Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer’s Disease | Bentham Science
Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer’s Disease

Author(s): Natália Ferreira de Sousa , Luciana Scotti *, Érika Paiva de Moura , Mayara dos Santos Maia, Gabriela Cristina Soares Rodrigues, Herbert Igor Rodrigues de Medeiros, Simone Mendes Lopes and Marcus Tullius Scotti

Volume 20, Issue 5, 2022

Published on: 29 March, 2022

Page: [857 - 885] Pages: 29

DOI: 10.2174/1570159X19666211005145952

Price: $65

Open Access Journals Promotions 2
Abstract

Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.

Keywords: Alzheimer’s disease, amyloid plaque, cholinergic impulse, in silico studies, natural products, oxigen-reactive species (ROS).

Graphical Abstract
[1]
Scotti, L.; Yarla, N.S.; Mendonça Filho, F.J.B.; Barbosa Filho, J.M.; da Silva, M.S.; Tavares, J.F.; Scotti, M.T. CADD Studies Applied to Secondary Metabolites in the Anticancer Drug Research.Anticancer Plants: Mechanisms and Molecular Interactions; Springer, 2018, pp. 209-225.
[http://dx.doi.org/10.1007/978-981-10-8417-1_9]
[2]
Wang, B.; Deng, J.; Gao, Y.; Zhu, L.; He, R.; Xu, Y. The screening toolbox of bioactive substances from natural products: A review. Fitoterapia, 2011, 82(8), 1141-1151.
[http://dx.doi.org/10.1016/j.fitote.2011.08.007] [PMID: 21867747]
[3]
Kennedy, D.A.; Hart, J.; Seely, D. Cost effectiveness of natural health products: A systematic review of randomized clinical trials. Evid. Based Complement. Alternat. Med., 2009, 6(3), 297-304.
[http://dx.doi.org/10.1093/ecam/nem167] [PMID: 18955290]
[4]
Leitao, A.; Montanari, C.A.; Donnici, C.L. The Use of Chemometric Methods on Combinatorial Chemistry. Quim. Nova, 2000, 23, 178-184.
[5]
Bajorath, J. Computer-aided drug discovery. F1000 Res., 2015, 4, 1-8.
[http://dx.doi.org/10.12688/f1000research.6653.1] [PMID: 26949519]
[6]
Gillet, A.; Sanner, M.; Stoffler, D.; Olson, A. Tangible interfaces for structural molecular biology. Structure, 2005, 13(3), 483-491.
[http://dx.doi.org/10.1016/j.str.2005.01.009] [PMID: 15766549]
[7]
Liang, X.; Zhu, W.; Lv, Z.; Zou, Q. Molecular Computing and Bioinformatics. Molecules, 2019, 24(13), 1-7.
[http://dx.doi.org/10.3390/molecules24132358] [PMID: 31247973]
[8]
Yongye, A.B.; Waddell, J.; Medina-Franco, J.L. Molecular scaffold analysis of natural products databases in the public domain. Chem. Biol. Drug Des., 2012, 80(5), 717-724.
[http://dx.doi.org/10.1111/cbdd.12011] [PMID: 22863071]
[9]
Olsson, T.; Oprea, T.I. Cheminformatics: A tool for decision-makers in drug discovery. Curr. Opin. Drug Discov. Devel., 2001, 4(3), 308-313.
[PMID: 11560063]
[10]
Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural product-likeness score and its application for prioritization of compound libraries. J. Chem. Inf. Model., 2008, 48(1), 68-74.
[http://dx.doi.org/10.1021/ci700286x] [PMID: 18034468]
[11]
Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J., 2018, 26(5), 739-753.
[http://dx.doi.org/10.1016/j.jsps.2018.02.015] [PMID: 29991919]
[12]
Hamdan, A.C. Avaliação Neuropsicológica Na Doença de Alzheimer e No Comprometimento Cognitivo Leve. Psicol. Argum, 2008, 26, 183-192.
[http://dx.doi.org/10.7213/rpa.v26i54.19649]
[13]
Byun, C.J.; Seo, J.; Jo, S.A.; Park, Y.J.; Klug, M.; Rehli, M.; Park, M-H.; Jo, I. DNA methylation of the 5¢-untranslated region at +298 and +351 represses BACE1 expression in mouse BV-2 microglial cells. Biochem. Biophys. Res. Commun., 2012, 417(1), 387-392.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.123] [PMID: 22166205]
[14]
Dhikav, V.; Anand, K. Potential predictors of hippocampal atrophy in Alzheimer’s disease. Drugs Aging, 2011, 28(1), 1-11.
[http://dx.doi.org/10.2165/11586390-000000000-00000] [PMID: 21174483]
[15]
Ferrer, I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog. Neurobiol., 2012, 97(1), 38-51.
[http://dx.doi.org/10.1016/j.pneurobio.2012.03.005] [PMID: 22459297]
[16]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[17]
Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 2011, 7(3), 137-152.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[18]
Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta, 2012, 1822(5), 631-638.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.006] [PMID: 22019723]
[19]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.035] [PMID: 29477076]
[20]
Gold, B.T. Lifelong bilingualism and neural reserve against Alzheimer’s disease: A review of findings and potential mechanisms. Behav. Brain Res., 2015, 281, 9-15.
[http://dx.doi.org/10.1016/j.bbr.2014.12.006] [PMID: 25496781]
[21]
Akagi, M.; Matsui, N.; Akae, H.; Hirashima, N.; Fukuishi, N.; Fukuyama, Y.; Akagi, R. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer’s disease. J. Pharmacol. Sci., 2015, 127(2), 155-163.
[http://dx.doi.org/10.1016/j.jphs.2014.12.015] [PMID: 25727952]
[22]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[23]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[24]
Bachurin, S.O.; Bovina, E.V.; Ustyugov, A.A. Drugs in clinical trials for Alzheimer’s disease: The major trends. Med. Res. Rev., 2017, 37(5), 1186-1225.
[http://dx.doi.org/10.1002/med.21434] [PMID: 28084618]
[25]
Silverman, R.B.; Holladay, M.W. The Organic Chemistry of Drug Design and Drug Action; Academic press, 2014.
[26]
Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[27]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[28]
Dearden, J.C. The History and Development of Quantitative Structure-Activity Relationships (QSARs).Oncology: breakthroughs in research and practice; IGI Global, 2017, pp. 67-117.
[http://dx.doi.org/10.4018/978-1-5225-0549-5.ch003]
[29]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[30]
Azad, C.S.; Bhunia, S.S.; Krishna, A.; Shukla, P.K.; Saxena, A.K. Novel glycoconjugate of 8-Fluoro norfloxacin derivatives as gentamicin-resistant staphylococcus aureus inhibitors: Synthesis and molecular modelling studies. Chem. Biol. Drug Des., 2015, 86(4), 440-446.
[http://dx.doi.org/10.1111/cbdd.12503] [PMID: 25546316]
[31]
Sarvaiya, J.; Agrawal, Y.K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int. J. Biol. Macromol., 2015, 72, 454-465.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[32]
Catalá-López, F.; Tabarés-Seisdedos, R. Alzheimer’s disease and cancer: the need of putting research into context with previous published systematic reviews. J. Cancer Res. Clin. Oncol., 2015, 141(3), 569-570.
[http://dx.doi.org/10.1007/s00432-014-1805-1] [PMID: 25143306]
[33]
Choi, D-Y.; Choi, H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch. Pharm. Res., 2015, 38(2), 139-170.
[http://dx.doi.org/10.1007/s12272-014-0503-5] [PMID: 25348867]
[34]
Khan, I.; Samad, A.; Khan, A.Z.; Habtemariam, S.; Badshah, A.; Abdullah, S.M.; Ullah, N.; Khan, A.; Zia-Ul-Haq, M. Molecular interactions of 4-acetoxy-plakinamine B with peripheral anionic and other catalytic subsites of the aromatic gorge of acetylcholinesterase: computational and structural insights. Pharm. Biol., 2013, 51(6), 722-727.
[http://dx.doi.org/10.3109/13880209.2013.764329] [PMID: 23570516]
[35]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[36]
Hu, B.; Liu, X.; Zhang, C.; Zeng, X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal., 2017, 25(1), 3-15.
[http://dx.doi.org/10.1016/j.jfda.2016.11.004] [PMID: 28911541]
[37]
Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plants Res., 2011, 5, 6697-6703.
[http://dx.doi.org/10.5897/JMPR11.1404]
[38]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[39]
Crichton, G.E.; Bryan, J.; Murphy, K.J. Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum. Nutr., 2013, 68(3), 279-292.
[http://dx.doi.org/10.1007/s11130-013-0370-0] [PMID: 23881465]
[40]
Devore, E.E.; Grodstein, F.; van Rooij, F.J.A.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.M.; Breteler, M.M.B. Dietary antioxidants and long-term risk of dementia. Arch. Neurol., 2010, 67(7), 819-825.
[http://dx.doi.org/10.1001/archneurol.2010.144] [PMID: 20625087]
[41]
Corominas-Faja, B.; Santangelo, E.; Cuyàs, E.; Micol, V.; Joven, J.; Ariza, X.; Segura-Carretero, A.; García, J.; Menendez, J.A. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins. Aging (Albany NY), 2014, 6(9), 731-741.
[http://dx.doi.org/10.18632/aging.100691] [PMID: 25324469]
[42]
Richard, T.; Papastamoulis, Y.; Waffo-Teguo, P.; Monti, J-P. 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol ε-viniferin glucoside: implications in Alzheimer’s disease. Biochim. Biophys. Acta, 2013, 1830(11), 5068-5074.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.031] [PMID: 23830862]
[43]
Lakey-Beitia, J.; Berrocal, R.; Rao, K.S.; Durant, A.A. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol. Neurobiol., 2015, 51(2), 466-479.
[http://dx.doi.org/10.1007/s12035-014-8722-9] [PMID: 24826916]
[44]
Ramesh, B.N.; Indi, S.S.; Rao, K.S.J. Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia crista. Neurosci. Lett., 2010, 475(2), 110-114.
[http://dx.doi.org/10.1016/j.neulet.2010.03.062] [PMID: 20356566]
[45]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J. Agric. Food Chem., 2010, 58(8), 4959-4969.
[http://dx.doi.org/10.1021/jf100128b] [PMID: 20302342]
[46]
Wang, Y.; Xia, Z.; Xu, J.R.; Wang, Y.X.; Hou, L.N.; Qiu, Y.; Chen, H.Z. A-mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology, 2012, 62(2), 871-881.
[http://dx.doi.org/10.1016/j.neuropharm.2011.09.016] [PMID: 21958557]
[47]
Morelli, C.F.; Biagiotti, M.; Pappalardo, V.M.; Rabuffetti, M.; Speranza, G. Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia mangostana. Nat. Prod. Res., 2015, 29(8), 750-755.
[http://dx.doi.org/10.1080/14786419.2014.986729] [PMID: 25482370]
[48]
Ibrahim, M.Y.; Hashim, N.M.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A.; Yahayu, M.; Ali, L.Z.; Ishag, O.E. α-Mangostin from Cratoxylum Arborescens: An in vitro and in Vivo Toxicological Evaluation. Arab. J. Chem., 2015, 8, 129-137.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.017]
[49]
Chaijaroenkul, W.; Na-Bangchang, K. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate. Acta Parasitol., 2014, 60(1), 105-111.
[http://dx.doi.org/10.1515/ap-2015-0013] [PMID: 26204026]
[50]
Buravlev, E.V.; Shevchenko, O.G.; Kutchin, A.V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position. Bioorg. Med. Chem. Lett., 2015, 25(4), 826-829.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.075] [PMID: 25592715]
[51]
Koh, J-J.; Lin, S.; Aung, T.T.; Lim, F.; Zou, H.; Bai, Y.; Li, J.; Lin, H.; Pang, L.M.; Koh, W.L.; Salleh, S.M.; Lakshminarayanan, R.; Zhou, L.; Qiu, S.; Pervushin, K.; Verma, C.; Tan, D.T.H.; Cao, D.; Liu, S.; Beuerman, R.W. Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections. J. Med. Chem., 2015, 58(2), 739-752.
[http://dx.doi.org/10.1021/jm501285x] [PMID: 25474410]
[52]
Choi, M.; Kim, Y-M.; Lee, S.; Chin, Y-W.; Lee, C. Mangosteen xanthones suppress hepatitis C virus genome replication. Virus Genes, 2014, 49(2), 208-222.
[http://dx.doi.org/10.1007/s11262-014-1098-0] [PMID: 24986787]
[53]
Kumar, P.; Choonara, Y.E.; Modi, G.; Naidoo, D.; Pillay, V. Cur(Que)min: A neuroactive permutation of curcumin and quercetin for treating spinal cord injury. Med. Hypotheses, 2014, 82(4), 437-441.
[http://dx.doi.org/10.1016/j.mehy.2014.01.019] [PMID: 24524922]
[54]
Madeswaran, A.; Umamaheswari, M.; Asokkumar, K.; Sivashanmugam, T.; Subhadradevi, V.; Jagannath, P. Computational drug discovery of potential tau protein kinase I inhibitors using in silico docking studies. Bangladesh J. Pharmacol., 2013, 8, 131-135.
[http://dx.doi.org/10.3329/bjp.v8i2.13886]
[55]
Odemuyiwa, S.O.; Ilarraza, R.; Davoine, F.; Logan, M.R.; Shayeganpour, A.; Wu, Y.; Majaesic, C.; Adamko, D.J.; Moqbel, R.; Lacy, P. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology, 2015, 144(4), 641-648.
[http://dx.doi.org/10.1111/imm.12416] [PMID: 25346443]
[56]
Rudenko, A.; Seo, J.; Hu, J.; Su, S.C.; de Anda, F.C.; Durak, O.; Ericsson, M.; Carlén, M.; Tsai, L-H. Loss of cyclin-dependent kinase 5 from parvalbumin interneurons leads to hyperinhibition, decreased anxiety, and memory impairment. J. Neurosci., 2015, 35(6), 2372-2383.
[http://dx.doi.org/10.1523/JNEUROSCI.0969-14.2015] [PMID: 25673832]
[57]
Rouget, R.; Sharma, G.; LeBlanc, A.C. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure. J. Biol. Chem., 2015, 290(9), 5759-5771.
[http://dx.doi.org/10.1074/jbc.M114.630699] [PMID: 25572400]
[58]
Shrestha, S.; Natarajan, S.; Park, J.H.; Lee, D.Y.; Cho, J.G.; Kim, G.S.; Jeon, Y.J.; Yeon, S.W.; Yang, D.C.; Baek, N.I. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora. Bioorg. Med. Chem. Lett., 2013, 23(18), 5150-5154.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.020] [PMID: 23927974]
[59]
Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J., 1989, 260(3), 625-634.
[http://dx.doi.org/10.1042/bj2600625] [PMID: 2669736]
[60]
Gao, D.; Zhan, C-G. Modeling effects of oxyanion hole on the ester hydrolysis catalyzed by human cholinesterases. J. Phys. Chem. B, 2005, 109(48), 23070-23076.
[http://dx.doi.org/10.1021/jp053736x] [PMID: 16854005]
[61]
Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap., 2015, 69, 4-16.
[http://dx.doi.org/10.2478/s11696-014-0542-x]
[62]
Bishara, D.; Harwood, D. Safe prescribing of physical health medication in patients with dementia. Int. J. Geriatr. Psychiatry, 2014, 29(12), 1230-1241.
[http://dx.doi.org/10.1002/gps.4163] [PMID: 25092795]
[63]
Wong, K.Y.; Mercader, A.G.; Saavedra, L.M.; Honarparvar, B.; Romanelli, G.P.; Duchowicz, P.R. QSAR analysis on tacrine-related acetylcholinesterase inhibitors. J. Biomed. Sci., 2014, 21, 84.
[http://dx.doi.org/10.1186/s12929-014-0084-0] [PMID: 25239202]
[64]
Singh, D.; Gupta, M.; Kesharwani, R.; Sagar, M.; Dwivedi, S.; Misra, K. Molecular drug targets and therapies for Alzheimer’s disease. Transl. Neurosci., 2014, 5, 203-217.
[http://dx.doi.org/10.2478/s13380-014-0222-x]
[65]
Kuppusamy, A.; Arumugam, M.; George, S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int. J. Biol. Macromol., 2017, 95, 199-203.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.062] [PMID: 27871793]
[66]
Das, B.; Yan, R. Role of BACE1 in Alzheimer’s synaptic function. Transl. Neurodegener., 2017, 6, 23.
[http://dx.doi.org/10.1186/s40035-017-0093-5] [PMID: 28855981]
[67]
Cole, S.L.; Vassar, R. The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 509-530.
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19415126]
[68]
Nie, Q.; Du, X.G.; Geng, M.Y. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin., 2011, 32(5), 545-551.
[http://dx.doi.org/10.1038/aps.2011.14] [PMID: 21499284]
[69]
Espargaró, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Muñoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00643] [PMID: 28128562]
[70]
Chakraborty, S.; Basu, S. Insight into the Anti-Amyloidogenic Activity of Polyphenols and Its Application in Virtual Screening of Phytochemical Database. Med. Chem. Res., 2014, 23, 5141-5148.
[http://dx.doi.org/10.1007/s00044-014-1081-2]
[71]
Shahinozzaman, M.; Taira, N.; Ishii, T.; Halim, M.A.; Hossain, M.A.; Tawata, S. Anti-inflammatory, anti-diabetic, and anti-Alzheimer’s effects of prenylated flavonoids from okinawa propolis: An investigation by experimental and computational studies. Molecules, 2018, 23(10), 1-18.
[http://dx.doi.org/10.3390/molecules23102479] [PMID: 30262742]
[72]
Ogidigo, J.O.; Anosike, C.A.; Joshua, P.E.; Ibeji, C.U.; Ekpo, D.E.; Nwanguma, B.C.; Nwodo, O.F.C. UPLC-PDA-ESI-QTOF-MS/MS fingerprint of purified flavonoid enriched fraction of Bryophyllum pinnatum; antioxidant properties, anticholinesterase activity and in silico studies. Pharm. Biol., 2021, 59(1), 444-456.
[http://dx.doi.org/10.1080/13880209.2021.1913189] [PMID: 33930998]
[73]
Baltaci, N.; Aydogdu, N.; Sarikurkcu, C.; Tepe, B. Onosma Gracilis (Trautv.) and O. Oreodoxa (Boiss. & Heldr.): Phytochemistry, in silico Docking, Antioxidant and Enzyme Inhibitory Activities. S. Afr. J. Bot., 2021, 2021, 1-8.
[74]
Pitchai, A.; Rajaretinam, R.K.; Mani, R.; Nagarajan, N. Molecular interaction of human acetylcholinesterase with trans-tephrostachin and derivatives for Alzheimer’s disease. Heliyon, 2020, 6(9)e04930
[http://dx.doi.org/10.1016/j.heliyon.2020.e04930] [PMID: 32995619]
[75]
Llorent-Martínez, E.J.; Zengin, G.; Fernández-de Córdova, M.L.; Bender, O.; Atalay, A.; Ceylan, R.; Mollica, A.; Mocan, A.; Uysal, S.; Guler, G.O.; Aktumsek, A. Traditionally used Lathyrus species: Phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front. Pharmacol., 2017, 8, 83.
[http://dx.doi.org/10.3389/fphar.2017.00083] [PMID: 28289386]
[76]
Tran, T.S.; Tran, T.D.; Tran, T.H.; Mai, T.T.; Nguyen, N.L.; Thai, K.M.; Le, M.T. Synthesis, in silico and in vitro Evaluation of Some Flavone Derivatives for Acetylcholinesterase and BACE-1 Inhibitory Activity. Molecules, 2020, 25(18), 7-9.
[http://dx.doi.org/10.3390/molecules25184064] [PMID: 32899576]
[77]
Ribaudo, G.; Coghi, P.; Zanforlin, E.; Law, B.Y.K.; Wu, Y.Y.J.; Han, Y.; Qiu, A.C.; Qu, Y.Q.; Zagotto, G.; Wong, V.K.W. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer’s disease. Bioorg. Chem., 2019, 87, 474-483.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.034] [PMID: 30927588]
[78]
El-Hawary, S.S.; Hammam, W.E.; El-Mahdy El-Tantawi, M.; Yassin, N.A.Z.; Kirollos, F.N.; Abdelhameed, M.F.; Abdelfattah, M.A.O.; Wink, M.; Sobeh, M. Apple leaves and their major secondary metabolite phlorizin exhibit distinct neuroprotective activities: Evidence from in vivo and in silico studies. Arab. J. Chem., 2021, 14103188
[http://dx.doi.org/10.1016/j.arabjc.2021.103188]
[79]
Teponno, R.B.; Kusari, S.; Spiteller, M. Recent Advances in Research on Lignans and Neolignans, 2016. 33
[80]
Moss, G.P.; Mary, Q.; Road, M.E. Nomenclature of Lignans and Neolignans. Pure Appl. Chem., 2000, 72, 1493-1523.
[http://dx.doi.org/10.1351/pac200072081493]
[81]
Dos Santos Maia, M.; Rodrigues, G.C.S.; De Sousa, N.F.; Scotti, M.T.; Scotti, L.; Mendonça-Junior, F.J.B. Identification of new targets and the virtual screening of lignans against Alzheimer’s disease. Oxid. Med. Cell. Longev., 2020, 2020.
[http://dx.doi.org/10.1155/2020/3098673]
[82]
Hu, X. Guo, C.; Hou, J.Q.; Feng, J.H.; Zhang, X.Q.; Xiong, F.; Ye, W.C.; Wang, H. Stereoisomers of Schisandrin B Are Potent ATP Competitive GSK-3β Inhibitors with Neuroprotective Effects against Alzheimer’s Disease: Stereochemistry and Biological Activity. ACS Chem. Neurosci., 2018.
[83]
Liu, Q.; Wang, J.; Lin, B.; Cheng, Z.Y.; Bai, M.; Shi, S.; Huang, X.X.; Song, S.J. Phenylpropanoids and lignans from Prunus tomentosa seeds as efficient β-amyloid (Aβ) aggregation inhibitors. Bioorg. Chem., 2019, 84, 269-275.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.041] [PMID: 30529844]
[84]
Somani, G.S.; Nahire, M.S.; Parikh, A.D.; Mulik, M.B.; Ghumatkar, P.J.; Laddha, K.S.; Sathaye, S. Neuroprotective effect of cubebin: A dibenzylbutyrolactone lignan on scopolamine-induced amnesia in mice. Indian J. Med. Res., 2017, 255-259.
[85]
Abouelela, M.E.; Orabi, M.A.A.; Abdelhamid, R.A.; Abdelkader, M.S.A.; Darwish, F.M.M.; Hotsumi, M.; Konno, H. Anti-Alzheimer’s flavanolignans from Ceiba pentandra aerial parts. Fitoterapia, 2020, 143104541
[http://dx.doi.org/10.1016/j.fitote.2020.104541] [PMID: 32151639]
[86]
Hung, T.M.; Lee, J.S.; Chuong, N.N.; Kim, J.A.; Oh, S.H.; Woo, M.H.; Choi, J.S.; Min, B.S. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II). Chem. Biol. Interact., 2015, 240, 74-82.
[http://dx.doi.org/10.1016/j.cbi.2015.07.008] [PMID: 26297990]
[87]
Wang, Y.X.; Zhou, L.; Wang, J.; Lin, B.; Wang, X.B.; Huang, X.X.; Song, S.J. Enantiomeric lignans with anti-β-amyloid aggregation activity from the twigs and leaves of Pithecellobium clypearia Benth. Bioorg. Chem., 2018, 77, 579-585.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.001] [PMID: 29477125]
[88]
Song, S.Y.; Jung, Y.Y.; Hwang, C.J.; Lee, H.P.; Sok, C.H.; Kim, J.H.; Lee, S.M.; Seo, H.O.; Hyun, B.K.; Choi, D.Y.; Han, S.B.; Ham, Y.W.; Hwang, B.Y.; Hong, J.T. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells. J. Neuroinflammation, 2014, 11, 118.
[http://dx.doi.org/10.1186/1742-2094-11-118] [PMID: 24985096]
[89]
Franco, D.P.; Pereira, T.M.; Vitorio, F.; Nadur, N.F.; Lacerda, R.B.; Kümmerle, A.E. A importância das cumarinas para a química medicinal e o desenvolvimento de compostos bioativos nos últimos Anos. Quim., 2021, 44, 180-197.
[90]
Cai, H.; Khanal, H.D.; Lee, Y.R. Base-promoted direct cascade transformation of chromones to coumarins via benzannulation and transesterification. Asian J. Org. Chem., 2021, 827-830.
[http://dx.doi.org/10.1002/ajoc.202100039]
[91]
Keri, R.S.; Budagumpi, S.; Pai, R.K.; Balakrishna, R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem., 2014, 78, 340-374.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.047] [PMID: 24691058]
[92]
Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev., 2014, 114(9), 4960-4992.
[http://dx.doi.org/10.1021/cr400265z] [PMID: 24555663]
[93]
Pinto, M.M.M.; Palmeira, A.; Fernandes, C.; Resende, D.I.S.P.; Sousa, E.; Cidade, H.; Tiritan, M.E.; Correia-da-Silva, M.; Cravo, S. From natural products to new synthetic small molecules: A journey through the world of xanthones. Molecules, 2021, 26(2), 26.
[http://dx.doi.org/10.3390/molecules26020431] [PMID: 33467544]
[94]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: Chemistry and biology. J. Appl. Chem., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/621459]
[95]
Baruah, P.; Rohman, M.A.; Yesylevskyy, S.O.; Mitra, S. Therapeutic potency of substituted chromones as Alzheimer’s drug: Elucidation of acetylcholinesterase inhibitory activity through spectroscopic and molecular modelling investigation. Bioimpacts, 2019, 9(2), 79-88.
[http://dx.doi.org/10.15171/bi.2019.11] [PMID: 31334039]
[96]
Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett., 2020, 30(4)126927
[http://dx.doi.org/10.1016/j.bmcl.2019.126927] [PMID: 31901382]
[97]
Cruz, I.; Puthongking, P.; Cravo, S.; Palmeira, A.; Cidade, H.; Pinto, M.; Sousa, E. Xanthone and flavone derivatives as dual agents with acetylcholinesterase inhibition and antioxidant activity as potential anti-alzheimer agents. J. Chem., 2017, 2017.
[http://dx.doi.org/10.1155/2017/8587260]
[98]
Yang, A.; Yu, Q.; Ju, H.; Song, L.; Kou, X.; Shen, R. Design, synthesis and biological evaluation of xanthone derivatives for possible treatment of Alzheimer’s disease based on multi-target strategy. Chem. Biodivers., 2020, 17(10)e2000442
[http://dx.doi.org/10.1002/cbdv.202000442] [PMID: 32692899]
[99]
Singla, S.; Piplani, P. Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Bioorg. Med. Chem., 2016, 24(19), 4587-4599.
[http://dx.doi.org/10.1016/j.bmc.2016.07.061] [PMID: 27519464]
[100]
He, Q.; Liu, J.; Lan, J.S.; Ding, J.; Sun, Y.; Fang, Y.; Jiang, N.; Yang, Z.; Sun, L.; Jin, Y.; Xie, S.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2018, 81, 512-528.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.010] [PMID: 30245233]
[101]
Liu, Q.; Qiang, X.; Li, Y.; Sang, Z.; Li, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(5), 911-923.
[http://dx.doi.org/10.1016/j.bmc.2015.01.042] [PMID: 25678013]
[102]
Scotti, L.; Tavares, J.F.; Da Silva, M.S.; Falcão, E.V.; De Morais, E. Silva, L.; Da Silva Soares, G.C.; Scotti, M.T. Chemotaxonomy of three genera of the annonaceae family using self-organizing maps and 13C nmr data of diterpenes. Quim. Nova, 2012, 35, 2146-2152.
[http://dx.doi.org/10.1590/S0100-40422012001100008]
[103]
Scotti, M.T.; Emerenciano, V.; Ferreira, M.J.P.; Scotti, L.; Stefani, R.; da Silva, M.S.; Mendonça, Junior F.J. Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae family. Molecules, 2012, 17(4), 4684-4702.
[http://dx.doi.org/10.3390/molecules17044684] [PMID: 22522398]
[104]
Wu, P.Q.; Yu, Y.F.; Zhao, Y.; Yu, C.X.; Zhi, D.J.; Qi, F.M.; Fei, D.Q.; Zhang, Z.X. Four novel sesquiterpenoids with their anti-Alzheimer’s disease activity from Nardostachys chinensis. Org. Biomol. Chem., 2018, 16(46), 9038-9045.
[http://dx.doi.org/10.1039/C8OB02319K] [PMID: 30427367]
[105]
Arya, A.; Chahal, R.; Rao, R.; Rahman, M.H.; Kaushik, D.; Akhtar, M.F.; Saleem, A.; Khalifa, S.M.A.; El-Seedi, H.R.; Kamel, M.; Albadrani, G.M.; Abdel-Daim, M.M.; Mittal, V. Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules, 2021, 11(3), 1-30.
[http://dx.doi.org/10.3390/biom11030350] [PMID: 33669097]
[106]
Cho, K.S.; Lim, Y.R.; Lee, K.; Lee, J.; Lee, J.H.; Lee, I.S. Terpenes from Forests and Human Health. Toxicol. Res., 2017, 33(2), 97-106.
[http://dx.doi.org/10.5487/TR.2017.33.2.097] [PMID: 28443180]
[107]
Guo, Q.; Ma, X.; Wei, S.; Qiu, D.; Wilson, I.W.; Wu, P.; Tang, Q.; Liu, L.; Dong, S.; Zu, W. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer’s properties. BMC Genomics, 2014, 15, 676.
[http://dx.doi.org/10.1186/1471-2164-15-676] [PMID: 25112168]
[108]
Xie, H.; Wang, J.R.; Yau, L.F.; Liu, Y.; Liu, L.; Han, Q.B.; Zhao, Z.; Jiang, Z.H. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide. Molecules, 2014, 19(4), 4466-4478.
[http://dx.doi.org/10.3390/molecules19044466] [PMID: 24727418]
[109]
Bidon-Chanal, A.; Fuertes, A.; Alonso, D.; Pérez, D.I.; Martínez, A.; Luque, F.J.; Medina, M. Evidence for a new binding mode to GSK-3: Allosteric regulation by the marine compound palinurin. Eur. J. Med. Chem., 2013, 60, 479-489.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.014] [PMID: 23354070]
[110]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046] [PMID: 25845281]
[111]
Ye, Q.; Mao, W.; Zhou, Y.; Xu, L.; Li, Q.; Gao, Y.; Wang, J.; Li, C.; Xu, Y.; Xu, Y.; Liao, H.; Zhang, L.; Gao, J.; Li, J.; Pang, T. Synthesis and biological evaluation of 3-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-4-(indol-3-yl)-maleimides as potent, selective GSK-3β inhibitors and neuroprotective agents. Bioorg. Med. Chem., 2015, 23(5), 1179-1188.
[http://dx.doi.org/10.1016/j.bmc.2014.12.026] [PMID: 25662701]
[112]
Kalakech, H.; Hibert, P.; Prunier-Mirebeau, D.; Tamareille, S.; Letournel, F.; Macchi, L.; Pinet, F.; Furber, A.; Prunier, F. RISK and SAFE signaling pathway involvement in apolipoprotein A-I-induced cardioprotection. PLoS One, 2014, 9(9)e107950
[http://dx.doi.org/10.1371/journal.pone.0107950] [PMID: 25237809]
[113]
Feng, H.; Yu, Z.; Tian, Y.; Lee, Y.Y.; Li, M.S.; Go, M.Y.Y.; Cheung, Y.S.; Lai, P.B.S.; Chan, A.M.L.; To, K.F.; Chan, H.L.Y.; Sung, J.J.Y.; Cheng, A.S.L.A.A. CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients. J. Hepatol., 2015, 62(5), 1100-1111.
[http://dx.doi.org/10.1016/j.jhep.2014.11.040] [PMID: 25500144]
[114]
Dash, U.C.; Kanhar, S.; Dixit, A.; Dandapat, J.; Sahoo, A.K. Isolation, identification, and quantification of Pentylcurcumene from Geophila repens: A new class of cholinesterase inhibitor for Alzheimer’s disease. Bioorg. Chem., 2019, 88102947
[http://dx.doi.org/10.1016/j.bioorg.2019.102947] [PMID: 31028989]
[115]
Liu, F.; Dong, B.; Yang, X.; Yang, Y.; Zhang, J.; Jin, D.Q.; Ohizumi, Y.; Lee, D.; Xu, J.; Guo, Y. NO inhibitors function as potential anti-neuroinflammatory agents for AD from the flowers of Inula japonica. Bioorg. Chem., 2018, 77, 168-175.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.009] [PMID: 29421695]
[116]
Usuki, T.; Yoshimoto, Y.; Sato, M.; Takenaka, T.; Takezawa, R.; Yoshida, Y.; Satake, M.; Suzuki, N.; Hashizume, D.; Dzyuba, S.V. Bilobalide and PC12 cells: A structure activity relationship study. Bioorg. Med. Chem., 2020, 28(2)115251
[http://dx.doi.org/10.1016/j.bmc.2019.115251] [PMID: 31848115]
[117]
Agatonovic-Kustrin, S.; Chan, C.K.Y.; Gegechkori, V.; Morton, D.W. Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients. J. Biomol. Struct. Dyn., 2020, 38(8), 2402-2411.
[http://dx.doi.org/10.1080/07391102.2019.1633408] [PMID: 31204906]
[118]
Karolina, A. Wojtunik-Kulesza, Katarzyna Targowska-Duda, Katarzyna Klimek, Grażyna Ginalska, Krzysztof Jóźwiak, M.W.-H. and Ł.C. Essential Oils as Immunomodulators: Some Examples What Is So Different About Was Ist so Anders Am Neuroenhancement? Open Chem., 2017, 15, 352-370.
[119]
Haghaei, H.; Aref Hosseini, S.R.; Soltani, S.; Fathi, F.; Mokhtari, F.; Karima, S.; Rashidi, M.R. Kinetic and thermodynamic study of beta-Boswellic acid interaction with Tau protein investigated by surface plasmon resonance and molecular modeling methods. Bioimpacts, 2020, 10(1), 17-25.
[http://dx.doi.org/10.15171/bi.2020.03] [PMID: 31988853]
[120]
Xu, J.; Wang, F.; Guo, J.; Xu, C.; Cao, Y.; Fang, Z.; Wang, Q. Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(6), 21.
[http://dx.doi.org/10.3390/ijms21062071] [PMID: 32197305]
[121]
Awasthi, M.; Upadhyay, A.K.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Terpenoids as Promising Therapeutic Molecules against Alzheimer’s Disease: Amyloid Beta- and Acetylcholinesterase-Directed Pharmacokinetic and Molecular Docking Analyses. Mol. Simul., 2018, 44, 1-11.
[http://dx.doi.org/10.1080/08927022.2017.1334880]
[122]
Koirala, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimer’s disease. Asian Pac. J. Trop. Med., 2017, 10(12), 1117-1122.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.018] [PMID: 29268966]
[123]
Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. (Weinheim), 2019, 352(11)e1900177
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[124]
Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 2014, 76(PtA), 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[125]
Schneider, L.S.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R.; Mantua, V.; Mecocci, P.; Pani, L.; Winblad, B.; Kivipelto, M. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med., 2014, 275(3), 251-283.
[http://dx.doi.org/10.1111/joim.12191] [PMID: 24605808]
[126]
Chlebek, J.; Korábečný, J.; Doležal, R.; Štěpánková, Š.; Pérez, D.I.; Hošťálková, A.; Opletal, L.; Cahlíková, L.; Macáková, K.; Kučera, T.; Hrabinová, M.; Jun, D. in vitro and in silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24(7), 1340.
[http://dx.doi.org/10.3390/molecules24071340] [PMID: 30959739]
[127]
Zeng, H.; Wu, X. Alzheimer’s disease drug development based on Computer-Aided Drug Design. Eur. J. Med. Chem., 2016, 121, 851-863.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.039] [PMID: 26415837]
[128]
da Silva, V.B.; de Andrade, P.; Kawano, D.F.; Morais, P.A.B.; de Almeida, J.R.; Carvalho, I.; Taft, C.A.; da Silva, C.H.T. de P. in silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem., 2011, 3(8), 947-960.
[http://dx.doi.org/10.4155/fmc.11.67] [PMID: 21707398]
[129]
Cortes, N.; Sierra, K.; Alzate, F.; Osorio, E.H.; Osorio, E. Alkaloids of amaryllidaceae as inhibitors of cholinesterases (AChEs and BChEs): An integrated bioguided study. Phytochem. Anal., 2018, 29(2), 217-227.
[http://dx.doi.org/10.1002/pca.2736] [PMID: 29044771]
[130]
Ortiz, J.E.; Berkov, S.; Pigni, N.B.; Theoduloz, C.; Roitman, G.; Tapia, A.; Bastida, J.; Feresin, G.E. Wild Argentinian Amaryllidaceae, a new renewable source of the acetylcholinesterase inhibitor galanthamine and other alkaloids. Molecules, 2012, 17(11), 13473-13482.
[http://dx.doi.org/10.3390/molecules171113473] [PMID: 23149565]
[131]
Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Daffodils as potential crops of galanthamine. assessment of more than 100 ornamental varieties for their alkaloid content and acetylcholinesterase inhibitory activity. Ind. Crops Prod., 2013, 43, 237-244.
[http://dx.doi.org/10.1016/j.indcrop.2012.07.034]
[132]
Castillo-Ordóñez, W.O.; Tamarozzi, E.R.; da Silva, G.M.; Aristizabal-Pachón, A.F.; Sakamoto-Hojo, E.T.; Takahashi, C.S.; Giuliatti, S. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from amaryllidaceae family by molecular docking in silico. Neurochem. Res., 2017, 42(10), 2826-2830.
[http://dx.doi.org/10.1007/s11064-017-2295-8] [PMID: 28497342]
[133]
Pinho, B.R.; Ferreres, F.; Valentão, P.; Andrade, P.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment. J. Pharm. Pharmacol., 2013, 65(12), 1681-1700.
[http://dx.doi.org/10.1111/jphp.12081] [PMID: 24236980]
[134]
Toledo, J.P.; Fernández-Pérez, E.J.; Ferreira, I.L.; Marinho, D.; Riffo-Lepe, N.O.; Pineda-Cuevas, B.N.; Pinochet-Pino, L.F.; Burgos, C.F.; Rego, A.C.; Aguayo, L.G. Boldine attenuates synaptic failure and mitochondrial deregulation in cellular models of Alzheimer’s disease. Front. Neurosci., 2021, 15617821
[http://dx.doi.org/10.3389/fnins.2021.617821] [PMID: 33679301]
[135]
Kohelová, E.; Maříková, J.; Korábečný, J.; Hulcová, D.; Kučera, T.; Jun, D.; Chlebek, J.; Jenčo, J.; Šafratová, M.; Hrabinová, M.; Ritomská, A.; Malaník, M.; Peřinová, R.; Breiterová, K.; Kuneš, J.; Nováková, L.; Opletal, L.; Cahlíková, L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorg. Chem., 2021, 107104567
[http://dx.doi.org/10.1016/j.bioorg.2020.104567] [PMID: 33387730]
[136]
Innok, W.; Hiranrat, A.; Chana, N.; Rungrotmongkol, T.; Kongsune, P. in silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment. J. Comput. Aided Mol. Des., 2021, 35(3), 325-336.
[http://dx.doi.org/10.1007/s10822-020-00372-4] [PMID: 33439402]
[137]
Biradar, P.; Patil, V.; Joshi, H.; Khanal, P.; Mallapur, S. Experimental validation and network pharmacology evaluation to decipher the mechanism of action of Erythrina variegata L. bark against scopolamine-induced memory impairment in rats. Adv. Tradit. Med., 2022, 22, 193-206.
[138]
Peřinová, R.; Maafi, N.; Korábečný, J.; Kohelová, E.; De Simone, A.; Al Mamun, A.; Hulcová, D.; Marková, J.; Kučera, T.; Jun, D.; Šafratová, M.; Maříková, J.; Andrisano, V.; Jenčo, J.; Kuneš, J.; Martinez, A.; Nováková, L.; Cahlíková, L. Functionalized aromatic esters of the Amaryllidaceae alkaloid haemanthamine and their in vitro and in silico biological activity connected to Alzheimer’s disease. Bioorg. Chem., 2020, 100103928
[http://dx.doi.org/10.1016/j.bioorg.2020.103928] [PMID: 32450384]
[139]
Al Mamun, A.; Maříková, J.; Hulcová, D.; Janoušek, J.; Šafratová, M.; Nováková, L.; Kučera, T.; Hrabinová, M.; Kuneš, J.; Korábečný, J.; Cahlíková, L. Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules, 2020, 10(5), 10.
[http://dx.doi.org/10.3390/biom10050800] [PMID: 32455879]
[140]
Moreno, R.; Tallini, L.R.; Salazar, C.; Osorio, E.H.; Montero, E.; Bastida, J.; Oleas, N.H.; Acosta León, K. Chemical profiling and cholinesterase inhibitory activity of five Phaedranassa herb. (Amaryllidaceae) species from ecuador. Molecules, 2020, 25(9), 1-12.
[http://dx.doi.org/10.3390/molecules25092092] [PMID: 32365796]
[141]
Kashyap, P.; Kalaiselvan, V.; Kumar, R.; Kumar, S. Ajmalicine and reserpine: indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules, 2020, 25(7), 25.
[http://dx.doi.org/10.3390/molecules25071609] [PMID: 32244635]
[142]
de Almeida, W.A.M.; de Andrade, J.P.; Chacon, D.S.; Lucas, C.R.; Mariana, E.; de Santis Ferreira, L.; Guaratini, T.; Barbosa, E.G.; Zuanazzi, J.A.; Hallwass, F.; de Souza Borges, W.; de Paula Oliveira, R.; Giordani, R.B. Isoquinoline alkaloids reduce beta-amyloid peptide toxicity in Caenorhabditis elegans. Nat. Prod. Res., 2020, 0, 1-5.
[http://dx.doi.org/10.1080/14786419.2020.1727471] [PMID: 32067490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy