Targeting Abnormal PI3K/AKT/mTOR Signaling in Intracerebral Hemorrhage: A Systematic Review on Potential Drug Targets and Influences of Signaling Modulators on Other Neurological Disorders | Bentham Science
Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Targeting Abnormal PI3K/AKT/mTOR Signaling in Intracerebral Hemorrhage: A Systematic Review on Potential Drug Targets and Influences of Signaling Modulators on Other Neurological Disorders

Author(s): Kuldeep Singh Jadaun, Aarti Sharma, Ehraz Mehmood Siddiqui and Sidharth Mehan*

Volume 17, Issue 3, 2022

Published on: 26 July, 2021

Page: [174 - 191] Pages: 18

DOI: 10.2174/1574884716666210726110021

Open Access Journals Promotions 2
Abstract

PI3K/AKT/mTOR (phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin) signaling pathway is an important signal transduction pathway mediated by enzyme-linked receptors with many biological functions in mammals. This pathway modulates the epigenetic modification of DNA and target gene histones and plays a significant role in regulating biological activity, disease progression, oncogenesis, and cancer progression. PI3K/AKT/mTOR signaling pathway involves and mediates many cellular processes such as nutrient uptake, proliferation, anabolic reactions, and cell survival. Several studies have shown that PI3K/AKT/mTOR has been a promising therapeutic approach to intracerebral hemorrhage (ICH). ICH is characterized by the progressive development of hematoma, which leads to the structural destabilization of the neurons and glial cells, leading to neuronal deformation, further contributing to mitochondrial dysfunction, membrane depolarization, oligaemia, and neurotransmitter imbalance. Partial suppression of cell metabolism and necrosis can occur, depending on the degree of mitochondrial dysfunction. Therefore in the following review, we discuss whether or not the activation of the PI3K/AKT/mTOR signaling pathway could minimize neuronal dysfunction following ICH. We further elaborate the review by discussing the updated pathophysiology of brain hemorrhage and the role of molecular targets in other neurodegenerative diseases. This review provides current approachable disease treatment in various disease states, single and dual PI3K/AKT/mTOR signaling pathway modulators.

Keywords: PI3K/AKT/mTOR signaling, intracerebral hemorrhage, neurodegeneration, neuronal metabolism, neuroprotection, drug targets.

Graphical Abstract
[1]
Caceres JA, Goldstein JN. Intracranial hemorrhage. Emerg Med Clin North Am 2012; 30(3): 771-94.
[http://dx.doi.org/10.1016/j.emc.2012.06.003] [PMID: 22974648]
[2]
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij) 2020; 7: 1849543520970819.
[http://dx.doi.org/10.1177/1849543520970819]
[3]
Pandian JD, Sudhan P. Stroke epidemiology and stroke care services in India. 2013; 15(3): 128-34.
[4]
An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J Stroke 2017; 19(1): 3-10.
[http://dx.doi.org/10.5853/jos.2016.00864] [PMID: 28178408]
[5]
Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 2000; 871(1): 57-65.
[http://dx.doi.org/10.1016/S0006-8993(00)02427-6] [PMID: 10882783]
[6]
Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg 2000; 92(6): 1016-22.
[http://dx.doi.org/10.3171/jns.2000.92.6.1016] [PMID: 10839264]
[7]
Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 2003; 23(6): 629-52.
[http://dx.doi.org/10.1097/01.WCB.0000073905.87928.6D] [PMID: 12796711]
[8]
Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Ann Neurol 2003; 54(5): 655-64.
[http://dx.doi.org/10.1002/ana.10750] [PMID: 14595655]
[9]
Xi G, Fewel ME, Hua Y, Thompson BG Jr, Hoff JT, Keep RF. Intracerebral hemorrhage: pathophysiology and therapy. Neurocrit Care 2004; 1(1): 5-18.
[http://dx.doi.org/10.1385/NCC:1:1:5] [PMID: 16174894]
[10]
D’Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Mol Pharmacol 2006; 69(4): 1492-8.
[http://dx.doi.org/10.1124/mol.105.018671] [PMID: 16434614]
[11]
Salman M, Tabassum H, Parvez S. Nrf2/HO-1 mediates the neuroprotective effects of pramipexole by attenuating oxidative damage and mitochondrial perturbation after traumatic brain injury in rats. Dis Model Mech 2020; 13(8): dmm045021.
[http://dx.doi.org/10.1242/dmm.045021] [PMID: 32540990]
[12]
Wang Z, Guo S, Wang J, Shen Y, Zhang J, Wu Q. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation. Sci Rep 2017; 7(1): 11883.
[http://dx.doi.org/10.1038/s41598-017-12160-6] [PMID: 28928429]
[13]
Kaizaki A, Tanaka S, Ishige K, Numazawa S, Yoshida T. The neuroprotective effect of heme oxygenase (HO) on oxidative stress in HO-1 siRNA-transfected HT22 cells. Brain Res 2006; 1108(1): 39-44.
[http://dx.doi.org/10.1016/j.brainres.2006.06.011] [PMID: 16828716]
[14]
Arai S, Katai N, Ohta K, et al. The mechanism of neuroprotective effect of heme oxygenase on retinal ischemia-reperfusion injury in rats. Arvo annual meeting abstract search & program planner abstract. Fort Lauderdale, Florida.
[15]
Qureshi AI, Suri MF, Ostrow PT, et al. Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery 2003; 52(5): 1041-7.
[PMID: 12699545]
[16]
Qureshi AI, Ali Z, Suri MF, et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med 2003; 31(5): 1482-9.
[http://dx.doi.org/10.1097/01.CCM.0000063047.63862.99] [PMID: 12771622]
[17]
Lusardi TA, Wolf JA, Putt ME, Smith DH, Meaney DF. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J Neurotrauma 2004; 21(1): 61-72.
[http://dx.doi.org/10.1089/089771504772695959] [PMID: 14987466]
[18]
Graham DI, McIntosh TK, Maxwell WL, Nicoll JA. Recent advances in neurotrauma. J Neuropathol Exp Neurol 2000; 59(8): 641-51.
[http://dx.doi.org/10.1093/jnen/59.8.641] [PMID: 10952055]
[19]
Nakamura T, Xi G, Park JW, Hua Y, Hoff JT, Keep RF. Holo-transferrin and thrombin can interact to cause brain damage. Stroke 2005; 36(2): 348-52.
[http://dx.doi.org/10.1161/01.STR.0000153044.60858.1b] [PMID: 15637325]
[20]
Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 2006; 5(1): 53-63.
[http://dx.doi.org/10.1016/S1474-4422(05)70283-0] [PMID: 16361023]
[21]
Nakamura T, Keep RF, Hua Y, Nagao S, Hoff JT, Xi G. Iron-induced oxidative brain injury after experimental intracerebral hemorrhage. Acta Neurochir Suppl (Wien) 2006; 96: 194-8.
[http://dx.doi.org/10.1007/3-211-30714-1_42] [PMID: 16671453]
[22]
Wagner KR, Packard BA, Hall CL, et al. Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Dev Neurosci 2002; 24(2-3): 154-60.
[http://dx.doi.org/10.1159/000065703] [PMID: 12401953]
[23]
Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013; 2013: 746068.
[http://dx.doi.org/10.1155/2013/746068] [PMID: 24223607]
[24]
Alvarez-Sabín J, Delgado P, Abilleira S, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004; 35(6): 1316-22.
[http://dx.doi.org/10.1161/01.STR.0000126827.69286.90] [PMID: 15087562]
[25]
Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 2005; 27(3): 268-79.
[http://dx.doi.org/10.1179/016164105X25225] [PMID: 15845210]
[26]
Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 2006; 58(3): 542-50.
[http://dx.doi.org/10.1227/01.NEU.0000197333.55473.AD] [PMID: 16528196]
[27]
Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death. Neurosurgery 2001; 48(4): 875-82.
[PMID: 11322448]
[28]
Matz PG, Lewén A, Chan PH. Neuronal, but not microglial, accumulation of extravasated serum proteins after intracerebral hemolysate exposure is accompanied by cytochrome c release and DNA fragmentation. J Cereb Blood Flow Metab 2001; 21(8): 921-8.
[http://dx.doi.org/10.1097/00004647-200108000-00004] [PMID: 11487727]
[29]
Yang S, Nakamura T, Hua Y, et al. The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab 2006; 26(12): 1490-5.
[http://dx.doi.org/10.1038/sj.jcbfm.9600305] [PMID: 16552422]
[30]
Fujii Y, Takeuchi S, Harada A, Abe H, Sasaki O, Tanaka R. Hemostatic activation in spontaneous intracerebral hemorrhage. Stroke 2001; 32(4): 883-90.
[http://dx.doi.org/10.1161/01.STR.32.4.883] [PMID: 11283387]
[31]
Broderick JP, Diringer MN, Hill MD, et al. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke 2007; 38(3): 1072-5.
[http://dx.doi.org/10.1161/01.STR.0000258078.35316.30] [PMID: 17290026]
[32]
Davis SM, Broderick J, Hennerici M, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006; 66(8): 1175-81.
[http://dx.doi.org/10.1212/01.wnl.0000208408.98482.99] [PMID: 16636233]
[33]
Qureshi AI, Harris-Lane P, Kirmani JF, et al. Treatment of acute hypertension in patients with intracerebral hemorrhage using American Heart Association guidelines. Crit Care Med 2006; 34(7): 1975-80.
[http://dx.doi.org/10.1097/01.CCM.0000220763.85974.E8] [PMID: 16641615]
[34]
Kazui S, Minematsu K, Yamamoto H, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke 1997; 28(12): 2370-5.
[http://dx.doi.org/10.1161/01.STR.28.12.2370] [PMID: 9412616]
[35]
Gebel JM Jr, Jauch EC, Brott TG, et al. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002; 33(11): 2631-5.
[http://dx.doi.org/10.1161/01.STR.0000035284.12699.84] [PMID: 12411653]
[36]
Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl (Wien) 2003; 86: 445-8.
[http://dx.doi.org/10.1007/978-3-7091-0651-8_91] [PMID: 14753483]
[37]
Butcher KS, Baird T, MacGregor L, Desmond P, Tress B, Davis S. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke 2004; 35(8): 1879-85.
[http://dx.doi.org/10.1161/01.STR.0000131807.54742.1a] [PMID: 15178826]
[38]
Gebel JM Jr, Jauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002; 33(11): 2636-41.
[http://dx.doi.org/10.1161/01.STR.0000035283.34109.EA] [PMID: 12411654]
[39]
Qureshi AI, Hanel RA, Kirmani JF, Yahia AM, Hopkins LN. Cerebral blood flow changes associated with intracerebral hemorrhage. Neurosurg Clin N Am 2002; 13(3): 355-70.
[http://dx.doi.org/10.1016/S1042-3680(02)00012-8] [PMID: 12486925]
[40]
Siddique MS, Fernandes HM, Wooldridge TD, Fenwick JD, Slomka P, Mendelow AD. Reversible ischemia around intracerebral hemorrhage: a single-photon emission computerized tomography study. J Neurosurg 2002; 96(4): 736-41.
[http://dx.doi.org/10.3171/jns.2002.96.4.0736] [PMID: 11990815]
[41]
Kim-Han JS, Kopp SJ, Dugan LL, Diringer MN. Perihematomal mitochondrial dysfunction after intracerebral hemorrhage. Stroke 2006; 37(10): 2457-62.
[http://dx.doi.org/10.1161/01.STR.0000240674.99945.4e] [PMID: 16960094]
[42]
Carhuapoma JR, Wang PY, Beauchamp NJ, Keyl PM, Hanley DF, Barker PB. Diffusion-weighted MRI and proton MR spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke 2000; 31(3): 726-32.
[http://dx.doi.org/10.1161/01.STR.31.3.726] [PMID: 10700511]
[43]
Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab 2001; 21(7): 804-10.
[http://dx.doi.org/10.1097/00004647-200107000-00005] [PMID: 11435792]
[44]
Schellinger PD, Fiebach JB, Hoffmann K, et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke 2003; 34(7): 1674-9.
[http://dx.doi.org/10.1161/01.STR.0000076010.10696.55] [PMID: 12805502]
[45]
Orakcioglu B, Fiebach JB, Steiner T, et al. Evolution of early perihemorrhagic changes-ischemia vs. edema: an MRI study in rats. Exp Neurol 2005; 193(2): 369-76.
[http://dx.doi.org/10.1016/j.expneurol.2005.01.017] [PMID: 15869939]
[46]
Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology 1999; 52(2): 266-72.
[http://dx.doi.org/10.1212/WNL.52.2.266] [PMID: 9932942]
[47]
Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019; 13: 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[48]
Luo CL, Chen XP, Yang R, et al. Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 2010; 88(13): 2847-58.
[http://dx.doi.org/10.1002/jnr.22453] [PMID: 20653046]
[49]
Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275(5300): 661-5.
[http://dx.doi.org/10.1126/science.275.5300.661] [PMID: 9005851]
[50]
Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91(2): 231-41.
[http://dx.doi.org/10.1016/S0092-8674(00)80405-5] [PMID: 9346240]
[51]
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6): 857-68.
[http://dx.doi.org/10.1016/S0092-8674(00)80595-4] [PMID: 10102273]
[52]
Zheng L, Ren JQ, Li H, Kong ZL, Zhu HG. Downregulation of wild-type p53 protein by HER-2/neu mediated PI3K pathway activation in human breast cancer cells: its effect on cell proliferation and implication for therapy. Cell Res 2004; 14(6): 497-506.
[http://dx.doi.org/10.1038/sj.cr.7290253] [PMID: 15625017]
[53]
Xu X, Cao Z, Cao B, et al. Carbamylated erythropoietin protects the myocardium from acute ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Surgery 2009; 146(3): 506-14.
[http://dx.doi.org/10.1016/j.surg.2009.03.022] [PMID: 19715808]
[54]
Hirsch E, Costa C, Ciraolo E. Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J Endocrinol 2007; 194(2): 243-56.
[http://dx.doi.org/10.1677/JOE-07-0097] [PMID: 17641274]
[55]
Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 2014; 127(Pt 5): 923-8.
[http://dx.doi.org/10.1242/jcs.093773] [PMID: 24587488]
[56]
Falasca M, Maffucci T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 2012; 443(3): 587-601.
[http://dx.doi.org/10.1042/BJ20120008] [PMID: 22507127]
[57]
Devereaux K, Dall’Armi C, Alcazar-Roman A, et al. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 2013; 8(10): e76405.
[http://dx.doi.org/10.1371/journal.pone.0076405] [PMID: 24098492]
[58]
Trejo JL, Pons S. Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum. J Neurobiol 2001; 47(1): 39-50.
[http://dx.doi.org/10.1002/neu.1014] [PMID: 11257612]
[59]
Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 2005; 25(49): 11300-12.
[http://dx.doi.org/10.1523/JNEUROSCI.2270-05.2005] [PMID: 16339025]
[60]
Chan CB, Ye K. Multiple functions of phosphoinositide-3 kinase enhancer (PIKE). ScientificWorldJournal 2010; 10: 613-23.
[http://dx.doi.org/10.1100/tsw.2010.64] [PMID: 20419274]
[61]
Cuesto G, Enriquez-Barreto L, Caramés C, et al. Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons. J Neurosci 2011; 31(8): 2721-33.
[http://dx.doi.org/10.1523/JNEUROSCI.4477-10.2011] [PMID: 21414895]
[62]
Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 2006; 23(12): 3375-84.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04859.x] [PMID: 16820027]
[63]
Rivière J-B, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012; 44(8): 934-40.
[http://dx.doi.org/10.1038/ng.2331] [PMID: 22729224]
[64]
Xiao Z, Peng J, Yang L, Kong H, Yin F. Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 2015; 282: 110-7.
[http://dx.doi.org/10.1016/j.jneuroim.2015.04.003] [PMID: 25903737]
[65]
Brandt C, Hillmann P, Noack A, et al. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology 2018; 140: 107-20.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.002] [PMID: 30081001]
[66]
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26(12): 2694-701.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[67]
Agyeman AS, Jun WJ, Proia DA, et al. Hsp90 inhibition results in glucocorticoid receptor degradation in association with increased sensitivity to paclitaxel in triple-negative breast cancer. Horm Cancer 2016; 7(2): 114-26.
[http://dx.doi.org/10.1007/s12672-016-0251-8] [PMID: 26858237]
[68]
Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol 2010; 298(3): C580-91.
[http://dx.doi.org/10.1152/ajpcell.00375.2009] [PMID: 20018949]
[69]
Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 1998; 10(2): 262-7.
[http://dx.doi.org/10.1016/S0955-0674(98)80149-X] [PMID: 9561851]
[70]
Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009; 37(Pt 1): 217-22.
[http://dx.doi.org/10.1042/BST0370217] [PMID: 19143635]
[71]
Niswender KD, Morrison CD, Clegg DJ, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003; 52(2): 227-31.
[http://dx.doi.org/10.2337/diabetes.52.2.227] [PMID: 12540590]
[72]
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8(12): 1376-82.
[http://dx.doi.org/10.1038/nm1202-798] [PMID: 12426561]
[73]
Oh H, Boghossian S, York DA, Park-York M. The effect of high fat diet and saturated fatty acids on insulin signaling in the amygdala and hypothalamus of rats. Brain Res 2013; 1537: 191-200.
[http://dx.doi.org/10.1016/j.brainres.2013.09.025] [PMID: 24076449]
[74]
Pardini AW, Nguyen HT, Figlewicz DP, et al. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 2006; 1112(1): 169-78.
[http://dx.doi.org/10.1016/j.brainres.2006.06.109] [PMID: 16925984]
[75]
Agostini M, Romeo F, Inoue S, et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ 2016; 23(9): 1502-14.
[http://dx.doi.org/10.1038/cdd.2016.36] [PMID: 27058317]
[76]
Pearson-Leary J, Jahagirdar V, Sage J, McNay EC. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav Brain Res 2018; 338: 32-9.
[http://dx.doi.org/10.1016/j.bbr.2017.09.033] [PMID: 28943428]
[77]
Zhang T, Shi Z, Wang Y, et al. Akt3 deletion in mice impairs spatial cognition and hippocampal CA1 long long-term potentiation through downregulation of mTOR. Acta Physiol (Oxf) 2019; 225(1): e13167.
[http://dx.doi.org/10.1111/apha.13167] [PMID: 30053339]
[78]
Kim J-I, Lee H-R, Sim SE, et al. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 2011; 14(11): 1447-54.
[http://dx.doi.org/10.1038/nn.2937] [PMID: 22019731]
[79]
Choi J-H, Park P, Baek G-C, et al. Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning. Mol Brain 2014; 7: 78.
[http://dx.doi.org/10.1186/s13041-014-0078-6] [PMID: 25373491]
[80]
Lin CH, Yeh SH, Lin CH, et al. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 2001; 31(5): 841-51.
[http://dx.doi.org/10.1016/S0896-6273(01)00433-0] [PMID: 11567621]
[81]
Seitz C, Hugle M, Cristofanon S, Tchoghandjian A, Fulda S. The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer 2013; 132(11): 2682-93.
[http://dx.doi.org/10.1002/ijc.27935] [PMID: 23151917]
[82]
Liu Q, Qiu J, Liang M, et al. Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis 2014; 5: e1084.
[http://dx.doi.org/10.1038/cddis.2014.69] [PMID: 24577082]
[83]
Cai WJ, Chen Y, Shi LX, et al. AKT-GSK3β Signaling Pathway Regulates Mitochondrial Dysfunction-Associated OPA1 Cleavage Contributing to Osteoblast Apoptosis: Preventative Effects of Hydroxytyrosol. Oxid Med Cell Longev 2019; 2019: 4101738.
[http://dx.doi.org/10.1155/2019/4101738] [PMID: 31281574]
[84]
Kim DI, Lee KH, Gabr AA, et al. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 2016; 1863(11): 2820-34.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.003] [PMID: 27599716]
[85]
Lim SL, Rodriguez-Ortiz CJ, Kitazawa M. Infection, systemic inflammation, and Alzheimer’s disease. Microbes Infect 2015; 17(8): 549-56.
[http://dx.doi.org/10.1016/j.micinf.2015.04.004] [PMID: 25912134]
[86]
Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev 2014; 18: 29-40.
[http://dx.doi.org/10.1016/j.arr.2014.07.004] [PMID: 25078115]
[87]
Medeiros R, LaFerla FM. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 2013; 239: 133-8.
[http://dx.doi.org/10.1016/j.expneurol.2012.10.007] [PMID: 23063604]
[88]
Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna) 2010; 117(8): 919-47.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[89]
Olson L, Humpel C. Growth factors and cytokines/chemokines as surrogate biomarkers in cerebrospinal fluid and blood for diagnosing Alzheimer’s disease and mild cognitive impairment. Exp Gerontol 2010; 45(1): 41-6.
[http://dx.doi.org/10.1016/j.exger.2009.10.011] [PMID: 19853649]
[90]
McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(5): 741-9.
[http://dx.doi.org/10.1016/S0278-5846(03)00124-6] [PMID: 12921904]
[91]
Troutman TD, Bazan JF, Pasare C. Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle 2012; 11(19): 3559-67.
[http://dx.doi.org/10.4161/cc.21572] [PMID: 22895011]
[92]
Aksoy E, Taboubi S, Torres D, et al. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 2012; 13(11): 1045-54.
[http://dx.doi.org/10.1038/ni.2426] [PMID: 23023391]
[93]
Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280(38): 33076-82.
[http://dx.doi.org/10.1074/jbc.M507201200] [PMID: 16049009]
[94]
Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 2011; 278(3): 403-13.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x] [PMID: 21182587]
[95]
Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells 2010; 15(9): 923-33.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01433.x] [PMID: 20670274]
[96]
Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Castro-Obregón S, Massieu L. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons. Cell Death Dis 2017; 8(6): e2911.
[http://dx.doi.org/10.1038/cddis.2017.299] [PMID: 28661473]
[97]
Issman-Zecharya N, Schuldiner O. The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev Cell 2014; 31(4): 461-73.
[http://dx.doi.org/10.1016/j.devcel.2014.10.013] [PMID: 25458013]
[98]
Weigl W, Milej D, Janusek D, et al. Application of optical methods in the monitoring of traumatic brain injury: A review. J Cereb Blood Flow Metab 2016; 36(11): 1825-43.
[http://dx.doi.org/10.1177/0271678X16667953] [PMID: 27604312]
[99]
Feng Y, Cui Y, Gao JL, et al. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Int J Mol Med 2016; 37(4): 921-30.
[http://dx.doi.org/10.3892/ijmm.2016.2495] [PMID: 26936125]
[100]
McKnight NC, Zhong Y, Wold MS, et al. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 2014; 10(10): e1004626.
[http://dx.doi.org/10.1371/journal.pgen.1004626] [PMID: 25275521]
[101]
Li X, Li J, Zhang Y, Zhou Y. Di-n-butyl phthalate induced hypospadias relates to autophagy in genital tubercle via the PI3K/Akt/mTOR pathway. J Occup Health 2017; 59(1): 8-16.
[http://dx.doi.org/10.1539/joh.16-0089-OA] [PMID: 27885243]
[102]
Li Y, Yang W, Quinones-Hinojosa A, et al. Interference with protease-activated receptor 1 alleviates neuronal cell death induced by lipopolysaccharide- Stimulated microglial cells through the PI3K/Akt pathway. Sci Rep 2016; 6: 38247.
[http://dx.doi.org/10.1038/srep38247] [PMID: 27910893]
[103]
Chen A, Xiong LJ, Tong Y, Mao M. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol Med Rep 2013; 8(4): 1011-6.
[http://dx.doi.org/10.3892/mmr.2013.1628] [PMID: 23942837]
[104]
Kitagishi Y, Matsuda S. Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury. Alzheimers Res Ther 2013; 5(5): 42.
[http://dx.doi.org/10.1186/alzrt208] [PMID: 24074163]
[105]
Wu YT, Tan HL, Huang Q, Ong CN, Shen HM. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 2009; 5(6): 824-34.
[http://dx.doi.org/10.4161/auto.9099] [PMID: 19556857]
[106]
Luo CL, Li BX, Li QQ, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 2011; 184: 54-63.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.021] [PMID: 21463664]
[107]
Sun LQ, Gao JL, Cui CM, et al. Astrocytic p-connexin 43 regulates neuronal autophagy in the hippocampus following traumatic brain injury in rats. Mol Med Rep 2014; 9(1): 77-82.
[http://dx.doi.org/10.3892/mmr.2013.1787] [PMID: 24220542]
[108]
Ciuffreda L, Di Sanza C, Incani UC, Milella M. The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 2010; 10(5): 484-95.
[http://dx.doi.org/10.2174/156800910791517172] [PMID: 20384580]
[109]
Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH. Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol 2010; 641(2-3): 179-86.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.024] [PMID: 20566415]
[110]
Pignataro G, Capone D, Polichetti G, et al. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: current and emerging therapeutic options. Curr Opin Pharmacol 2011; 11(4): 378-94.
[http://dx.doi.org/10.1016/j.coph.2011.05.003] [PMID: 21646048]
[111]
Liu HQ, An YW, Hu AZ, et al. Critical roles of the PI3K-Akt-mTOR signaling pathway in apoptosis and autophagy of astrocytes induced by methamphetamine. Open Chem 2019; 17(1): 96-104.
[http://dx.doi.org/10.1515/chem-2019-0015]
[112]
Shen M, Wang S, Wen X, et al. Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother 2017; 95: 885-93.
[http://dx.doi.org/10.1016/j.biopha.2017.08.125] [PMID: 28903184]
[113]
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 2018; 5(3): 245-55.
[http://dx.doi.org/10.1016/j.gendis.2018.06.001] [PMID: 30320189]
[114]
Kilic U, Caglayan AB, Beker MC, et al. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin’s neuroprotective activity after focal cerebral ischemia in mice. Redox Biol 2017; 12: 657-65.
[http://dx.doi.org/10.1016/j.redox.2017.04.006] [PMID: 28395173]
[115]
Zhao M, Gao J, Cui C, Zhang Y, Jiang X, Cui J. Inhibition of PTEN Ameliorates Secondary Hippocampal Injury and Cognitive Deficits after Intracerebral Hemorrhage: Involvement of AKT/FoxO3a/ATG-Mediated Autophagy. Oxid Med Cell Longev 2021; 2021: 5472605.
[http://dx.doi.org/10.1155/2021/5472605] [PMID: 33777313]
[116]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[117]
Khaleghpour K, Pyronnet S, Gingras AC, Sonenberg N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 1999; 19(6): 4302-10.
[http://dx.doi.org/10.1128/MCB.19.6.4302] [PMID: 10330171]
[118]
Tee AR. The target of Rapamycin and mechanisms of cell growth. Int J Mol Sci 2018; 19(3): 880.
[http://dx.doi.org/10.3390/ijms19030880] [PMID: 29547541]
[119]
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147: 105067.
[http://dx.doi.org/10.1016/j.neuint.2021.105067] [PMID: 33992742]
[120]
Duarte A, Silveira GG, Soave DF, Costa JPO, Silva AR. The role of the LY294002-a non-selective inhibitor of phosphatidylinositol 3-kinase (PI3K) pathway-in cell survival and proliferation in cell line SCC-25. Asian Pac J Cancer Prev 2019; 20(11): 3377-83.
[http://dx.doi.org/10.31557/APJCP.2019.20.11.3377] [PMID: 31759362]
[121]
Bavelloni A, Focaccia E, Piazzi M, et al. Therapeutic potential of nvp-bkm120 in human osteosarcomas cells. J Cell Physiol 2019; 234(7): 10907-17.
[http://dx.doi.org/10.1002/jcp.27911] [PMID: 30536897]
[122]
Hainsworth JD, Becker KP, Mekhail T, et al. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J Neurooncol 2019; 144(2): 303-11.
[http://dx.doi.org/10.1007/s11060-019-03227-7] [PMID: 31392595]
[123]
Weinberg MA. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes. Anticancer Drugs 2016; 27(6): 475-87.
[http://dx.doi.org/10.1097/CAD.0000000000000354] [PMID: 26918392]
[124]
Kaley TJ, Panageas KS, Mellinghoff IK, et al. Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J Neurooncol 2019; 144(2): 403-7.
[http://dx.doi.org/10.1007/s11060-019-03243-7] [PMID: 31325145]
[125]
Peng K, Fan X, Li Q, et al. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. J Mol Cell Cardiol 2020; 140: 30-41.
[http://dx.doi.org/10.1016/j.yjmcc.2020.02.006] [PMID: 32087218]
[126]
Méndez-Gómez M, Castro-Mercado E, Peña-Uribe CA, Reyes-de la Cruz H, López-Bucio J, García-Pineda E. TARGET OF RAPAMYCIN signaling plays a role in Arabidopsis growth promotion by Azospirillum brasilense Sp245. Plant Sci 2020; 293: 110416.
[http://dx.doi.org/10.1016/j.plantsci.2020.110416] [PMID: 32081264]
[127]
Brakemeier S, Arns W, Lehner F, et al. Everolimus in de novo kidney transplant recipients participating in the Eurotransplant senior program: Results of a prospective randomized multicenter study (SENATOR). PLoS One 2019; 14(9): e0222730.
[http://dx.doi.org/10.1371/journal.pone.0222730] [PMID: 31536556]
[128]
Schotz U, Balzer V, Brandt FW, et al. Dual PI3K/mTOR inhibitor NVP-BEZ235 enhances radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines due to suppressed double-strand break (DSB) repair by non-homologous end joining. Cancers (Basel) 2020; 12(2): 467.
[129]
Affoo RH, Foley N, Rosenbek J, Kevin Shoemaker J, Martin RE. Swallowing dysfunction and autonomic nervous system dysfunction in Alzheimer’s disease: a scoping review of the evidence. J Am Geriatr Soc 2013; 61(12): 2203-13.
[http://dx.doi.org/10.1111/jgs.12553] [PMID: 24329892]
[130]
Caricasole A, Copani A, Caruso A, et al. The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 2003; 24(5): 233-8.
[http://dx.doi.org/10.1016/S0165-6147(03)00100-7] [PMID: 12767722]
[131]
Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM. Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim Biophys Acta 2003; 1639(3): 159-68.
[http://dx.doi.org/10.1016/j.bbadis.2003.09.001] [PMID: 14636947]
[132]
Howes AL, Arthur JF, Zhang T, et al. Akt-mediated cardiomyocyte survival pathways are compromised by G alpha q-induced phosphoinositide 4,5-bisphosphate depletion. J Biol Chem 2003; 278(41): 40343-51.
[http://dx.doi.org/10.1074/jbc.M305964200] [PMID: 12900409]
[133]
Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM. Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim Biophys Acta 2003; 1639(3): 159-68.
[134]
Lee CW, Lau KF, Miller CC, Shaw PC. Glycogen synthase kinase-3 beta-mediated tau phosphorylation in cultured cell lines. Neuroreport 2003; 14(2): 257-60.
[http://dx.doi.org/10.1097/00001756-200302100-00020] [PMID: 12598741]
[135]
Wen Y, Planel E, Herman M, et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 2008; 28(10): 2624-32.
[http://dx.doi.org/10.1523/JNEUROSCI.5245-07.2008] [PMID: 18322105]
[136]
Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener 2009; 4(1): 14.
[http://dx.doi.org/10.1186/1750-1326-4-14] [PMID: 19291319]
[137]
Do TD, Economou NJ, Chamas A, Buratto SK, Shea JE, Bowers MT. Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. J Phys Chem B 2014; 118(38): 11220-30.
[http://dx.doi.org/10.1021/jp506258g] [PMID: 25153942]
[138]
Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther 2014; 6(3): 35.
[http://dx.doi.org/10.1186/alzrt265] [PMID: 25031641]
[139]
Carrarini C, Russo M, Dono F, et al. A stage-based approach to therapy in Parkinson’s Disease. Biomolecules 2019; 9(8): E388.
[http://dx.doi.org/10.3390/biom9080388] [PMID: 31434341]
[140]
AlDakheel A, Kalia LV, Lang AE. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics 2014; 11(1): 6-23.
[http://dx.doi.org/10.1007/s13311-013-0218-1] [PMID: 24085420]
[141]
Luo S, Kang SS, Wang ZH, et al. Akt phosphorylates NQO1 and triggers its degradation, abolishing its antioxidative activities in Parkinson’s Disease. J Neurosci 2019; 39(37): 7291-305.
[http://dx.doi.org/10.1523/JNEUROSCI.0625-19.2019] [PMID: 31358653]
[142]
Leikas JV, Kohtala S, Theilmann W, Jalkanen AJ, Forsberg MM, Rantamäki T. Brief isoflurane anesthesia regulates striatal AKT-GSK3β signaling and ameliorates motor deficits in a rat model of early-stage Parkinson’s disease. J Neurochem 2017; 142(3): 456-63.
[http://dx.doi.org/10.1111/jnc.14066] [PMID: 28488766]
[143]
Jia Y, Mo SJ, Feng QQ, et al. EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson’s disease. J Mol Neurosci 2014; 53(1): 117-24.
[http://dx.doi.org/10.1007/s12031-013-0208-0] [PMID: 24390959]
[144]
Jaworski T, Banach-Kasper E, Gralec K. GSK-3β at the Intersection of Neuronal Plasticity and Neurodegeneration. Neural Plast 2019; 2019: 4209475.
[http://dx.doi.org/10.1155/2019/4209475] [PMID: 31191636]
[145]
Yang L, Wang H, Liu L, Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3beta signaling in Parkinson’s disease dementia. Front Neurosci 2018; 12: 73.
[http://dx.doi.org/10.3389/fnins.2018.00073] [PMID: 29515352]
[146]
Zhang W, He H, Song H, et al. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinsons Dis 2016; 2016: 9450137.
[http://dx.doi.org/10.1155/2016/9450137] [PMID: 27738547]
[147]
Gong J, Zhang L, Zhang Q, et al. Lentiviral vector-mediated SHC3 silencing exacerbates oxidative stress injury in nigral dopamine neurons by regulating the PI3K-AKT-FoxO signaling pathway in rats with Parkinson’s disease. Cell Physiol Biochem 2018; 49(3): 971-84.
[http://dx.doi.org/10.1159/000493228] [PMID: 30184529]
[148]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[149]
Giacoppo S, Bramanti P, Mazzon E. Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson’s disease: involvement of the PI3K/Akt/mTOR pathway. Neuroreport 2017; 28(15): 996-1007.
[http://dx.doi.org/10.1097/WNR.0000000000000871] [PMID: 28902711]
[150]
Chen WF, Wu L, Du ZR, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 2017; 25: 93-9.
[http://dx.doi.org/10.1016/j.phymed.2016.12.017] [PMID: 28190476]
[151]
Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic Biol Med 2014; 74: 129-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.023] [PMID: 24992836]
[152]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[153]
Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR, Miller FD. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol 1999; 146(5): 955-66.
[http://dx.doi.org/10.1083/jcb.146.5.955] [PMID: 10477751]
[154]
Silva A, Naia L, Dominguez A, et al. Overexpression of BDNF and full-length TrkB receptor ameliorate striatal neural survival in Huntington’s disease. Neurodegener Dis 2015; 15(4): 207-18.
[http://dx.doi.org/10.1159/000375447] [PMID: 25896770]
[155]
Fernández-Nogales M, Cabrera JR, Santos-Galindo M, et al. Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 2014; 20(8): 881-5.
[http://dx.doi.org/10.1038/nm.3617] [PMID: 25038828]
[156]
Saavedra A, García-Martínez JM, Xifró X, et al. PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington’s disease striatum. Cell Death Differ 2010; 17(2): 324-35.
[http://dx.doi.org/10.1038/cdd.2009.127] [PMID: 19745829]
[157]
L’Episcopo F, Drouin-Ouellet J, Tirolo C, et al. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington’s disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7: e2206.
[http://dx.doi.org/10.1038/cddis.2016.104] [PMID: 27124580]
[158]
Nath FP, Jenkins A, Mendelow AD, Graham DI, Teasdale GM. Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg 1986; 65(5): 697-703.
[http://dx.doi.org/10.3171/jns.1986.65.5.0697] [PMID: 3772459]
[159]
Rajdev K, Mehan S. Neuroprotective methodologies of Co-enzyme Q10 associated mitochondrial dysfunction in post brain haemorrhagic treatment: clinical and pre-clinical findings. CNS Neurol Disord Drug Targets 2019; 18(6): 446-65.
[http://dx.doi.org/10.2174/1871527318666190610101144] [PMID: 31187715]
[160]
Miller JH, Wardlaw JM, Lammie GA. Intracerebral haemorrhage and cerebral amyloid angiopathy: CT features with pathological correlation. Clin Radiol 1999; 54(7): 422-9.
[http://dx.doi.org/10.1016/S0009-9260(99)90825-5] [PMID: 10437691]
[161]
Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab 2011; 31(11): 2135-51.
[http://dx.doi.org/10.1038/jcbfm.2011.124] [PMID: 21863040]
[162]
Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 1994; 81(1): 93-102.
[http://dx.doi.org/10.3171/jns.1994.81.1.0093] [PMID: 8207532]
[163]
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis 2003; 12(3): 152-9.
[http://dx.doi.org/10.1016/S1052-3057(03)00036-3] [PMID: 17903920]
[164]
Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke 2005; 36(6): 1253-8.
[http://dx.doi.org/10.1161/01.str.0000167694.58419.a2] [PMID: 15914769]
[165]
Merrill DC, Thompson MW, Carney CL, et al. Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest 1996; 97(4): 1047-55.
[http://dx.doi.org/10.1172/JCI118497] [PMID: 8613528]
[166]
Herzig MC, Winkler DT, Burgermeister P, et al. Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 2004; 7(9): 954-60.
[http://dx.doi.org/10.1038/nn1302] [PMID: 15311281]
[167]
Elfenbein HA, Rosen RF, Stephens SL, et al. Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 2007; 22(2): 155-67.
[PMID: 17149688]
[168]
Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J Biol Chem 2004; 279(19): 20296-306.
[http://dx.doi.org/10.1074/jbc.M312946200] [PMID: 14985348]
[169]
Coomaraswamy J, Kilger E, Wölfing H, et al. Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci USA 2010; 107(17): 7969-74.
[http://dx.doi.org/10.1073/pnas.1001056107] [PMID: 20385796]
[170]
Winkler DT, Bondolfi L, Herzig MC, et al. Spontaneous haemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci. 2001; 21(5): 1619– 27.155.
[171]
Clark W, Gunion-Rinker L, Lessov N, Hazel K, Macdonald RL. Citicoline treatment for experimental intracerebral haemorrhage in mice editorial comment. Stroke 1998; 29: 2136-40.
[http://dx.doi.org/10.1161/01.STR.29.10.2136] [PMID: 9756595]
[172]
Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990; 21(5): 801-7.
[http://dx.doi.org/10.1161/01.STR.21.5.801] [PMID: 2160142]
[173]
Wang J, Tsirka SE. Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke 2005; 36(3): 613-8.
[http://dx.doi.org/10.1161/01.STR.0000155729.12931.8f] [PMID: 15692122]
[174]
Manaenko A, Chen H, Zhang JH, Tang J. Comparison of different preclinical models of intracerebral hemorrhage. Acta Neurochir Suppl (Wien) 2011; 111: 9-14.
[http://dx.doi.org/10.1007/978-3-7091-0693-8_2] [PMID: 21725724]
[175]
Leonardo CC, Robbins S, Doré S. Translating basic science research to clinical application: models and strategies for intracerebral hemorrhage. Front Neurol 2012; 3: 85.
[http://dx.doi.org/10.3389/fneur.2012.00085] [PMID: 22661966]
[176]
Sinar EJ, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg 1987; 66(4): 568-76.
[http://dx.doi.org/10.3171/jns.1987.66.4.0568] [PMID: 3559723]
[177]
Lopez Valdes E, Hernandez Lain A, Calandre L, Grau M, Cabello A, Gomez-Escalonilla C. Time window for clinical effectiveness of mass evacuation in a rat balloon model mimicking an intraparenchymatous hematoma. J Neurol Sci 2000; 174(1): 40-6.
[http://dx.doi.org/10.1016/S0022-510X(99)00288-9] [PMID: 10704978]
[178]
Nakashima K, Yamashita K, Uesugi S, Ito H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J Neurotrauma 1999; 16(2): 143-51.
[http://dx.doi.org/10.1089/neu.1999.16.143] [PMID: 10098959]
[179]
Siaw-Debrah F, Nyanzu M, Ni H, et al. Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BioMed Res Int 2017; 2017: 5135429.
[http://dx.doi.org/10.1155/2017/5135429] [PMID: 28698874]
[180]
Giansily-Blaizot M, Schved JF. Recombinant human factor VIIa (rFVIIa) in hemophilia: mode of action and evidence to date. Ther Adv Hematol 2017; 8(12): 345-52.
[http://dx.doi.org/10.1177/2040620717737701] [PMID: 29204261]
[181]
Konkle BA, Ebbesen LS, Erhardtsen E, et al. Randomized, prospective clinical trial of recombinant factor VIIa for secondary prophylaxis in hemophilia patients with inhibitors. J Thromb Haemost 2007; 5(9): 1904-13.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02663.x] [PMID: 17723130]
[182]
Marsh K, Green D, Raco V, Papadopoulos J, Ahuja T. Antithrombotic and hemostatic stewardship: evaluation of clinical outcomes and adverse events of recombinant factor VIIa (Novoseven®) utilization at a large academic medical center. Ther Adv Cardiovasc Dis 2020; 14: 1753944720924255.
[http://dx.doi.org/10.1177/1753944720924255] [PMID: 32449469]
[183]
Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2005; 352(8): 777-85.
[http://dx.doi.org/10.1056/NEJMoa042991] [PMID: 15728810]
[184]
Mayer SA, Brun NC, Begtrup K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2008; 358(20): 2127-37.
[http://dx.doi.org/10.1056/NEJMoa0707534] [PMID: 18480205]
[185]
Mary V, Wahl F, Uzan A, Stutzmann JM. Enoxaparin in experimental stroke: neuroprotection and therapeutic window of opportunity. Stroke 2001; 32(4): 993-9.
[http://dx.doi.org/10.1161/01.STR.32.4.993] [PMID: 11283402]
[186]
Kase CS, Albers GW, Bladin C, et al. Neurological outcomes in patients with ischemic stroke receiving enoxaparin or heparin for venous thromboembolism prophylaxis: subanalysis of the Prevention of VTE after Acute Ischemic Stroke with LMWH (PREVAIL) study. Stroke 2009; 40(11): 3532-40.
[http://dx.doi.org/10.1161/STROKEAHA.109.555003] [PMID: 19696423]
[187]
Nonaka Y, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H. Cilostazol protects against hemorrhagic transformation in mice transient focal cerebral ischemia-induced brain damage. Neurosci Lett 2009; 452(2): 156-61.
[http://dx.doi.org/10.1016/j.neulet.2009.01.039] [PMID: 19383431]
[188]
Uchiyama S, Sakai N. Cilostazol-aspirin therapy against recurrent stroke with intracranial artery stenosis. In: 2006. Available from: http://clinicaltrials.gov/show/NCT00333164
[189]
Ding G, Jiang Q, Zhang L, et al. Analysis of combined treatment of embolic stroke in rat with r-tPA and a GPIIb/IIIa inhibitor. J Cereb Blood Flow Metab 2005; 25(1): 87-97.
[http://dx.doi.org/10.1038/sj.jcbfm.9600010] [PMID: 15678115]
[190]
Pancioli AM, Adeoye OM. Study of the combination therapy of rt- PA and eptifibatide to treat acute ischemic stroke (CLEAR-ER). In: 2009. Available from: http://clinicaltrials.gov/show/NCT00894 803
[191]
O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006; 59(3): 467-77.
[http://dx.doi.org/10.1002/ana.20741] [PMID: 16453316]
[192]
Tissue plasminogen activator for acute ischemic stroke. The national institute of neurological disorders and stroke rt-PA stroke study group. N Engl J Med 1995; 333: 1581-7.
[http://dx.doi.org/10.1056/NEJM199512143332401]
[193]
Lee KY, Kim DI, Kim SH, et al. Sequential combination of intravenous recombinant tissue plasminogen activator and intra-arterial urokinase in acute ischemic stroke. AJNR Am J Neuroradiol 2004; 25(9): 1470-5.
[PMID: 15502123]
[194]
Nategh M, Shaveisi K, Shabanzadeh AP, Sadr SSh, Parviz M, Ghabaei M. Systemic hyperthermia masks the neuroprotective effects of MK-801, but not rosiglitazone in brain ischaemia. Basic Clin Pharmacol Toxicol 2010; 107(3): 724-9.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00570.x] [PMID: 20406202]
[195]
Kocaeli H, Korfali E, Oztürk H, Kahveci N, Yilmazlar S. MK-801 improves neurological and histological outcomes after spinal cord ischemia induced by transient aortic cross-clipping in rats. Surg Neurol 2005; 64(Suppl. 2): S22-6.
[http://dx.doi.org/10.1016/j.surneu.2005.07.034] [PMID: 16256835]
[196]
Horn J, de Haan RJ, Vermeulen M, Luiten PG, Limburg M. Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke 2001; 32(10): 2433-8.
[http://dx.doi.org/10.1161/hs1001.096009] [PMID: 11588338]
[197]
Zhang J, Yang J, Zhang C, Jiang X, Zhou H, Liu M. Calcium antagonists for acute ischemic stroke. Cochrane Database Syst Rev 2012; 5(5): CD001928.
[PMID: 22592678]
[198]
Mullins ME, Empey M, Jaramillo D, Sosa S, Human T, Diringer MN. A prospective randomized study to evaluate the antipyretic effect of the combination of acetaminophen and ibuprofen in neurological ICU patients. Neurocrit Care 2011; 15(3): 375-8.
[http://dx.doi.org/10.1007/s12028-011-9533-8] [PMID: 21503807]
[199]
Polson J, Lee WM. AASLD position paper: the management of acute liver failure. Hepatology 2005; 41(5): 1179-97.
[http://dx.doi.org/10.1002/hep.20703] [PMID: 15841455]
[200]
Zhao Z, Cheng M, Maples KR, Ma JY, Buchan AM. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res 2001; 909(1-2): 46-50.
[http://dx.doi.org/10.1016/S0006-8993(01)02618-X] [PMID: 11478919]
[201]
Sydserff SG, Borelli AR, Green AR, Cross AJ. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol 2002; 135(1): 103-12.
[http://dx.doi.org/10.1038/sj.bjp.0704449] [PMID: 11786485]
[202]
Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology 2001; 40(3): 433-9.
[http://dx.doi.org/10.1016/S0028-3908(00)00170-2] [PMID: 11166336]
[203]
Lyden PD, Shuaib A, Lees KR, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the chant Trial. Stroke 2007; 38(8): 2262-9.
[http://dx.doi.org/10.1161/STROKEAHA.106.472746] [PMID: 17569876]
[204]
Diener H-C, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 2008; 39(6): 1751-8.
[http://dx.doi.org/10.1161/STROKEAHA.107.503334] [PMID: 18369171]
[205]
Kellner CP, Connolly ES Jr. Neuroprotective strategies for intracerebral hemorrhage: trials and translation. Stroke 2010; 41(10)(Suppl.): S99-S102.
[http://dx.doi.org/10.1161/STROKEAHA.110.597476] [PMID: 20876519]
[206]
Lapchak PA, Araujo DM. Development of the nitrone-based spin trap agent NXY-059 to treat acute ischemic stroke. CNS Drug Rev 2003; 9(3): 253-62.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00252.x] [PMID: 14530797]
[207]
Sturgeon JD, Folsom AR, Longstreth WT Jr, Shahar E, Rosamond WD, Cushman M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke 2007; 38(10): 2718-25.
[http://dx.doi.org/10.1161/STROKEAHA.107.487090] [PMID: 17761915]
[208]
Orken DN, Kenangil G, Celik M, et al. Association of low cholesterol with primary intracerebral haemorrhage: a case control study. Acta Neurol Scand 2009; 119(3): 151-4.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01083.x] [PMID: 18684213]
[209]
Amarenco P, Bogousslavsky J, Callahan A III, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006; 355(6): 549-59.
[http://dx.doi.org/10.1056/NEJMoa061894] [PMID: 16899775]
[210]
Sironi L, Cimino M, Guerrini U, et al. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler Thromb Vasc Biol 2003; 23(2): 322-7.
[http://dx.doi.org/10.1161/01.ATV.0000044458.23905.3B] [PMID: 12588778]
[211]
Laufs U, Gertz K, Dirnagl U, Böhm M, Nickenig G, Endres M. Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res 2002; 942(1-2): 23-30.
[http://dx.doi.org/10.1016/S0006-8993(02)02649-5] [PMID: 12031849]
[212]
Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 2001; 32(4): 980-6.
[http://dx.doi.org/10.1161/01.STR.32.4.980] [PMID: 11283400]
[213]
Seyfried D, Han Y, Lu D, Chen J, Bydon A, Chopp M. Improvement in neurological outcome after administration of atorvastatin following experimental intracerebral hemorrhage in rats. J Neurosurg 2004; 101(1): 104-7.
[http://dx.doi.org/10.3171/jns.2004.101.1.0104] [PMID: 15255259]
[214]
Jung KH, Chu K, Jeong SW, et al. HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 2004; 35(7): 1744-9.
[http://dx.doi.org/10.1161/01.STR.0000131270.45822.85] [PMID: 15166393]
[215]
Karki K, Knight RA, Han Y, et al. Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke 2009; 40(10): 3384-9.
[http://dx.doi.org/10.1161/STROKEAHA.108.544395] [PMID: 19644071]
[216]
Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 2007; 24(7): 1132-46.
[http://dx.doi.org/10.1089/neu.2007.0288] [PMID: 17610353]
[217]
Shi Y, Pan H, Zhang HZ, Zhao XY, Jin J, Wang HY. Lipoxin A4 mitigates experimental autoimmune myocarditis by regulating inflammatory response, NF-κB and PI3K/Akt signaling pathway in mice. Eur Rev Med Pharmacol Sci 2017; 21(8): 1850-9.
[PMID: 28485793]
[218]
Guo YP, Jiang HK, Jiang H, Tian HY, Li L. Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-κB and ERK/p38 MAPK-dependent inflammation. Life Sci 2018; 198: 112-8.
[http://dx.doi.org/10.1016/j.lfs.2018.02.039] [PMID: 29499280]
[219]
Machado FS, Johndrow JE, Esper L, et al. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 2006; 12(3): 330-4.
[http://dx.doi.org/10.1038/nm1355] [PMID: 16415877]
[220]
Luo C-L, Li Q-Q, Chen X-P, et al. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 2013; 1502: 1-10.
[http://dx.doi.org/10.1016/j.brainres.2013.01.037] [PMID: 23370001]
[221]
Song Y, Yang Y, Cui Y, Gao J, Wang K, Cui J. Lipoxin A4 methyl ester reduces early brain injury by inhibition of the nuclear factor kappa B (NF-κb)-dependent matrix metallopeptidase 9 (MMP-9) pathway in a rat model of intracerebral hemorrhage. Med Sci Monit 2019; 25: 1838-47.
[http://dx.doi.org/10.12659/MSM.915119] [PMID: 30855024]
[222]
Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. Lipoxin A4 Regulates Lipopolysaccharide-Induced BV2 Microglial Activation and Differentiation via the Notch Signaling Pathway. Front Cell Neurosci 2019; 13: 19.
[http://dx.doi.org/10.3389/fncel.2019.00019] [PMID: 30778288]
[223]
Hawkins KE, DeMars KM, Alexander JC, et al. Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A4 analog: Protective mechanisms and long-term effects on neurological recovery. Brain Behav 2017; 7(5): e00688.
[http://dx.doi.org/10.1002/brb3.688] [PMID: 28523230]
[224]
Sinn D-I, Lee S-T, Chu K, et al. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett 2007; 411(3): 238-42.
[http://dx.doi.org/10.1016/j.neulet.2006.10.050] [PMID: 17123715]
[225]
Chu K, Jeong SW, Jung KH, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab 2004; 24(8): 926-33.
[http://dx.doi.org/10.1097/01.WCB.0000130866.25040.7D] [PMID: 15362723]
[226]
Jendrossek V, Handrick R, Belka C. Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 2003; 17(11): 1547-9.
[http://dx.doi.org/10.1096/fj.02-0947fje] [PMID: 12824303]
[227]
Rajdev K, Mehan S. Neuroprotective methodologies of co-enzyme Q10 mediated brain hemorrhagic treatment: Clinical and pre-clinical findings. CNS Neurol Disord Drug Targets 2019; 18(6): 446-65.
[228]
Rajdev K, Siddiqui EM, Jadaun KS, Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO Rep 2020; 8: 101-14.
[http://dx.doi.org/10.1016/j.ibror.2020.03.001] [PMID: 32368686]
[229]
Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Rev Neurother 2019; 19(7): 679-94.
[http://dx.doi.org/10.1080/14737175.2019.1623671] [PMID: 31188036]
[230]
Park H-K, Lee S-H, Chu K, Roh J-K. Effects of celecoxib on volumes of hematoma and edema in patients with primary intracerebral hemorrhage. J Neurol Sci 2009; 279(1-2): 43-6.
[http://dx.doi.org/10.1016/j.jns.2008.12.020] [PMID: 19168192]
[231]
Kaizaki A, Tien LT, Pang Y, et al. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J Neuroinflammation 2013; 10(1): 45.
[http://dx.doi.org/10.1186/1742-2094-10-45] [PMID: 23561827]
[232]
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K signaling in neurons: A central node for the control of multiple functions. Int J Mol Sci 2018; 19(12): 3725.
[http://dx.doi.org/10.3390/ijms19123725] [PMID: 30477115]
[233]
Wang J-P, Zhang M-Y. Role for target of Rapamycin (mTOR) signal pathway in regulating neuronal injury after intracerebral hemorrhage. Cell Physiol Biochem 2017; 41(1): 145-53.
[http://dx.doi.org/10.1159/000455983] [PMID: 28214828]
[234]
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10(1): 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]

© 2024 Bentham Science Publishers | Privacy Policy