 2018, 10(7), 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[184]
Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res., 2018, 11(10), 4985-4998.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[185]
Zheng, Z.; Lang, T.; Huang, X.; Wang, G.; Lee, R.J.; Teng, L.; Yin, Q.; Li, Y. Calcitriol-loaded dual-ph-sensitive micelle counteracts pro-metastasis effect of paclitaxel in triple-negative breast cancer therapy. Adv. Healthc. Mater., 2020, 9(12), e2000392.
[http://dx.doi.org/10.1002/adhm.202000392] [PMID: 32419319]
[186]
Xu, C.; Xu, J.; Zheng, Y.; Fang, Q.; Lv, X.; Wang, X.; Tang, R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(13), 2726-2737.
[http://dx.doi.org/10.1039/C9TB02328C] [PMID: 32154530]
[187]
Cui, Y.; Yang, Y.; Ma, M.; Xu, Y.; Sui, J.; Li, H.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Reductive responsive micelle overcoming multidrug resistance of breast cancer by co-delivery of DOX and specific antibiotic. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(40), 6075-6086.
[http://dx.doi.org/10.1039/C9TB01093A] [PMID: 31389470]
[188]
Yang, Y.; Long, Y.; Wang, Y.; Ren, K.; Li, M.; Zhang, Z.; Xiang, B.; He, Q. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int. J. Pharm., 2020, 577, 119085.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119085] [PMID: 32001290]
[189]
Baidya, D.; Kushwaha, J.; Mahadik, K.; Patil, S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev. Ind. Pharm., 2019, 45(5), 852-860.
[http://dx.doi.org/10.1080/03639045.2019.1576726] [PMID: 30724621]
[190]
Cheng, X.; Lv, X.; Xu, J.; Zheng, Y.; Wang, X.; Tang, R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur. J. Pharm. Sci., 2020, 146, 105275.
[http://dx.doi.org/10.1016/j.ejps.2020.105275] [PMID: 32087259]
[191]
Gener, P.; Montero, S.; Xandri-Monje, H.; Díaz-Riascos, Z.V.; Rafael, D.; Andrade, F.; Martínez-Trucharte, F.; González, P.; Seras-Franzoso, J.; Manzano, A.; Arango, D.; Sayós, J.; Abasolo, I.; Schwartz, S., Jr Zileuton™ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine, 2020, 24, 102106.
[http://dx.doi.org/10.1016/j.nano.2019.102106] [PMID: 31666201]
[192]
Wei, J.; Long, Y.; Guo, R.; Liu, X.; Tang, X.; Rao, J.; Yin, S.; Zhang, Z.; Li, M.; He, Q. Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Acta Pharm. Sin. B, 2019, 9(4), 819-831.
[http://dx.doi.org/10.1016/j.apsb.2019.01.018] [PMID: 31384541]
[193]
Rosch, J.G.; Winter, H.; DuRoss, A.N.; Sahay, G.; Sun, C. Inverse-micelle synthesis of doxorubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. Colloid Interface Sci. Commun., 2019, 28, 69-74.
[http://dx.doi.org/10.1016/j.colcom.2018.12.002] [PMID: 31602357]
[194]
Rehan, F.; Ahemad, N.; Islam, R.A.; Gupta, M.; Gan, S.H.; Chowdhury, E.H. Optimization and formulation of nanostructured and self-assembled caseinate micelles for enhanced cytotoxic effects of paclitaxel on breast cancer cells. Pharmaceutics, 2020, 12(10), 984.
[http://dx.doi.org/10.3390/pharmaceutics12100984] [PMID: 33080962]
[195]
Lu, Y.; Zhong, L.; Jiang, Z.; Pan, H.; Zhang, Y.; Zhu, G.; Bai, L.; Tong, R.; Shi, J.; Duan, X. Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy. Nanoscale Res. Lett., 2019, 14(1), 193.
[http://dx.doi.org/10.1186/s11671-019-2985-z] [PMID: 31165329]
[196]
Mirsafaei, R.; Varshosaz, J. Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies. IET Nanobiotechnol., 2020, 14(5), 417-422.
[http://dx.doi.org/10.1049/iet-nbt.2020.0014] [PMID: 32691745]
[197]
Has, C.; Sunthar, P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res., 2020, 30(4), 336-365.
[http://dx.doi.org/10.1080/08982104.2019.1668010] [PMID: 31558079]
[198]
Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids, 2020, 165, 104984.
[http://dx.doi.org/10.1016/j.supflu.2020.104984]
[199]
Singh, R. Preparation of solid lipid nanoparticles through various methods using different precursors. J. Drug Deliv. Ther., 2019, 9(2), 415-419.
[http://dx.doi.org/10.22270/jddt.v9i2.2461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy