Nanotech-based Food: An Initiative for Alternative Pharmaceuticals | Bentham Science
Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

Nanotech-based Food: An Initiative for Alternative Pharmaceuticals

Author(s): Riddhi Trivedi and Pravin Shende*

Volume 23, Issue 14, 2022

Published on: 22 April, 2022

Page: [1739 - 1749] Pages: 11

DOI: 10.2174/1389201023666220114163323

Price: $65

Open Access Journals Promotions 2
Abstract

Nanotechnology opens many avenues in the food sector and offers applications associated with food production, processing, cultivation, and packaging. Nanofood employs nanotechniques like nano-encapsulation to conjugate various phytochemicals, antioxidants, probiotics, minerals, vitamins, etc., into nanovehicles. Food fortification strategies are implemented to incorporate nano-processed substances. Nanofood is mostly used for improving health and as a supplementation in various diseases ranging from liver diseases to neurodegenerative disorders. Here, we focus on recent studies that exhibit comparable results for nanofood and conventional medicines, subsiding the limitations of traditional therapies. Nanofood holds the potential for the management of various health problems and can be used as an alternative to medicine in clinical conditions, like cancers and inflammatory bowel disease. With further advances in nanotechnology and expansion in the scope of the current nanofood industry, in addition to proper regulations set in place, nanofood may offer a wide variety of advantages in terms of safety, long-term stability, etc.

Keywords: Absorption, food-fortification, nanofood, nanoencapsulation, nutraceutical, probiotics.

Graphical Abstract
[1]
Martirosyan, A.; Schneider, Y.J. Engineered nanomaterials in food: implications for food safety and consumer health. Int. J. Environ. Res. Public Health, 2014, 11(6), 5720-5750.
[http://dx.doi.org/10.3390/ijerph110605720] [PMID: 24879486]
[2]
Joseph, T; Morrison, M. Nanotechnologies in Agriculture and Food. Nanoforum Report, 2006.
[3]
Beaudoin, S.; Vandelac, L.; Papilloud, C. Nanofoods. Nanotechnology and Human Health; CRC Press, 2013, pp. 109-126.
[http://dx.doi.org/10.1201/b15341-10]
[4]
Turan, B.; Demir, H.; Mutlu, A. Daşlı T.; Erkol, A.; Erden, İ. Inappropriate combination of warfarin and aspirin. Anatol. J. Cardiol., 2016, 16(3), 189-196.
[http://dx.doi.org/10.5152/akd.2015.6050] [PMID: 26467380]
[5]
Tripathi, K. Essentials of Medical Pharmacology; Jaypee Brothers Medical Publishers (P) Ltd, 2008.
[http://dx.doi.org/10.5005/jp/books/10282]
[6]
Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(11), 820-827.
[http://dx.doi.org/10.1097/FPC.0b013e3283559b22] [PMID: 22722338]
[7]
Bonnet, F.; Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab., 2017, 19(4), 473-481.
[http://dx.doi.org/10.1111/dom.12854] [PMID: 27987248]
[8]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[9]
Application of Nanotechnology to Food Products - Nanotechnology in Food Products - NCBI Bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK32727/ (accessed September 25, 2020).
[10]
Final Report Summary - NANOFOODS (Development of foods containing nanoencapsulated ingredient). CORDIS European Commission Available from: https://cordis.europa.eu/project/id/222006/reporting (accessed September 10, 2020).
[11]
Nanofoods: Project Concept Available from: http://www. nanofoods.hacettepe.edu.tr/nanoFOOD/Project_Concept.html (accessed September 10, 2020).
[12]
Development of foods containing nanoencapsulated ingredient | NANOFOODS Project | Fact Sheet | FP7 | CORDIS | European Commission Available from:https://cordis.europa.eu/project/id/222006
[13]
Rakotoarisoa, M.; Angelov, B.; Garamus, V.M.; Angelova, A. Curcumin- and Fish Oil-Loaded Spongosome and Cubosome Nanoparticles with Neuroprotective Potential against H 2 O 2 -Induced Oxidative Stress in Differentiated Human SH-SY5Y Cells. ACS Omega, 2019, 4, 3061-3073.
[http://dx.doi.org/10.1021/acsomega.8b03101]
[14]
Ganesan, B.; Brothersen, C.; McMahon, D.J. Fortification of foods with omega-3 polyunsaturated fatty acids. Crit. Rev. Food Sci. Nutr., 2014, 54(1), 98-114.
[http://dx.doi.org/10.1080/10408398.2011.578221] [PMID: 24188235]
[15]
Gelski, J. Health and Wellness Ingredients from fish oil innovates new bread varieties. BakingbusinessCom, 2009. Available from: https://www.bakingbusiness.com/articles/34311-health-and-wellness-ingredients-from-fish-oil-innovates-new-bread-varieties (accessed September 10, 2020).
[16]
Walia, N.; Dasgupta, N.; Ranjan, S.; Chen, L.; Ramalingam, C. Fish oil based vitamin D nanoencapsulation by ultrasonication and bioac-cessibility analysis in simulated gastro-intestinal tract. Ultrason. Sonochem., 2017, 39, 623-635.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.021] [PMID: 28732987]
[17]
Marsanasco, M.; Márquez, A.L.; Wagner, J.R. del, V.; Alonso, S.; Chiaramoni, N.S. Liposomes as vehicles for vitamins E and C: An al-ternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int., 2011, 44, 3039-3046.
[http://dx.doi.org/10.1016/j.foodres.2011.07.025]
[18]
Yadav, R.; Kumar, D.; Kumari, A.; Yadav, S.K. Encapsulation of catechin and epicatechin on BSA NPS improved their stability and anti-oxidant potential. EXCLI J., 2014, 13, 331-346.
[http://dx.doi.org/10.17877/DE290R-15813] [PMID: 26417264]
[19]
Shibata, H.; Izutsu, K.; Yomota, C.; Okuda, H.; Goda, Y. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions. Drug Dev. Ind. Pharm., 2015, 41(8), 1376-1386.
[http://dx.doi.org/10.3109/03639045.2014.954582] [PMID: 25170659]
[20]
Minh, H.P.T. Le Phương, L.; Van, L.N.; Thanh, H.N.; Anh, S.H.; Linh, T.N. Developing and evaluating in vitro effect of pegylated lipo-somal doxorubicin on human cancer cells. J. Chem. Pharm. Res., 2015, 7, 2239-2243.
[21]
Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[22]
Yang, R.; Zhou, Z.; Sun, G.; Gao, Y.; Xu, J.; Strappe, P. Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin. RSC Advances, 2015, 5, 31533-31540.
[http://dx.doi.org/10.1039/C5RA03542B]
[23]
Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131] [PMID: 27564838]
[24]
Bok, S.H.; Lee, S.H.; Park, Y.B.; Bae, K.H.; Son, K.H.; Jeong, T.S.; Choi, M.S. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: Cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J. Nutr., 1999, 129(6), 1182-1185.
[http://dx.doi.org/10.1093/jn/129.6.1182] [PMID: 10356084]
[25]
Feng, T.; Wang, K.; Liu, F.; Ye, R.; Zhu, X.; Zhuang, H.; Xu, Z. Structural characterization and bioavailability of ternary nanoparticles con-sisting of amylose,α-linoleic acid and β-lactoglobulin complexed with naringin. Int. J. Biol. Macromol., 2017, 99, 365-374.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.005] [PMID: 28263808]
[26]
Khader, M.; Eckl, P.M. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17(12), 950-957.
[http://dx.doi.org/10.22038/ijbms.2015.3851] [PMID: 25859298]
[27]
Niranjana, R.; Gayathri, R.; Nimish Mol, S.; Sugawara, T.; Hirata, T.; Miyashita, K. Carotenoids modulate the hallmarks of cancer cells. J. Funct. Foods, 2015, 18, 968-985.
[http://dx.doi.org/10.1016/j.jff.2014.10.017]
[28]
Jain, A.; Sharma, G.; Kushwah, V.; Ghoshal, G.; Jain, A.; Singh, B.; Shivhare, U.S.; Jain, S.; Katare, O.P. Beta carotene-loaded zein nanoparticles to improve the biopharmaceutical attributes and to abolish the toxicity of methotrexate: A preclinical study for breast cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 402-412.
[http://dx.doi.org/10.1080/21691401.2018.1428811] [PMID: 29361842]
[29]
Sáiz-Abajo, M-J.; González-Ferrero, C.; Moreno-Ruiz, A.; Romo-Hualde, A.; González-Navarro, C.J. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chem., 2013, 138(2-3), 1581-1587.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.016] [PMID: 23411284]
[30]
Lane, A.M.; McKay, J.T.; Bonkovsky, H.L. Advances in the management of erythropoietic protoporphyria - role of afamelanotide. Appl. Clin. Genet., 2016, 9, 179-189.
[http://dx.doi.org/10.2147/TACG.S122030] [PMID: 28003770]
[31]
Mathews-Roth, M.M.; Pathak, M.A.; Fitzpatrick, T.B.; Harber, L.C.; Kass, E.H. Beta-carotene as a photoprotective agent in erythropoietic protoporphyria. N. Engl. J. Med., 1970, 282(22), 1231-1234.
[http://dx.doi.org/10.1056/NEJM197005282822204] [PMID: 5442632]
[32]
Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet, 2016, 387(10021), 907-916.
[http://dx.doi.org/10.1016/S0140-6736(15)60865-0] [PMID: 26314490]
[33]
Shen, Y.; Posavec, L.; Bolisetty, S.; Hilty, F.M.; Nyström, G.; Kohlbrecher, J.; Hilbe, M.; Rossi, A.; Baumgartner, J.; Zimmermann, M.B.; Mezzenga, R. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat. Nanotechnol., 2017, 12(7), 642-647.
[http://dx.doi.org/10.1038/nnano.2017.58] [PMID: 28436960]
[34]
Cui, J.; Li, Y.; Yu, P.; Zhan, Q.; Wang, J.; Chi, Y.; Wang, P. A novel low molecular weight Enteromorpha polysaccharide-iron (III) com-plex and its effect on rats with iron deficiency anemia (IDA). Int. J. Biol. Macromol., 2018, 108, 412-418.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.033] [PMID: 29223752]
[35]
Pereira, D.I.A.; Bruggraber, S.F.A.; Faria, N.; Poots, L.K.; Tagmount, M.A.; Aslam, M.F.; Frazer, D.M.; Vulpe, C.D.; Anderson, G.J.; Pow-ell, J.J. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine, 2014, 10(8), 1877-1886.
[http://dx.doi.org/10.1016/j.nano.2014.06.012] [PMID: 24983890]
[36]
Ghibaudo, F.; Gerbino, E.; Copello, G.J. Campo Dall’ Orto, V.; Gómez-Zavaglia, A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids Surf. B Biointerfaces, 2019, 180, 193-201.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.049] [PMID: 31054459]
[37]
Etcheverry, P.; Hawthorne, K.M.; Liang, L.K.; Abrams, S.A.; Griffin, I.J.; Abrams, S.A. Effect of beef and soy proteins on the absorption of non-heme iron and inorganic zinc in children. J. Am. Coll. Nutr., 2006, 25(1), 34-40.
[http://dx.doi.org/10.1080/07315724.2006.10719512] [PMID: 16522930]
[38]
Shah, D.; Sachdev, H.S.; Gera, T.; De-Regil, L.M.; Peña-Rosas, J.P. Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population. Cochrane Database Syst. Rev., 2016, (6), CD010697.
[http://dx.doi.org/10.1002/14651858.CD010697.pub2] [PMID: 27281654]
[39]
Toddler Health Non-GMO Oat Based, Chocolate Balanced Nutritional Drink Mix - 14 oz, Nutrition Information | Innit Available from: https://www.innit.com/nutrition/toddler-health-nongmo-oat-based-chocolate-balanced-nutritional-drink-mix/p/00855143000314 (accessed September 11, 2020).
[40]
Miller, G.; Senjen, R. Out of the laboratory and on to our plates nanotechnology in food & agriculture 2008. Available from: https://1bps6437gg8c169i0y1drtgz-wpengine.netdna-ssl.com/wp-content/uploads/2017/legacy/Nanotechnology_in_food_and_agriculture_-_web_resolution.pdf
[41]
Ray, S.; Kumar Barman, A.; Kumar Roy, P.; Kumar Singh, B. Chicken eggshell powder as dietary calcium source in chocolate cakes. Pharma Innovation Journal, 2017, 6, 1-4.
[42]
Anand, S.; Mande, S.S. Diet, microbiota and gut-lung connection. Front. Microbiol., 2018, 9, 2147.
[http://dx.doi.org/10.3389/fmicb.2018.02147] [PMID: 30283410]
[43]
Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics--perspectives and challenges. J. Sci. Food Agric., 2011, 91(8), 1341-1348.
[http://dx.doi.org/10.1002/jsfa.4367] [PMID: 21445871]
[44]
Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174.
[http://dx.doi.org/10.1159/000342079] [PMID: 23037511]
[45]
Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol., 2021, 114, 1-10.
[http://dx.doi.org/10.1016/j.tifs.2021.05.022]
[46]
Atraki, R.; Azizkhani, M. Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. Innov. Food Sci. Emerg. Technol., 2021, 72, 102750.
[http://dx.doi.org/10.1016/j.ifset.2021.102750]
[47]
Škrlec, K. Zupančič Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of electrospun nanofibers that enable high load-ing and long-term viability of probiotics. Eur. J. Pharm. Biopharm., 2019, 136, 108-119.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.013] [PMID: 30660693]
[48]
Guerin, J.; Petit, J.; Burgain, J.; Borges, F.; Bhandari, B.; Perroud, C. Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. J. Food Eng., 2017, 193, 10-19.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.08.008]
[49]
Wypych, T.P.; Marsland, B.J. Antibiotics as Instigators of Microbial Dysbiosis: Implications for Asthma and Allergy. Trends Immunol., 2018, 39(9), 697-711.
[http://dx.doi.org/10.1016/j.it.2018.02.008] [PMID: 29655522]
[50]
Kim, D.H. Gut Microbiota-Mediated Drug-Antibiotic Interactions. Drug Metab. Dispos., 2015, 43(10), 1581-1589.
[http://dx.doi.org/10.1124/dmd.115.063867] [PMID: 25926432]
[51]
Lee, H.A.; Bong, Y.J.; Kim, H.; Jeong, J.K.; Kim, H.Y.; Lee, K.W.; Park, K.Y. Effect of Nanometric Lactobacillus plantarum in Kimchi on Dextran Sulfate Sodium-Induced Colitis in Mice. J. Med. Food, 2015, 18(10), 1073-1080.
[http://dx.doi.org/10.1089/jmf.2015.3509] [PMID: 26305853]
[52]
Tian, C.; Huang, Y.; Wu, X.; Xu, C.; Bu, H.; Wang, H. The Efficacy and Safety of Mesalamine and Probiotics in Mild-to-Moderate Ulcera-tive Colitis: A Systematic Review and Meta-Analysis. Evid. Based Complement. Alternat. Med., 2020, 2020, 6923609.
[http://dx.doi.org/10.1155/2020/6923609] [PMID: 32308714]
[53]
Sood, A.; Midha, V.; Makharia, G.K.; Ahuja, V.; Singal, D.; Goswami, P.; Tandon, R.K. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. Hepatol., 2009, 7(11), 1202-1209, 1209.e1.
[http://dx.doi.org/10.1016/j.cgh.2009.07.016] [PMID: 19631292]
[54]
Morshedi, M.; Saghafi-Asl, M.; Hosseinifard, E.S. The potential therapeutic effects of the gut microbiome manipulation by synbiotic con-taining-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J. Transl. Med., 2020, 18(1), 18.
[http://dx.doi.org/10.1186/s12967-019-02169-y] [PMID: 31924200]
[55]
Kim, D.; Lee, G.; Shin, Y. Oral mucoadhesive sustained release nanoparticle coated probiotic nanofood. Tissue Eng. Regen. Med., 2007, 4, 543-550.
[56]
Kouhkan, M.; Ahangar, P.; Babaganjeh, L.A.; Allahyari-Devin, M. Biosynthesis of copper oxide nanoparticles using lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr. Nanosci., 2019, 16, 101-111.
[http://dx.doi.org/10.2174/1573413715666190318155801]
[57]
Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev., 2019, 39(5), 2000-2025.
[http://dx.doi.org/10.1002/med.21572] [PMID: 30887551]
[58]
Sulakvelidze, A.; Alavidze, Z.; Morris, J.G. Jr Bacteriophage therapy. Antimicrob. Agents Chemother., 2001, 45(3), 649-659.
[http://dx.doi.org/10.1128/AAC.45.3.649-659.2001] [PMID: 11181338]
[59]
Wall, S.K.; Zhang, J.; Rostagno, M.H.; Ebner, P.D. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl. Environ. Microbiol., 2010, 76(1), 48-53.
[http://dx.doi.org/10.1128/AEM.00785-09] [PMID: 19854929]
[60]
Nanotea 2010. Available from: https://www.nanotechproject.tech/cpi/products/nanotea/ (accessed September 11, 2020).
[61]
AIDS Aiding Net Available from: http://web.archive.org/web/20071217224829/http://www.369.com.cn/En/nanotea.htm (accessed September 11, 2020).
[62]
Nanotea Available from: https://nanotea.co/ (accessed September 11, 2020).
[63]
Ongoing research projects of NTRF. Available from: http://www.teaboard.gov.in/TEABOARDCSM/NjU= (accessed September 11, 2020).
[64]
NovaSOL® | Empowering Natural Ingredients Available from: . https://aquanova.de/ (accessed September 11, 2020).
[65]
Kaya-Celiker, H.; Mallikarjunan, K. Better Nutrients and Therapeutics Delivery in Food Through Nanotechnology. Food Eng. Rev., 2012, 4, 114-123.
[http://dx.doi.org/10.1007/s12393-012-9050-3]
[66]
Nano-Sized Self-assembled Liquid Structures (NSSL) Supplements Available from: https://www.nanotechproject.tech/cpi/products/nano-sized-selfassembled-liquid-structures-nssl-supplements/ (accessed September 14, 2020).
[67]
Nanoencapsulation for Nutrient Delivery. Available from: https://www.azonano.com/article.aspx?ArticleID=3226 (accessed November 21, 2021).
[68]
Garti, N; Aserin, A; Spernath, A; Saba, K; Amar, I Nano-sized selfassembled liquid dilutable vehicles. US 7,182,950 B2, 2007.
[69]
LycoVit® - For fortification and coloration of foodstuffs - BASF - We create chemistry Available from: https://product-finder.basf.com/group/corporate/product-finder/en/brand/LYCOVIT (accessed September 14, 2020).
[70]
van Breemen, R.B.; Pajkovic, N. Multitargeted therapy of cancer by lycopene. Cancer Lett., 2008, 269(2), 339-351.
[http://dx.doi.org/10.1016/j.canlet.2008.05.016] [PMID: 18585855]
[71]
Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol., 2010, 1, 189-210.
[http://dx.doi.org/10.1146/annurev.food.102308.124120] [PMID: 22129335]
[72]
Ribeiro, H.S.; Ax, K.; Schubert, H. Stability of Lycopene Emulsions in Food Systems. J. Food Sci., 2003, 68, 2730-2734.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb05796.x]
[73]
Center for Food Safety. Available from: http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content?content_item_KEY=14112 #showJoin (accessed September 11, 2020).
[74]
Mucolyxir® Nanotech Nutrients® 12 ml liquid Available from: https://www.allergyresearchgroup.com/mucolyxir-12-ml-0.4-fl.-oz (accessed November 21, 2021).
[75]
Liposomal Vitamin C - Lypo-Spheric Vitamin C - LivOn Labs. Available from: https://www.livonlabs.com/products/vitamin-c/ (accessed November 21, 2021).
[76]
Solgar Nutri-Nano CoQ-10 3.1x – John Bell & Croyden. Available from: https://johnbellcroyden.co.uk/collections/coq10-and-ubiquinol/products/solgar-nutri-nano-coq-10-3-1x (accessed November 21, 2021).
[77]
Lichtenstein, D.; Ebmeyer, J.; Knappe, P.; Juling, S.; Böhmert, L.; Selve, S.; Niemann, B.; Braeuning, A.; Thünemann, A.F.; Lampen, A. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol. Chem., 2015, 396(11), 1255-1264.
[http://dx.doi.org/10.1515/hsz-2015-0145] [PMID: 26040006]
[78]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[79]
Moore, R.A.; Derry, S.; Wiffen, P.J.; Straube, S. Effects of food on pharmacokinetics of immediate release oral formulations of aspirin, dipyrone, paracetamol and NSAIDs - a systematic review. Br. J. Clin. Pharmacol., 2015, 80(3), 381-388.
[http://dx.doi.org/10.1111/bcp.12628] [PMID: 25784216]
[80]
Dailey, G.E. Glyburide/metformin tablets: A new therapeutic option for the management of Type 2 diabetes. Expert Opin. Pharmacother., 2003, 4(8), 1417-1430.
[http://dx.doi.org/10.1517/14656566.4.8.1417] [PMID: 12877648]
[81]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[82]
Mascagni, M.; Simonov, N.A. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care, 2002, 25(12), 2165-2171.
[http://dx.doi.org/10.2337/diacare.25.12.2165] [PMID: 12453955]
[83]
Li, J.J.; Hartono, D.; Ong, C.N.; Bay, B.H.; Yung, L.Y.L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 2010, 31(23), 5996-6003.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.014] [PMID: 20466420]
[84]
AshaRani. P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(2), 279-290.
[http://dx.doi.org/10.1021/nn800596w] [PMID: 19236062]
[85]
Handy, R.D.; Shaw, B.J. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc., 2007, 9, 125-144.
[http://dx.doi.org/10.1080/13698570701306807]
[86]
Hoet, P.H.M.; Brüske-Hohlfeld, I.; Salata, O.V. Nanoparticles - known and unknown health risks. J. Nanobiotechnology, 2004, 2(1), 12.
[http://dx.doi.org/10.1186/1477-3155-2-12] [PMID: 15588280]
[87]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[88]
Grieger, K.D.; Hansen, S.F.; Mortensen, N.P.; Cates, S.; Kowalcyk, B. International implications of labeling foods containing engineered nanomaterials. J. Food Prot., 2016, 79(5), 830-842.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-335] [PMID: 27296434]
[89]
Chun, A.L. Will the public swallow nanofood? Nat. Nanotechnol., 2009, 4(12), 790-791.
[http://dx.doi.org/10.1038/nnano.2009.359] [PMID: 19966821]
[90]
Brown, J.; Kuzma, J. Hungry for information: Public attitudes toward food nanotechnology and labeling. Rev. Policy Res., 2013, 30, 512-548.
[http://dx.doi.org/10.1111/ropr.12035]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy