Recapitulation of Cancer Nanotherapeutics | Bentham Science
Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Recapitulation of Cancer Nanotherapeutics

Author(s): Dilip Morani*, Pravin Patil and Ashish Jain

Volume 11, Issue 1, 2021

Published on: 21 January, 2021

Page: [3 - 15] Pages: 13

DOI: 10.2174/2468187311666210121143501

Price: $65

Open Access Journals Promotions 2
Abstract

Recently, nanotherapeutics has revolutionized the major impact on healthcare strategies and health facilities. Nanotherapeutics includes design, development and application of therapeutic agents having nano-size (1-100 nm). Due to implications in gene therapy and drug delivery, nanotherapeutics has received much interest in the current scenario. The major area where research is going on and giving maximum benefits from nano-based delivery system includes cancer diagnosis and targeting. The nanotherapeutics are designed in such a way that they will overcome the major drawbacks of conventional therapy and have multi-functionalities so that it can be targeted to cancer site. Nanotherapeutics have increased the permeability and retention of anticancer agents thereby targeting them to the tumor site. Nanotherapeutics has increased the effectiveness of anticancer agents with less or no toxicity. Likewise, diagnostic imaging is also possible with fluorescent nanoparticles based nanotherapeutics and has major potential applications in recent upcoming years with newer fluorescent nanomaterials for specific cancer targeting. NTs provided the possibility of delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Thus, attempts have been made to define the nanotherapeutics and to compile the latest developments in the field. Because the topic is of high importance to the general human wellbeing and covers recapitulation of cancer nanotherapeutics and summarizes and restates the main points of nanotherapeutics in the treatment of cancer disease.

Keywords: Nanotherapeutics, Nanomedicine, Nanoparticles, Nanoformulation, Nanotechnology, Nanomaterials.

Graphical Abstract
[1]
Mcilwain H. Biochemistry and Chemotherapy. Nature 1943; 151: 270-3.
[http://dx.doi.org/10.1038/151270a0]
[2]
Minig L, Patrono MG, Romero NJF, Moreno R, Garcia-Donas J. Different strategies of treatment for uterine cervical carcinoma stage IB2-IIB. World J Clin Oncol 2014; 5: 86.
[http://dx.doi.org/10.5306/wjco.v5.i2.86] [PMID: 24829855]
[3]
Yan Y, Björnmalm M, Caruso F. Particle carriers for combating multidrug-resistant cancer. ACS Nano 2013; 7(11): 9512-7.
[http://dx.doi.org/10.1021/nn405632s] [PMID: 24215340]
[4]
Chen J, Ma M, Shen N, Xi JJ, Tian W. Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets. J Proteome Res 2013; 12(6): 2354-64.
[http://dx.doi.org/10.1021/pr400162t] [PMID: 23590569]
[5]
Freitas RA. Nanomedicine: Basic Capabilities 1999.
[6]
Feynman RP. There’s plenty of room at the bottom. Eng Sci 1960; 23: 22-36.
[7]
European Science Foundation. Nanomedicine. An ESF European Medical Research Councils (EMRC) Forward Look report 2005.http://www.esf.org/
[8]
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11): 653-64.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[9]
Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73(8): 2412-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[10]
Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater 2013; 12(11): 958-62.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[11]
Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005; 16(1): 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[12]
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435-46.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[13]
Yezhelyev M, Morris C, Gao X, et al. Simultaneous and quantitative detection of multiple biomarkers in human breast cancers using semiconductor multicolor quantum dots breast cancer research and treatment. Breast Cancer Res Treat 2005; 94(Suppl.): S48.
[14]
Yezhelyev M, Gao X, Markus A, et al. Multiplex molecular diagnostic of tumor tissue using quantum dots. Proc Am Soc Clin Oncol 2005; 23: 843.
[15]
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114(2): 165-72.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[16]
Jain KK. Personalised medicine for cancer: from drug development into clinical practice. Expert Opin Pharmacother 2005; 6(9): 1463-76.
[http://dx.doi.org/10.1517/14656566.6.9.1463] [PMID: 16086635]
[17]
Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[18]
Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 2004; 100(2): 247-56.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.017] [PMID: 15544872]
[19]
Zhao G, Long L, Zhang L, et al. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 2017; 7(1): 3383.
[http://dx.doi.org/10.1038/s41598-017-03111-2] [PMID: 28611459]
[20]
Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010; 144(2): 259-66.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.024] [PMID: 20188131]
[21]
Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005; 338(2): 284-93.
[http://dx.doi.org/10.1016/j.ab.2004.12.026] [PMID: 15745749]
[22]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[23]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[24]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[25]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[26]
Ghaffar KA, Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposomes as nanovaccine delivery systems. Curr Top Med Chem 2014; 14(9): 1194-208.
[http://dx.doi.org/10.2174/1568026614666140329232757] [PMID: 24678703]
[27]
Mahajan SD, Aalinkeel R, Law WC, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7: 5301-14.
[http://dx.doi.org/10.2147/IJN.S25871] [PMID: 23055735]
[28]
Turkevich J. Colloidal gold part I. Gold Bull 1985; 18(3): 86-91.
[http://dx.doi.org/10.1007/BF03214690]
[29]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[30]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[31]
Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014; 6(1): 34-45.
[http://dx.doi.org/10.4161/mabs.27022] [PMID: 24423619]
[32]
Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol Ther 2013; 138(3): 452-69.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.004] [PMID: 23507041]
[33]
Chen K, Guan J. Bibliometric investigation of research performance in emerging nanobiopharmaceuticals. J Informetrics 2011; 5: 233-47.
[http://dx.doi.org/10.1016/j.joi.2010.10.007]
[34]
Minamihata K, Maeda Y, Yamaguchi S, et al. Photosensitizer and polycationic peptide-labeled streptavidin as a nano-carrier for light-controlled protein transduction. J Biosci Bioeng 2015; 120(6): 630-6.
[http://dx.doi.org/10.1016/j.jbiosc.2015.04.001] [PMID: 25935501]
[35]
Athari SS, Pourpak Z, Folkerts G, et al. Conjugated Alpha-Alumina nanoparticle with vasoactive intestinal peptide as a Nano-drug in treatment of allergic asthma in mice. Eur J Pharmacol 2016; 791: 811-20.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.014] [PMID: 27771365]
[36]
Haggag YA, Matchett KB, Dakir H, et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int J Pharm 2017; 521(1-2): 40-53.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.006] [PMID: 28163220]
[37]
Cimalla V, Niebelschütz F, Tonisch K, et al. Nano electromechanical devices for sensing applications, functional materials for micro andnanosystems- EMRS. Sens Actuators B Chem 2007; 126: 24-34.
[http://dx.doi.org/10.1016/j.snb.2006.10.049]
[38]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-98.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[39]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[40]
Nguyen-Ngoc T, Raymond E. Reinvention of chemotherapy: drug conjugates and nanoparticles. Curr Opin Oncol 2015; 27(3): 232-42.
[http://dx.doi.org/10.1097/CCO.0000000000000183] [PMID: 25783982]
[41]
Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 2015; 57(3): 201-18.
[http://dx.doi.org/10.1007/s12033-014-9816-3] [PMID: 25385004]
[42]
Wang K, Huang Q, Qiu F, Sui M. Non-viral delivery systems for the application in cancer gene therapy. Curr Med Chem 2015; 22(35): 4118-36.
[http://dx.doi.org/10.2174/0929867322666151001121601] [PMID: 26423086]
[43]
Kollen WJ, Mulberg AE, Wei X, et al. High-efficiency transfer of cystic fibrosis transmembrane conductance regulator cDNA into cystic fibrosis airway cells in culture using lactosylated polylysine as a vector. Hum Gene Ther 1999; 10(4): 615-22.
[http://dx.doi.org/10.1089/10430349950018689] [PMID: 10094204]
[44]
Bragonzi A, Dina G, Villa A, et al. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther 2000; 7(20): 1753-60.
[http://dx.doi.org/10.1038/sj.gt.3301282] [PMID: 11083497]
[45]
El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004; 94(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.013] [PMID: 14684267]
[46]
Wang Y, Rajala A, Rajala RV. Lipid nanoparticles for ocular gene delivery. J Funct Biomater 2015; 6(2): 379-94.
[http://dx.doi.org/10.3390/jfb6020379] [PMID: 26062170]
[47]
Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004; 3(1): 33-40.
[http://dx.doi.org/10.1177/153303460400300104] [PMID: 14750891]
[48]
Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci: Publ Canad Soc Pharm Sci Societecanadienne des sciences pharmaceutiques 2011; 14: 67-77.
[49]
Conde J, de la Fuente JM, Baptista PV. Nanomaterials for reversion of multidrug resistance in cancer: a new hope for an old idea? Front Pharmacol 2013; 4: 134.
[http://dx.doi.org/10.3389/fphar.2013.00134] [PMID: 24298255]
[50]
Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018; 156: 217-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.024] [PMID: 29207323]
[51]
Pabst M, McDowell W, Manin A, et al. Modulation of drug-linker design to enhance in vivo potency of homogeneous antibody-drug conjugates. J Control Release 2017; 253: 160-4.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.027] [PMID: 28257988]
[52]
Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev 2015; 115(9): 3388-432.
[http://dx.doi.org/10.1021/cr5004634] [PMID: 25914945]
[53]
Duncan R. Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 2009; 61(13): 1131-48.
[http://dx.doi.org/10.1016/j.addr.2009.05.007] [PMID: 19699249]
[54]
Chang M, Zhang F, Wei T, et al. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. J Drug Target 2016; 24(6): 475-91.
[http://dx.doi.org/10.3109/1061186X.2015.1108324] [PMID: 26560242]
[55]
Wong AD, DeWit MA, Gillies ER. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv Drug Deliv Rev 2012; 64(11): 1031-45.
[http://dx.doi.org/10.1016/j.addr.2011.09.012] [PMID: 21996055]
[56]
Abu Ajaj K, Biniossek ML, Kratz F. Development of protein-binding bifunctional linkers for a new generation of dual-acting prodrugs. Bioconjug Chem 2009; 20(2): 390-6.
[http://dx.doi.org/10.1021/bc800429q] [PMID: 19199576]
[57]
Zhou L, Cheng R, Tao H, et al. Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. Biomacromolecules 2011; 12(5): 1460-7.
[http://dx.doi.org/10.1021/bm101340u] [PMID: 21332185]
[58]
Witte AB, Timmer CM, Gam JJ, et al. Biophysical characterization of a riboflavin-conjugated dendrimer platform for targeted drug delivery. Biomacromolecules 2012; 13(2): 507-16.
[http://dx.doi.org/10.1021/bm201566g] [PMID: 22191428]
[59]
Silpe JE, Sumit M, Thomas TP, et al. Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS Chem Biol 2013; 8(9): 2063-71.
[http://dx.doi.org/10.1021/cb400258d] [PMID: 23855478]
[60]
Yang J, Li Z, Li H, et al. Design, synthesis and structure-activity relationship studies of novel free fatty acid receptor 1 agonists bearing amide linker. Bioorg Med Chem 2017; 25(8): 2445-50.
[http://dx.doi.org/10.1016/j.bmc.2017.03.001] [PMID: 28285923]
[61]
Shen W-C, Ryser HJP. cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun 1981; 102(3): 1048-54.
[http://dx.doi.org/10.1016/0006-291X(81)91644-2] [PMID: 7306187]
[62]
Chandran SS, Nan A, Rosen DM, Ghandehari H, Denmeade SR. A prostate-specific antigen activated N-(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Mol Cancer Ther 2007; 6(11): 2928-37.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0392] [PMID: 18025277]
[63]
Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009; 6(4): 1041-51.
[http://dx.doi.org/10.1021/mp900090z] [PMID: 19366234]
[64]
Bhirde AA, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009; 3(2): 307-16.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[65]
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 2017; 179: 15-22.
[http://dx.doi.org/10.1016/j.lfs.2016.11.029] [PMID: 27919823]
[66]
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis. Life Sci 2017; 179: 66-72.
[http://dx.doi.org/10.1016/j.lfs.2016.11.015] [PMID: 27888115]
[67]
Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiol Pharmacol 2015; 19: 167-76.
[68]
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotube- anandamide complex exhibits sustained protective effects in an in vitro model of stroke. Physiol Pharmacol 2016; 20: 12-23.
[69]
Hassanzadeh P, Atyabi F, Dinarvand R. Application of carbon nanotubes for controlled release of growth factors or endocannabinoids: A breakthrough in biomedicine. Biomedical Reviews 2016; 27: 19-27.
[http://dx.doi.org/10.14748/bmr.v27.2109]
[70]
Samorì C, Ali-Boucetta H, Sainz R, et al. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb) 2010; 46(9): 1494-6.
[http://dx.doi.org/10.1039/B923560D] [PMID: 20162159]
[71]
Tian J, Stella VJ. Degradation of paclitaxel and related compounds in aqueous solutions III: Degradation under acidic pH conditions and overall kinetics. J Pharm Sci 2010; 99(3): 1288-98.
[http://dx.doi.org/10.1002/jps.21910] [PMID: 19743504]
[72]
Ma C, Subramani S. Peroxisome matrix and membrane protein biogenesis. IUBMB Life 2009; 61(7): 713-22.
[http://dx.doi.org/10.1002/iub.196] [PMID: 19455563]
[73]
Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 1998; 95(12): 6803-8.
[http://dx.doi.org/10.1073/pnas.95.12.6803] [PMID: 9618493]
[74]
Yang Y-h, Aloysius H, Inoyama D, Chen Y, Hu L-q. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm Sin B 2011; 1: 143-59.
[http://dx.doi.org/10.1016/j.apsb.2011.08.001]
[75]
Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68(16): 6652-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[76]
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013; 65(10): 1357-69.
[http://dx.doi.org/10.1016/j.addr.2012.09.039] [PMID: 23026637]
[77]
Zhang J, Yun J, Shang Z, Zhang X, Pan B. Design and optimization of a linker for fusion protein construction. Prog Nat Sci 2009; 19: 1197-200.
[http://dx.doi.org/10.1016/j.pnsc.2008.12.007]
[78]
Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 2009; 30(29): 5757-66.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.020] [PMID: 19643472]
[79]
Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005; 16(1): 122-30.
[http://dx.doi.org/10.1021/bc0498166] [PMID: 15656583]
[80]
Hu X, Wang R, Yue J, Liu S, Xie Z, Jing X. Targeting and anti-tumour effect of folic acid-labeled polymer-Doxorubicin conjugates with pH-sensitive hydrazone linker. J Mater Chem 2012; 22: 13303-10.
[http://dx.doi.org/10.1039/c2jm31130e]
[81]
Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed Engl 2008; 47(39): 7523-6.
[http://dx.doi.org/10.1002/anie.200802651] [PMID: 18712739]
[82]
Etrych T, Mrkvan T, Ríhová B, Ulbrich K. Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release 2007; 122(1): 31-8.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.007] [PMID: 17631976]
[83]
Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011; 5(5): 3679-92.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[84]
Rodrigues P, Scheuermann K, Stockmar C, et al. Synthesis and in vitro efficacy of acid-sensitive poly(ethylene glycol) paclitaxel conjugates. Bioorg Med Chem Lett 2003; 13(3): 355-60.
[http://dx.doi.org/10.1016/S0960-894X(02)01002-8] [PMID: 12882225]
[85]
Qiao Z-Y, Zhang R, Du F-S, Liang D-H, Li Z-C. Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 2011; 152(1): 57-66.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.029] [PMID: 21392550]
[86]
Li J, Yoong SL, Goh WJ, et al. In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. Int J Nanomedicine 2015; 10: 7425-41.
[PMID: 26719686]
[87]
Kuśmierek K, Chwatko G, Głowacki R, Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(28): 3300-8.
[http://dx.doi.org/10.1016/j.jchromb.2009.03.038] [PMID: 19386557]
[88]
Navath RS, Kurt YE, Wang B. Dendrimers-drug conjugates for tailored intracellular drug release based on glutathione levels. Bioconjug Chem 2008; 19: 2446-55.
[http://dx.doi.org/10.1021/bc800342d]
[89]
Riedinger A, Guardia P, Curcio A, et al. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett 2013; 13(6): 2399-406.
[http://dx.doi.org/10.1021/nl400188q] [PMID: 23659603]
[90]
Agasti SS, Chompoosor A, You C-C, Ghosh P, Kim CK, Rotello VM. Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc 2009; 131(16): 5728-9.
[http://dx.doi.org/10.1021/ja900591t] [PMID: 19351115]
[91]
Choi SK, Verma M, Silpe J, et al. A photochemical approach for controlled drug release in targeted drug delivery. Bioorg Med Chem 2012; 20(3): 1281-90.
[http://dx.doi.org/10.1016/j.bmc.2011.12.020] [PMID: 22225916]
[92]
Choi SK, Thomas TP, Li M-H, Desai A, Kotlyar A, Baker JR Jr. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci 2012; 11(4): 653-60.
[http://dx.doi.org/10.1039/c2pp05355a] [PMID: 22234658]
[93]
Neveu P, Aujard I, Benbrahim C, et al. A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. Angew Chem Int Ed Engl 2008; 47(20): 3744-6.
[http://dx.doi.org/10.1002/anie.200800037] [PMID: 18399559]
[94]
Bao C, Fan G, Lin Q, et al. Styryl conjugated coumarin caged alcohol: efficient photorelease by either one-photon long wavelength or two-photon NIR excitation. Org Lett 2012; 14(2): 572-5.
[http://dx.doi.org/10.1021/ol203188h] [PMID: 22201546]
[95]
Chien Y-H, Chou Y-L, Wang S-W, et al. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 2013; 7(10): 8516-28.
[http://dx.doi.org/10.1021/nn402399m] [PMID: 24070408]
[96]
Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 2000; 202(1-2): 1-10.
[http://dx.doi.org/10.1016/S0378-5173(99)00447-0] [PMID: 10915921]
[97]
Liversidge G, Cundy K. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995; 125: 91-7.
[http://dx.doi.org/10.1016/0378-5173(95)00122-Y]
[98]
Hu J, Johnston KP, Williams RO III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 2004; 30(3): 233-45.
[http://dx.doi.org/10.1081/DDC-120030422] [PMID: 15109023]
[99]
LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003; 21(10): 1184-91.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[100]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[101]
Agarwal A, Lvov Y, Sawant R, Torchilin V. Stable nanocolloids of poorly soluble drugs with high drug content prepared using the combination of sonication and layer-by-layer technology. J Control Release 2008; 128(3): 255-60.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.017] [PMID: 18479772]
[102]
Wattendorf U, Merkle HP. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 2008; 97(11): 4655-69.
[http://dx.doi.org/10.1002/jps.21350] [PMID: 18306270]
[103]
Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10] [PMID: 12197610]
[104]
Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117(2): 163-70.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.023] [PMID: 17141909]
[105]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[106]
Thomasin C, Merkle HP, Gander BA. Physico-chemical parameters governing protein microencapsulation into biodegradable polyesters by coacervation. Int J Pharm 1997; 147: 173-86.
[http://dx.doi.org/10.1016/S0378-5173(96)04810-7]
[107]
Santander-Ortega MJ, Csaba N, González L, Bastos-González D. OrtegaVinuesa JL, Alonso MJ. Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation Characteristics. Colloid Polym Sci 2010; 288: 141-50.
[http://dx.doi.org/10.1007/s00396-009-2131-z]
[108]
Xie J, Wang C-H. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng 2007; 97(5): 1278-90.
[http://dx.doi.org/10.1002/bit.21334] [PMID: 17216662]
[109]
Warheit DB. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 2008; 101(2): 183-5.
[http://dx.doi.org/10.1093/toxsci/kfm279] [PMID: 18300382]
[110]
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-39.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[111]
Marchal S, El Hor A, Millard M, Gillon V, Bezdetnaya L. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics. Drugs 2015; 75(14): 1601-11.
[http://dx.doi.org/10.1007/s40265-015-0453-3] [PMID: 26323338]
[112]
Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 2011; 32(1): 173-87.
[http://dx.doi.org/10.1016/j.peptides.2010.10.003] [PMID: 20934475]
[113]
Tyner K, Sadrieh N. Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol Biol 2011; 697: 17-31.
[http://dx.doi.org/10.1007/978-1-60327-198-1_3] [PMID: 21116951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy