Therapeutic Potential of Adipose-derived Stem Cells in the Treatment of Pulmonary Diseases | Bentham Science
Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Therapeutic Potential of Adipose-derived Stem Cells in the Treatment of Pulmonary Diseases

Author(s): Nur Shuhaidatul Sarmiza Abdul Halim, Badrul Hisham Yahaya* and Jie Lian

Volume 17, Issue 2, 2022

Published on: 12 August, 2021

Page: [103 - 112] Pages: 10

DOI: 10.2174/1574888X16666210812145202

Price: $65

Open Access Journals Promotions 2
Abstract

Stem cells derived from adipose tissues (ADSCs) have emerged as an ideal candidate for various models of respiratory diseases, including asthma, Chronic Obstructive Pulmonary Disease (COPD), and acute respiratory distress syndrome. ADSCs have qualities that may make them better suited for treating inflammatory lung diseases than other MSCs. ADSCs show a lower senescence ratio, higher proliferative capacity and stability in terms of their genetic and morphology during long-term culture over Bone Marrow-derived Mesenchymal Stem Cells (BMMSCs). With enhanced research methodologies, the beneficial benefits of ADSCs appear to be restricted to their capacity to engraft, differentiate, and be connected to trophic factor secretion. These trophic factors influence treatment and regenerative results in a variety of lung inflammatory disorders. Taken together, these particular qualities of ADSCs make them significantly relevant for clinical applications. This article discusses a recent advance of ADSCs biology and their translational application, emphasizing their anti-inflammatory, immunomodulatory and regenerative properties, particularly on lung inflammatory diseases. Besides, the relevant advancements made in the field, the regulatory aspects, and other challenges and obstacles will be highlighted.

Keywords: Adipose-derived mesenchymal stem cells, immunomodulatory, paracrine action, lung regenerative and repair, respiratory diseases, anti-inflammatory.

Next »
Graphical Abstract
[1]
Prockop DJ. The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 2017; 19(1): 1-8.
[http://dx.doi.org/10.1016/j.jcyt.2016.09.008] [PMID: 27769637]
[2]
Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2): 150-6.
[http://dx.doi.org/10.1016/S1474-4422(11)70305-2] [PMID: 22236384]
[3]
Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med 2015; 3(1): 24-32.
[http://dx.doi.org/10.1016/S2213-2600(14)70291-7] [PMID: 25529339]
[4]
Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 2015; 4(11): 1302-16.
[http://dx.doi.org/10.5966/sctm.2014-0280] [PMID: 26378259]
[5]
Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep 2015; 5: 8733.
[http://dx.doi.org/10.1038/srep08733] [PMID: 25736434]
[6]
Xu L, Huang CC, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 2002; 1(5): 337-46.
[PMID: 12489850]
[7]
da Silva AF, Silva K, Reis LA, Teixeira VPC, Schor N. Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction. Cell Transplant 2015; 24(12): 2657-66.
[http://dx.doi.org/10.3727/096368915X687534] [PMID: 25695732]
[8]
Koobatian MT, Liang MS, Swartz DD, Andreadis ST. Differential effects of culture senescence and mechanical stimulation on the proliferation and leiomyogenic differentiation of MSC from different sources: Implications for engineering vascular grafts. Tissue Eng Part A 2015; 21(7-8): 1364-75.
[http://dx.doi.org/10.1089/ten.tea.2014.0535] [PMID: 25517657]
[9]
Bieback K, Kern S, Kocaömer A, Ferlik K, Bugert P. Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng 2008; 18(1 Suppl): S71-6.
[10]
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11): 2739-49.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[11]
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804-10.
[http://dx.doi.org/10.1002/stem.1076] [PMID: 22415904]
[12]
Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 2016; 43(4): 268-74.
[http://dx.doi.org/10.1159/000448180]
[13]
Perlee D, de Vos AF, Scicluna BP, et al. Human adipose-derived mesenchymal stem cells modify lung immunity and improve antibacterial defense in pneumosepsis caused by Klebsiella pneumoniae. Stem Cells Transl Med 2019; 8(8): 785-96.
[http://dx.doi.org/10.1002/sctm.18-0260] [PMID: 31033196]
[14]
Zhang S, Danchuk SD, Imhof KM, et al. Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury. Stem Cell Res Ther 2013; 4(1): 13.
[http://dx.doi.org/10.1186/scrt161] [PMID: 23360775]
[15]
Fukui E, Funaki S, Kimura K, et al. Adipose tissue-derived stem cells have the ability to differentiate into alveolar epithelial cells and ameliorate lung injury caused by elastase-induced emphysema in mice. Stem Cells Int 2019; 2019: 5179172.
[http://dx.doi.org/10.1155/2019/5179172] [PMID: 31281377]
[16]
Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int J Mol Sci 2014; 15(9): 15044-60.
[http://dx.doi.org/10.3390/ijms150915044] [PMID: 25162825]
[17]
Duong KM, Arikkatt J, Ullah MA, et al. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice. Am J Respir Cell Mol Biol 2015; 53(5): 615-24.
[http://dx.doi.org/10.1165/rcmb.2014-0431OC] [PMID: 25789608]
[18]
Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH. The use of mesenchymal stromal cells in treatment of lung disorders. Regen Med 2017; 12(2): 203-16.
[http://dx.doi.org/10.2217/rme-2016-0112] [PMID: 28244823]
[19]
Halim NSS, Ch’ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH. Aerosolised mesenchymal stem cells expressing angiopoietin-1 enhances airway repair. Stem Cell Rev Rep 2019; 15(1): 112-25.
[http://dx.doi.org/10.1007/s12015-018-9844-7] [PMID: 30178289]
[20]
Halim NS, Aizat WM, Yahaya BH. The effect of mesenchymal stem cell-secreted factors on airway epithelial repair. Regen Med 2019; 14(1): 15-31.
[21]
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15(6): 641-8.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.006] [PMID: 23570660]
[22]
Gentile P, Piccinno M, Calabrese C. Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells 2019; 8(3): 282.
[23]
Dicker A, Le Blanc K, Aström G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308(2): 283-90.
[http://dx.doi.org/10.1016/j.yexcr.2005.04.029] [PMID: 15925364]
[24]
Gentile P, Orlandi A, Scioli MG, et al. A comparative translational study: The combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 2012; 1(4): 341-51.
[http://dx.doi.org/10.5966/sctm.2011-0065] [PMID: 23197813]
[25]
Cheng SL, Lin CH, Yao CL. Mesenchymal stem cell administration in patients with chronic obstructive pulmonary disease: State of the science. Stem Cells Int 2017; 2017: 8916570.
[http://dx.doi.org/10.1155/2017/8916570] [PMID: 28303154]
[26]
Rubio GA, Elliot SJ, Wikramanayake TC, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol 2018; 233(8): 5503-12.
[http://dx.doi.org/10.1002/jcp.26418] [PMID: 29271488]
[27]
Jiang H, Zhang J, Zhang Z, Ren S, Zhang C. Effect of transplanted adipose-derived stem cells in mice exhibiting idiopathic pulmonary fibrosis. Mol Med Rep 2015; 12(4): 5933-8.
[http://dx.doi.org/10.3892/mmr.2015.4178] [PMID: 26252797]
[28]
Chen S, Cui G, Peng C, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther 2018; 9(1): 110.
[http://dx.doi.org/10.1186/s13287-018-0846-9] [PMID: 29673394]
[29]
von Bahr L, Batsis I, Moll G, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 2012; 30(7): 1575-8.
[http://dx.doi.org/10.1002/stem.1118] [PMID: 22553154]
[30]
Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013; 2013: 732742.
[http://dx.doi.org/10.1155/2013/732742] [PMID: 24000286]
[31]
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 2012; 3: 297.
[http://dx.doi.org/10.3389/fimmu.2012.00297] [PMID: 23056000]
[32]
Curley GF, Hayes M, Ansari B, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 2012; 67(6): 496-501.
[http://dx.doi.org/10.1136/thoraxjnl-2011-201059] [PMID: 22106021]
[33]
Hayes M, Masterson C, Devaney J, et al. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 2015; 122(2): 363-73.
[http://dx.doi.org/10.1097/ALN.0000000000000545] [PMID: 25490744]
[34]
Kyurkchiev D, Bochev I, Ivanova-Todorova E, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6(5): 552-70.
[http://dx.doi.org/10.4252/wjsc.v6.i5.552] [PMID: 25426252]
[35]
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[36]
Mitchell R, Mellows B, Sheard J, et al. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 2019; 10(1): 116.
[http://dx.doi.org/10.1186/s13287-019-1213-1] [PMID: 30953537]
[37]
Gentile P, Garcovich S. Concise review: Adipose-derived stem cells (ASCs) and adipocyte-secreted exosomal microRNA (A-SE-miR) modulate cancer growth and promote wound repair. J Clin Med 2019; 8(6): 855.
[http://dx.doi.org/10.3390/jcm8060855] [PMID: 31208047]
[38]
Gentile P, Casella D, Palma E, Calabrese C. Engineered fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: Clinical, histological and instrumental evaluation in breast reconstruction. J Clin Med 2019; 8(4): 504.
[http://dx.doi.org/10.3390/jcm8040504] [PMID: 31013744]
[39]
Villatoro AJ, Alcoholado C, Martín-Astorga MC, Fernández V, Cifuentes M, Becerra J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol 2019; 208: 6-15.
[http://dx.doi.org/10.1016/j.vetimm.2018.12.003] [PMID: 30712794]
[40]
Yang Y, Wang JK. The functional analysis of MicroRNAs involved in NF-κB signaling. Eur Rev Med Pharmacol Sci 2016; 20(9): 1764-74.
[41]
Wang W, Pan H, Murray K, Jefferson BS, Li Y. Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol 2009; 174(2): 541-9.
[http://dx.doi.org/10.2353/ajpath.2009.080509] [PMID: 19147819]
[42]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308.
[http://dx.doi.org/10.1186/s12967-015-0642-6] [PMID: 26386558]
[43]
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98(5): 1076-84.
[http://dx.doi.org/10.1002/jcb.20886] [PMID: 16619257]
[44]
Peng LH, Niu J, Zhang CZ, et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials 2014; 35(21): 5605-18.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.062] [PMID: 24736021]
[45]
Zeuner MT, Patel K, Denecke B, Giebel B, Widera D. Paracrine effects of TLR4-polarised mesenchymal stromal cells are mediated by extracellular vesicles. J Transl Med 2016; 14(1): 34.
[http://dx.doi.org/10.1186/s12967-016-0794-z] [PMID: 26838370]
[46]
Abreu SC, Weiss DJ, Rocco PRM. Extracellular vesicles derived from mesenchymal stromal cells: A therapeutic option in respiratory diseases? Stem Cell Res Ther 2016; 7(1): 53.
[http://dx.doi.org/10.1186/s13287-016-0317-0] [PMID: 27075363]
[47]
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16(7): 859-71.
[http://dx.doi.org/10.1517/14712598.2016.1170804] [PMID: 27011289]
[48]
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: Process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102(9): 3981-94.
[http://dx.doi.org/10.1007/s00253-018-8912-x] [PMID: 29564526]
[49]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[50]
Rafiq QA, Coopman K, Nienow AW, Hewitt CJ. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J 2016; 11(4): 473-86.
[http://dx.doi.org/10.1002/biot.201400862] [PMID: 26632496]
[51]
Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 2017; 59: 255-65.
[http://dx.doi.org/10.1016/j.procbio.2017.03.017]
[52]
Panchalingam KM, Jung S, Rosenberg L, Behie LA. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: A review mesenchymal stem/stromal cells-An update. Stem Cell Res Ther 2015; 6(1): 225.
[http://dx.doi.org/10.1186/s13287-015-0228-5]
[53]
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016; 76: 371-87.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.065] [PMID: 26561934]
[54]
Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: Differences and similarities. Cell Cycle 2012; 11(2): 377-83.
[http://dx.doi.org/10.4161/cc.11.2.18858] [PMID: 22189711]
[55]
Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 2014; 9(12): e115963.
[http://dx.doi.org/10.1371/journal.pone.0115963] [PMID: 25541697]
[56]
Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2013; 2(6): 455-63.
[http://dx.doi.org/10.5966/sctm.2012-0184] [PMID: 23694810]
[57]
Haack-Sørensen M, Juhl M, Follin B, et al. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scand J Clin Lab Invest 2018; 78(4): 293-300.
[http://dx.doi.org/10.1080/00365513.2018.1462082] [PMID: 29661028]
[58]
Available from: https://clinicaltrials.gov
[59]
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37(6): 1246-62.
[http://dx.doi.org/10.1002/jor.24212] [PMID: 30604468]
[60]
Zhu Z, Yuan ZQ, Huang C, et al. Pre-culture of adipose-derived stem cells and heterologous acellular dermal matrix: Paracrine functions promote post-implantation neovascularization and attenuate inflammatory response. Biomed Mater 2019; 14(3): 035002.
[http://dx.doi.org/10.1088/1748-605X/ab0355] [PMID: 30699384]
[61]
Paganelli A, Benassi L, Pastar I, et al. In vitro engineering of a skin substitute based on adipose-derived stem cells. Cells Tissues Organs 2019; 207(1): 46-57.
[http://dx.doi.org/10.1159/000501071] [PMID: 31261153]
[62]
Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 2017; 129: 188-98.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.021] [PMID: 28343005]
[63]
Resch A, Wolf S, Mann A, Weiss T, Stetco AL, Radtke C. Co-culturing human adipose derived stem cells and schwann cells on spider silk-a new approach as prerequisite for enhanced nerve regeneration. Int J Mol Sci 2019; 20(1): 71.
[PMID: 30586946]
[64]
Xu Y, Deng M, Cai Y, Zheng H, Wang X, Yu Z. Cell-free fat extract increases dermal thickness by enhancing angiogenesis and extracellular matrix production in nude mice. Aesthetic Surg J 2020; 40(8): 904-13.
[http://dx.doi.org/10.1093/asj/sjz306]
[65]
Griffin MF, Naderi N, Kalaskar DM, Seifalian AM, Butler PE. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res Ther 2019; 10(1): 110.
[http://dx.doi.org/10.1186/s13287-019-1195-z] [PMID: 30922398]
[66]
Panés J, García-Olmo D, Van Assche G, et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 2018; 154(5): 1334-42.
[http://dx.doi.org/10.1053/j.gastro.2017.12.020] [PMID: 29277560]
[67]
Bt Hj Idrus R, Abas A, Ab Rahim F, Saim A. Clinical translation of cell therapy, tissue engineering, and regenerative medicine product in malaysia and its regulatory policy. Tissue Eng - Part A 2015; 21(23-24): 2812-6.
[68]
Zakaria N, Yahaya BH. Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Adv Exp Med Biol 2020; 1292: 83-95.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy