Anti-allergic Assessment of Ethanol Extractives of Quisqualis Indica Linn | Bentham Science
Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Anti-allergic Assessment of Ethanol Extractives of Quisqualis Indica Linn

Author(s): Deepa Chaudhary*, Rajnish Srivastava and Hemant Nagar

Volume 17, Issue 7, 2021

Published on: 24 November, 2020

Article ID: e010621188354 Pages: 10

DOI: 10.2174/1573407216999201124222935

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: The present work was aimed at finding out the anti-allergic activity of ethanol extracts of Quisqualis indica Linn. (EEQI) by in-vitro and in-vivo murine models.

Background: Worldwide, the rise in the prevalence of allergic diseases has continued in the industrialized world for more than 50 years. About 0.05-2% of the population is estimated to experience anaphylaxis at some point in life. Quisqualis indica Linn in an ornamental plant that has been rarely used as a herbal medicine, however, the presence of polyphenols and flavonoids have been reported to possess anti-inflammatory, antipyretic and immunomodulatory activity, which have some pathological relevance with anaphylaxis.

Objective: The objective of the present research was to investigate, scientifically explore and understand the probable anti-anaphylactic mechanism of ethanol extracts of Quisqualis indica Linn. via different preclinical models.

Materials and Methods: In-vitro study was done on de-granulated mesenteric mast cells induced by compound 48/80 and in-vivo study was done by Passive Cutaneous Anaphylaxis (PCA) model. In the in-vitro study degranulated mesenteric cells were grouped into negative control (compound 48/80 treated), positive control (Disodium cromoglycate + 48/80 treated) and 3 test groups (EEQI 10 μg/ml + 48/80 treated, EEQI 50 μg/ml + 48/80 treated and EEQI 100 μg/ml + 48/80 treated). The number of degranulated mast cells was counted and compared within the different treatment groups. In the in-vivo study, the rats were first grouped into negative control (vehicle only), positive control (Disodium cromoglycate) and 2 test groups (EEQI: 100 and 200 mg/kilogram). The animals were pretreated for 12 days. On the 12th day, all the rats were immunized with serum anti-ovalbumin (obtained from an already sensitized rat) by the intradermal route. After 24 h of serum injection, Evans blue dye containing oval albumin was administered intravenously in all groups. Three days later, the rats were taken down for the severity of the anaphylactic reactions.

Results: EEQI significantly attenuates mast cell degranulation and maintains cell intactness as compared to control (P < 0.001). It was set up to support the degree of anaphylaxis as compared to the control group (P < 0.001).

Conclusion: The outcomes of the work revealed the preventive effect of Quisqualis indica Linn. against allergic manifestations.

Keywords: Mesenteric mast cell, compound 48/80, passive cutaneous anaphylaxis, Quisqualis indica Linn., anti-allergic, in-vitro, in-vivo.

Graphical Abstract
[1]
Polloni L, Muraro A. Anxiety and food allergy: A review of the last two decades. Clin Exp Allergy 2020; 50(4): 420-41.
[http://dx.doi.org/10.1111/cea.13548] [PMID: 31841239]
[2]
Yuan WY, Li LQ, Chen YY, et al. Frontline Science: Two flavonoid compounds attenuate allergic asthma by regulating epithelial barrier via G protein-coupled estrogen receptor: Probing a possible target for allergic inflammation. J Leukoc Biol 2020; 108(1): 59-71.
[http://dx.doi.org/10.1002/JLB.3HI0220-342RR] [PMID: 32303124]
[3]
Mattioli V, Zanolin ME, Cazzoletti L, et al. Dietary flavonoids and respiratory diseases: a population-based multi-case-control study in Italian adults. Public Health Nutr 2020; 23(14): 2548-56.
[http://dx.doi.org/10.1017/S1368980019003562] [PMID: 31996276]
[4]
Son ES, Park JW, Kim SH, et al. Anti-inflammatory activity of 3,5,6,7,3′,4′-hexamethoxyflavone via repression of the NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Mol Med Rep 2020; 22(3): 1985-93.
[http://dx.doi.org/10.3892/mmr.2020.11252] [PMID: 32705181]
[5]
Vo TS. Natural products targeting FcεRI receptor for anti-allergic therapeutics. J Food Biochem 2020; 44(8): e13335.
[http://dx.doi.org/10.1111/jfbc.13335] [PMID: 32588463]
[6]
Lee JY, Park SH, Jhee KH, Yang SA. Tricin isolated from enzyme-treated Zizania latifolia extract inhibits IgE-mediated allergic reactions in RBL-2H3 cells by targeting the Lyn/Syk pathway. Molecules 2020; 25(9): 2084.
[http://dx.doi.org/10.3390/molecules25092084] [PMID: 32365709]
[7]
Dhakal H, Lee S, Choi JK, Kwon TK, Khang D, Kim SH. Inhibitory effects of orientin in mast cell-mediated allergic inflammation. Pharmacol Rep 2020; 72(4): 1002-10.
[http://dx.doi.org/10.1007/s43440-019-00048-3] [PMID: 32048267]
[8]
Chen F, He D, Yan B. Apigenin attenuates allergic responses of ovalbumin-induced allergic rhinitis through modulation of Th1/Th2 responses in experimental mice. Dose Response 2020; 18(1): 1559325820904799.
[http://dx.doi.org/10.1177/1559325820904799] [PMID: 32165873]
[9]
Wang J, Kandhare A, Mukherjee-Kandhare A, Bodhankar SL. Chrysin ameliorates ovalbumin-induced allergic response in allergic rhinitis: Potential role of GATA-3, T-box protein expressed in T cells, nuclear factor-kappa B, and nuclear factor erythroid 2-related factor 2. Pharmacogn Mag 2020; 16(70): 335.
[http://dx.doi.org/10.4103/pm.pm_461_19]
[10]
Ding Y, Li C, Zhang Y, et al. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem Toxicol 2020; 135: 110924.
[http://dx.doi.org/10.1016/j.fct.2019.110924] [PMID: 31672514]
[11]
Goldsby RA, Kindt TJ, Osborne BA. Kuby immunology. 4th. USA 2000.
[12]
Ring J, Krämer U, Schäfer T, Behrendt H. Why are allergies increasing? Curr Opin Immunol 2001; 13(6): 701-8.
[http://dx.doi.org/10.1016/S0952-7915(01)00282-5] [PMID: 11677093]
[13]
Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med 2002; 8(6): 567-73.
[http://dx.doi.org/10.1038/nm0602-567] [PMID: 12042806]
[14]
Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol 1997; 17(1): 1-32.
[http://dx.doi.org/10.1615/CritRevImmunol.v17.i1.10] [PMID: 9034722]
[15]
Choi P, Reiser H. IL-4: role in disease and regulation of production. Clin Exp Immunol 1998; 113(3): 317-9.
[http://dx.doi.org/10.1046/j.1365-2249.1998.00690.x] [PMID: 9737656]
[16]
Kay AB. Allergy and allergic diseases. First of two parts. N Engl J Med 2001; 344(1): 30-7.
[http://dx.doi.org/10.1056/NEJM200101043440106] [PMID: 11136958]
[17]
Lim TK. Edible medicinal and non-medicinal plants. New York, NY, USA: Springer 2012.
[18]
Singh S, Rai A, Maity S, Sarkar S, Maji S, Saha S. Effect of ethanolic extract of Quisqualis indica L. flower on experimental esophagitis in albino Wistar rats. Indian J Exp Biol 2017; 55(2): 122-6.
[PMID: 30184413]
[19]
Chen S, Gong J, Liu F, Mohammed U. Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 2000; 100(4): 471-80.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00045.x] [PMID: 10929074]
[20]
Afify AE, Hassan HM. Free radical scavenging activity of three different flowers-Hibiscus rosa-sinensis, Quisqualis indica and Senna surattensis. Asian Pac J Trop Biomed 2016; 6(9): 771-7.
[http://dx.doi.org/10.1016/j.apjtb.2016.07.006]
[21]
Shah A, Khan Z, Saleem S, Farid S. Antioxidant activity of an ethnobotanically important plant Quisqualis indica Linn. Pak J Pharm Sci 2019; 32(1): 95-102.
[PMID: 30772796]
[22]
Chen R, Burke TF, Cumberland JE, et al. Glucocorticoids inhibit calcium- and calcineurin-dependent activation of the human IL-4 promoter. J Immunol 2000; 164(2): 825-32.
[http://dx.doi.org/10.4049/jimmunol.164.2.825] [PMID: 10623828]
[23]
Park J. Anti-anaphylactic activity of isoquercitrin (Quercetin-3-O-β-d-Glucose) in the cardiovascular system of animals. Biomedicines 2020; 8(6): 139.
[http://dx.doi.org/10.3390/biomedicines8060139] [PMID: 32486018]
[24]
Tanaka T, Iuchi A, Harada H, Hashimoto S. Potential beneficial effects of wine flavonoids on allergic diseases. Diseases 2019; 7(1): 8.
[http://dx.doi.org/10.3390/diseases7010008] [PMID: 30650667]
[25]
Vogel HG, Ed. Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media 2002.
[http://dx.doi.org/10.1007/3-540-29837-1]
[26]
Parmar G, Pundarikakshudu K, Balaraman R, Sailor G. Amelioration of anaphylaxis, mast cell degranulation and bronchospasm by Euphorbia hirta L. extracts in experimental animals. Beni-Suef Uni J Basic Appl Sci 2018; 7(1): 127-34.
[http://dx.doi.org/10.1016/j.bjbas.2017.11.001]
[27]
Subramoniam A, Evans DA, Valsaraj R, Rajasekharan S, Pushpangadan P. Inhibition of antigen-induced degranulation of sensitized mast cells by Trichopus zeylanicus in mice and rats. J Ethnopharmacol 1999; 68(1-3): 137-43.
[http://dx.doi.org/10.1016/S0378-8741(99)00077-X] [PMID: 10624873]
[28]
Singh RK, Bhattacharya SK, Acharya SB. Studies on extracts of Elaeocarpus sphaericus fruits on in vitro rat mast cells. Phytomedicine 2000; 7(3): 205-7.
[http://dx.doi.org/10.1016/S0944-7113(00)80005-7] [PMID: 11185731]
[29]
Khandelwal K. Practical pharmacognosy 2008.
[30]
Nagar HK, Srivastava AK, Srivastava R, Kurmi ML, Chandel HS, Ranawat MS. Pharmacological Investigation of the Wound Healing Activity of Cestrum nocturnum (L.) Ointment in Wistar Albino Rats. J Pharm (Cairo) 2016; 2016: 9249040.
[http://dx.doi.org/10.1155/2016/9249040] [PMID: 27018126]
[31]
Deepa C, Srivastava R, Kumar Srivastava A, Kotiya A. Wound healing activity of hydro-alcoholic extract of Cinnamomum nitidum Blume (Lauraceae) in wistar albino rats. Curr Tradit Med 2016; 2(2): 134-45.
[http://dx.doi.org/10.2174/2215083802666160902154451]
[32]
Balaji G, Chalamaiah M, Hanumanna P, Vamsikrishna B, Jagadeesh Kumar D, Venu Babu V. Mast cell stabilizing and anti-anaphylactic activity of aqueous extract of green tea (Camellia sinensis). Int J Vet Sci Med 2014; 2(1): 89-94.
[http://dx.doi.org/10.1016/j.ijvsm.2014.03.001]
[33]
Kajaria D, Tripathi JS, Tiwari SK, Pandey BL. Anti-histaminic, mast cell stabilizing and bronchodilator effect of hydroalcoholic extract of polyherbal compound- Bharangyadi. Anc Sci Life 2012; 31(3): 95-100.
[http://dx.doi.org/10.4103/0257-7941.103182] [PMID: 23284214]
[34]
Ofori-Amoah J, Koffuor GA, Asiamah EA, Agbemenyah HY, Awuku AK. Assessment of the anti-allergenic effects of Scoparia dulcis in asthma management. Afr J Pharm Pharmacol 2016; 10(31): 638-44.
[http://dx.doi.org/10.5897/AJPP2016.4612]
[35]
Gupta S, Nataraj SK, Raju KR, Mulukutla S, Ambore N, Gupta R. Peritoneal mast cell stabilization and free radical scavenging activity of Yucca gloriosa L. J Young Pharm 2015; 7(4): 470.
[36]
Gohil PV, Mehta AA. Evaluation of mast cell stabilizing and anti-anaphylactic activity of polyherbal formulation. Adv Biol Res (Faisalabad) 2011; 5(6): 304-8.
[37]
Yadav Y, Mohanty PK, Kasture SB. Evaluation of immunomodulatory activity of hydroalcoholic extract of Quisqualis indica Linn. flower in wistar rats. Int J Pharm Life Sci 2011; 2(4): 976-7126.
[38]
da Justa HC, Matsubara FH, de-Bona E, et al. LALLT (Loxosceles Allergen-Like Toxin) from the venom of Loxosceles intermedia: Recombinant expression in insect cells and characterization as a molecule with allergenic properties. Int J Biol Macromol 2020.
[39]
Padmalatha K, Venkataraman BV, Roopa R. Antianaphylactic effect of DLH-3041 (polyherbal formulation) on rat mesenteric mast cell degranulation. Indian J Pharmacol 2002; 34(2): 119-22.
[40]
Bouike G, Nishitani Y, Shiomi H, et al. Oral treatment with extract of agaricus blazei murill enhanced Th1 response through intestinal epithelial cells and suppressed OVA-sensitized allergy in mice. Evid Based Complement Alternat Med 2011; 2011: 532180.
[http://dx.doi.org/10.1155/2011/532180] [PMID: 20953432]
[41]
Jiménez M, Chávez NA, Salinas E. Pretreatment with glycomacropeptide reduces allergen sensitization, alleviates immediate cutaneous hypersensitivity and protects from anaphylaxis. Clin Exp Immunol 2012; 170(1): 18-27.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04631.x] [PMID: 22943197]
[42]
Goose J, Blair AM. Passive cutaneous anaphylaxis in the rat, induced with two homologous reagin-like antibodies and its specific inhibition with disodium cromoglycate. Immunology 1969; 16(6): 749-60.
[PMID: 4306785]
[43]
Garbacki N, Tits M, Angenot L, Damas J. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenin acute inflammatory reactions induced in rats. BMC Pharmacol 2004; 4: 25.
[http://dx.doi.org/10.1186/1471-2210-4-25] [PMID: 15498105]
[44]
Nakano H, Free ME, Whitehead GS, et al. Pulmonary CD103(+) dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol 2012; 5(1): 53-65.
[http://dx.doi.org/10.1038/mi.2011.47] [PMID: 22012243]
[45]
Missebukpo A, Metowogo K, Agbonon A, Eklu-Gadegbeku K, Aklikokou K, Gbeassor M. Evaluation of anti-asthmatic activities of Ixora coccinea Linn (Rubiaceae). J pharmacol toxicol 2011; 6(6): 559-70.
[46]
Elbakary RH, Okasha EF, Hassan Ragab AM, Ragab MH. Histological effects of gold nanoparticles on the lung tissue of adult male albino rats. J Microsc Ultrastruct 2018; 6(2): 116-22.
[http://dx.doi.org/10.4103/JMAU.JMAU_25_18] [PMID: 30221136]
[47]
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011; 41(10): 1346-59.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03773.x] [PMID: 21623967]
[48]
Chung SY, Yang W, Krishnamurthy K. Effects of pulsed UV- light on peanut allergens in extracts and liquid peanut butter. J Food Sci 2008; 73(5): C400-4.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00784.x] [PMID: 18576985]
[49]
Santos FM, Malafaia CA, Simas DLR, et al. Phenolic compounds from Tocoyena bullata mart (Rubiaceae) with inhibitory activity in mast cells degranulation. Nat Prod Res 2019; 1-4.
[http://dx.doi.org/10.1080/14786419.2018.1560281] [PMID: 30663374]
[50]
Kawai K, Tsuno NH, Kitayama J, Sunami E, Takahashi K, Nagawa H. Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b. Immunopharmacol Immunotoxicol 2011; 33(2): 391-7.
[http://dx.doi.org/10.3109/08923973.2010.522195] [PMID: 20936888]
[51]
Takano F, Takata T, Yoshihara A, Nakamura Y, Arima Y, Ohta T. Aqueous extract of peanut skin and its main constituent procyanidin A1 suppress serum IgE and IgG1 levels in mice-immunized with ovalbumin. Biol Pharm Bull 2007; 30(5): 922-7.
[http://dx.doi.org/10.1248/bpb.30.922] [PMID: 17473436]
[52]
Pratap K, Taki AC, Johnston EB, Lopata AL, Kamath SD. A comprehensive review on natural bioactive compounds and probiotics as potential therapeutics in food allergy treatment. Front Immunol 2020; 11: 996.
[http://dx.doi.org/10.3389/fimmu.2020.00996] [PMID: 32670266]
[53]
Yano S, Umeda D, Maeda N, Fujimura Y, Yamada K, Tachibana H. Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice. J Agric Food Chem 2006; 54(14): 5203-7.
[http://dx.doi.org/10.1021/jf0607361] [PMID: 16819936]
[54]
Fewtrell CM, Gomperts BD. Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells. Nature 1977; 265(5595): 635-6.
[http://dx.doi.org/10.1038/265635a0] [PMID: 67562]
[55]
Middleton E Jr, Drzewiecki G, Krishnarao D. Quercetin: an inhibitor of antigen-induced human basophil histamine release. J Immunol 1981; 127(2): 546-50.
[PMID: 6166675]
[56]
Owona BA, Abia WA, Moundipa PF. Natural compounds flavonoids as modulators of inflammasomes in chronic diseases. Int Immunopharmacol 2020; 84: 106498.
[http://dx.doi.org/10.1016/j.intimp.2020.106498] [PMID: 32304996]
[57]
Macedo T, Ribeiro V, Oliveira AP, et al. Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. J Ethnopharmacol 2020; 248: 112312.
[http://dx.doi.org/10.1016/j.jep.2019.112312] [PMID: 31629028]
[58]
Martínez G, Mijares MR, De Sanctis JB. Effects of flavonoids and its derivatives on immune cell responses. Recent Pat Inflamm Allergy Drug Discov 2019; 13(2): 84-104.
[http://dx.doi.org/10.2174/1872213X13666190426164124] [PMID: 31814545]
[59]
Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy 2000; 30(4): 501-8.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00768.x] [PMID: 10718847]
[60]
Higa S, Hirano T, Kotani M, et al. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J Allergy Clin Immunol 2003; 111(6): 1299-306.
[http://dx.doi.org/10.1067/mai.2003.1456] [PMID: 12789233]
[61]
Hirano T, Higa S, Arimitsu J, et al. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int Arch Allergy Immunol 2004; 134(2): 135-40.
[http://dx.doi.org/10.1159/000078498] [PMID: 15153793]
[62]
Kawai M, Hirano T, Higa S, et al. Flavonoids and related compounds as anti-allergic substances. Allergol Int 2007; 56(2): 113-23.
[http://dx.doi.org/10.2332/allergolint.R-06-135] [PMID: 17384531]
[63]
Bochner BS, Undem BJ, Lichtenstein LM. Immunological aspects of allergic asthma. Annu Rev Immunol 1994; 12: 295-335.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.001455] [PMID: 8011284]
[64]
Marone G, Casolaro V, Patella V, Florio G, Triggiani M. Molecular and cellular biology of mast cells and basophils. Int Arch Allergy Immunol 1997; 114(3): 207-17.
[http://dx.doi.org/10.1159/000237670] [PMID: 9363900]
[65]
Jian T, Chen J, Ding X, et al. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways. Food Funct 2020; 11(4): 3516-26.
[http://dx.doi.org/10.1039/C9FO02921D] [PMID: 32253400]
[66]
Wu X, Deng X, Wang J, Li Q. Baicalin inhibits cell proliferation and inflammatory cytokines induced by tumor necrosis factor α (TNF-α) in human immortalized keratinocytes (HaCaT) human keratinocytes by inhibiting the STAT3/Nuclear factor kappa B (NF-κB) signaling pathway. Med Sci Monit 2020; 26: e919392-1.
[PMID: 32321906]
[67]
Yong LC. The mast cell: origin, morphology, distribution, and function. Exp Toxicol Pathol 1997; 49(6): 409-24.
[http://dx.doi.org/10.1016/S0940-2993(97)80129-7] [PMID: 9495641]
[68]
Bachelet I, Munitz A, Levi-Schaffer F. Abrogation of allergic reactions by a bispecific antibody fragment linking IgE to CD300a. J Allergy Clin Immunol 2006; 117(6): 1314-20.
[http://dx.doi.org/10.1016/j.jaci.2006.04.031] [PMID: 16750992]
[69]
Jiang Y, Xiao L, Fu W, et al. Gaudichaudione H inhibits inflammatory responses in macrophages and dextran sodium sulfate-induced colitis in mice. Front Pharmacol 2020; 10: 1561.
[http://dx.doi.org/10.3389/fphar.2019.01561] [PMID: 32009962]
[70]
Raab WP. Role of mast cells in allergy of delayed type. Nature 1965; 206(983): 518-9.
[http://dx.doi.org/10.1038/206518a0] [PMID: 5831850]
[71]
Redington AE, Polosa R, Walls AF, Howarth PH, Holgate ST. Role of mast cells and basophils in asthma. Chem Immunol 1995; 62: 22-59.
[http://dx.doi.org/10.1159/000424594] [PMID: 7546283]
[72]
Patella V, Marinò I, Arbustini E, et al. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 1998; 97(10): 971-8.
[http://dx.doi.org/10.1161/01.CIR.97.10.971] [PMID: 9529265]
[73]
Seibold JR, Giorno RC, Claman HN. Dermal mast cell degranulation in systemic sclerosis. Arthritis Rheum 1990; 33(11): 1702-9.
[http://dx.doi.org/10.1002/art.1780331114] [PMID: 2242067]
[74]
de Paulis A, Ciccarelli A, Marinò I, de Crescenzo G, Marinò D, Marone G. Human synovial mast cells. II. Heterogeneity of the pharmacologic effects of antiinflammatory and immunosuppressive drugs. Arthritis Rheum 1997; 40(3): 469-78.
[http://dx.doi.org/10.1002/art.1780400313] [PMID: 9082935]
[75]
Kawanami O, Basset F, Ferrans VJ, Soler P, Crystal RG. Pulmonary Langerhans’ cells in patients with fibrotic lung disorders. Lab Invest 1981; 44(3): 227-33.
[PMID: 6970300]
[76]
Akdis CA, Simons FE. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol 2006; 533(1-3): 69-76.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.044] [PMID: 16448645]
[77]
Gordon JR, Burd PR, Galli SJ. Mast cells as a source of multifunctional cytokines. Immunol Today 1990; 11(12): 458-64.
[http://dx.doi.org/10.1016/0167-5699(90)90176-A] [PMID: 2073318]
[78]
Mota I, Wong D. Homologous and heterologous passive cutaneous anaphylactic activity of mouse antisera during the course of immunization. Life Sci 1969; 8(16): 813-20.
[http://dx.doi.org/10.1016/0024-3205(69)90099-X] [PMID: 5306608]
[79]
Okudaira H, Suzuki T, Ogita T. A study of the rat passive cutaneous anaphylaxis (PCA) reaction for the assay of mouse IgE antibody. J Immunol Methods 1980; 33(4): 369-77.
[http://dx.doi.org/10.1016/0022-1759(80)90006-X] [PMID: 7373064]
[80]
Kimata M, Inagaki N, Nagai H. Effects of luteolin and other flavonoids on IgE-mediated allergic reactions. Planta Med 2000; 66(1): 25-9.
[http://dx.doi.org/10.1055/s-2000-11107] [PMID: 10705729]
[81]
Lindner I, Meier C, Url A, et al. Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation. BMC Immunol 2010; 11: 24.
[http://dx.doi.org/10.1186/1471-2172-11-24] [PMID: 20487574]
[82]
Wex E, Thaler E, Blum S, Lamb D. A novel model of IgE-mediated passive pulmonary anaphylaxis in rats. PLoS One 2014; 9(12): e116166.
[http://dx.doi.org/10.1371/journal.pone.0116166] [PMID: 25541997]
[83]
Blythe S, England D, Esser B, Junk P, Lemanske RF Jr. IgE antibody mediated inflammation of rat lung: histologic and bronchoalveolar lavage assessment. Am Rev Respir Dis 1986; 134(6): 1246-51.
[PMID: 3789524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy