1,8-Naphthyridine Derivatives: A Privileged Scaffold for Versatile Biological Activities | Bentham Science
Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

1,8-Naphthyridine Derivatives: A Privileged Scaffold for Versatile Biological Activities

Author(s): Madhwi Ojha, Divya Yadav, Avinash Kumar, Suman Dasgupta and Rakesh Yadav*

Volume 21, Issue 5, 2021

Published on: 09 October, 2020

Page: [586 - 601] Pages: 16

DOI: 10.2174/1389557520666201009162804

Price: $65

Open Access Journals Promotions 2
Abstract

1, 8- Naphthyridine nucleus belongs to significant nitrogen-containing heterocyclic compounds which has garnered the interest of researchers due to its versatile biological activities. It is known to be used as an antimicrobial, anti-psychotic, anti-depressant, anti-convulsant, anti- Alzheimer’s, anti-cancer, analgesic, anti-inflammatory, antioxidant, anti-viral, anti-hypertensive, antimalarial, pesticides, anti-platelets, and CB2 receptor agonist, etc. The present review highlights the framework of biological properties of synthesized 1, 8-naphthyridine derivatives developed by various research groups across the globe.

Keywords: 1, 8-Naphthyridine derivatives, nalidixic acid, gemifloxacin, enoxacin, voreloxin, tosufolxacin.

Graphical Abstract
[1]
Gurjar, V.K.; Pal, D. Recent developments activities available with 1,8-naphthyridine derivatives: A review. Int. J. Pharm. Pharm. Sci., 2019, 11, 17-37.
[http://dx.doi.org/10.22159/ijpps.2019v11i1.30429]
[2]
Madaan, A.; Verma, R.; Kumar, V.; Singh, A.T.; Jain, S.K.; Jaggi, M. 1,8-Naphthyridine derivatives: A review of multiple biological activities. Arch. Pharm. (Weinheim), 2015, 348(12), 837-860.
[http://dx.doi.org/10.1002/ardp.201500237] [PMID: 26548568]
[3]
Fu, L.; Lin, W.; Hu, M.H.; Liu, X.C.; Huang, Z.B.; Shi, D.Q. Efficient synthesis of functionalized benzo[b][1,8]naphthyridine derivatives via three-component reaction catalyzed by L-proline. ACS Comb. Sci., 2014, 16(5), 238-243.
[http://dx.doi.org/10.1021/co4001524] [PMID: 24669887]
[4]
Fu, L.; Feng, X.; Wang, J.J.; Xun, Z.; Hu, J.D.; Zhang, J.J.; Zhao, Y.W.; Huang, Z.B.; Shi, D.Q. Efficient synthesis and evaluation of antitumor activities of novel functionalized 1,8-naphthyridine derivatives. ACS Comb. Sci., 2015, 17(1), 24-31.
[http://dx.doi.org/10.1021/co500120b] [PMID: 25412896]
[5]
Ahmed, M.; Kelley, S.O. Enhancing the potency of nalidixic acid toward a bacterial DNA gyrase with conjugated peptides. ACS Chem. Biol., 2017, 12(10), 2563-2569.
[http://dx.doi.org/10.1021/acschembio.7b00540] [PMID: 28825963]
[6]
Nabipour, H.; Sadr, M.H.; Thomas, N. Synthesis, controlled release and antibacterial studies of nalidixic acid-zinc hydroxide nitrate nanocomposites. New J. Chem., 2016, 40(1), 238-244.
[http://dx.doi.org/10.1039/C5NJ01737H]
[7]
Ball, P. Natural history or natural selection? J. Antimicrob. Chemother., 2000, 46(3), 17-24.
[8]
Fadda, A.A.; El-Hadidy, S.A.; Elattar, K.M. Advances in 1,8-naphthyridines chemistry. Synth. Commun., 2015, 45(24), 2765-2801.
[http://dx.doi.org/10.1080/00397911.2015.1089577]
[9]
Paim, C.S.; Nogueira, D.R.; Mitjans, M.; Ramos Lopez, D.; de Lapuente Perez, J.; Steppe, M.; Schapoval, E.E.S.; Vinardell, M.P. Biological safety studies of gemifloxacin mesylate and related substances. Photochem. Photobiol. Sci., 2013, 12(5), 805-812.
[http://dx.doi.org/10.1039/c3pp25369d] [PMID: 23361471]
[10]
Ostrov, D.A.; Magis, A.T.; Wronski, T.J.; Chan, E.K.L.; Toro, E.J.; Donatelli, R.E.; Sajek, K.; Haroun, I.N.; Nagib, M.I.; Piedrahita, A.; Harris, A.; Holliday, L.S. Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J. Med. Chem., 2009, 52(16), 5144-5151.
[http://dx.doi.org/10.1021/jm900277z] [PMID: 19630402]
[11]
Sayin, K.; Karakas, D. Determination Of structural, spectral, electronic and biological properties of tosufloxacin boron complexes and investigation of substituent effect. J. Mol. Struct., 2017, 1146, 191-197.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.130]
[12]
Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2 approximately maximum-likelihood trees for large alignments. PLoS One, 2010, 5(3)e9490
[http://dx.doi.org/10.1371/journal.pone.0009490] [PMID: 20224823]
[13]
Lin, X.M.; Li, H.; Wang, C.; Peng, X.X. Proteomic analysis of nalidixic acid resistance in Escherichia coli: Identification and functional characterization of OM proteins. J. Proteome Res., 2008, 7(6), 2399-2405.
[http://dx.doi.org/10.1021/pr800073c] [PMID: 18438992]
[14]
Mitsos, C.A.; Zografos, A.L.; Igglessi-Markopoulou, O. An efficient route to 3-aryl-substituted quinolin-2-one and 1,8-naphthyridin-2-one derivatives of pharmaceutical interest. J. Org. Chem., 2003, 68(11), 4567-4569.
[http://dx.doi.org/10.1021/jo0340051] [PMID: 12762773]
[15]
Tsuzuki, Y.; Tomita, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel antitumor agents. Bioorg. Med. Chem. Lett., 2004, 14(12), 3189-3193.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.011] [PMID: 15149673]
[16]
Madaan, A.; Kumar, V.; Verma, R.; Singh, A.T.; Jain, S.K.; Jaggi, M. Anti-inflammatory activity of a naphthyridine derivative (7-chloro-6-fluoro-N-(2-hydroxy-3-oxo-1-phenyl-3-(phenylamino)propyl)-4-oxo-1-(prop-2-yn-1-yl)-1,4-dihydro-1,8-naphthyridine-3-carboxamide) possessing in vitro anticancer potential. Int. Immunopharmacol., 2013, 15(3), 606-613.
[http://dx.doi.org/10.1016/j.intimp.2013.01.011] [PMID: 23370301]
[17]
Abouzarzadeh, A.; Forouzani, M.; Jahanshahi, M.; Bahramifar, N. Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications. J. Mol. Recognit., 2012, 25(7), 404-413.
[http://dx.doi.org/10.1002/jmr.2201] [PMID: 22733549]
[18]
Eppakayala, L.; Sripelly, S.S.; Chary, M.T. 6 A Study on antibacterial activity of substituted 1, 8-Naphthyridine containing carbalehydes, methylene hydrazines, thiadizole amines and triazole Thiols. J. Adv. Drug Res., 2012, 2(2), 6-11.
[19]
Ramesh, E.; Manian, R.D.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem., 2009, 17(2), 660-666.
[http://dx.doi.org/10.1016/j.bmc.2008.11.058] [PMID: 19097914]
[20]
Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.002] [PMID: 16260068]
[21]
Mohammed, A.A.M.; Suaifan, G.A.R.Y.; Shehadeh, M.B.; Okechukwu, P.N. Design, synthesis, and biological evaluation of 1,8-naphthyridine glucosamine conjugates as antimicrobial agents. Drug Dev. Res., 2019, 80(1), 179-186.
[http://dx.doi.org/10.1002/ddr.21508] [PMID: 30570767]
[22]
Gao, L.Z.; Xie, Y.S.; Li, T.; Huang, W.L.; Hu, G.Q. Synthesis and antibacterial activity of novel [1,2,4]Triazolo [3,4-h] [1,8]Naphthyridine-7-Carboxilic acid derivatives. Chin. Chem. Lett., 2015, 26(1), 149-151.
[http://dx.doi.org/10.1016/j.cclet.2014.09.017]
[23]
Gençer, H.K.; Levent, S.; Acar Çevik, U.; Özkay, Y.; Ilgın, S. New 1,4-dihydro[1,8]naphthyridine derivatives as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(5), 1162-1168.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.073] [PMID: 28174104]
[24]
Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J.M. Synthesis of novel nalidixic acid-based 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives as potent antibacterial agents. Chem. Biol. Drug Des., 2012, 79(4), 384-397.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01316.x] [PMID: 22212247]
[25]
Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J.M. Synthesis, antimicrobial evaluation and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2011, 46(9), 4089-4099.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.009] [PMID: 21752498]
[26]
Sriram, D.; Senthilkumar, P.; Dinakaran, M.; Yogeeswari, P.; China, A.; Nagaraja, V. Antimycobacterial activities of novel 1-(cyclopropyl/tert-butyl/4-fluorophenyl)-1,4-dihydro- 6-nitro-4-oxo-7-(substituted secondary amino)-1,8-naphthyridine-3-carboxylic acid. J. Med. Chem., 2007, 50(24), 6232-6239.
[http://dx.doi.org/10.1021/jm700999n] [PMID: 17960928]
[27]
Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Antitubercular activities of novel benzothiazolo naphthyridone carboxylic acid derivatives endowed with high activity toward multi-drug resistant tuberculosis. Biomed. Pharmacother., 2009, 63(1), 11-18.
[http://dx.doi.org/10.1016/j.biopha.2007.10.009] [PMID: 18078735]
[28]
Clark, R.F.; Wang, S.; Ma, Z.; Weitzberg, M.; Motter, C.; Tufano, M.; Wagner, R.; Gu, Y.G.; Dandliker, P.J.; Lerner, C.G.E.; Chovan, L.E.; Cai, Y.; Black-Schaefer, C.L.; Lynch, L.; Kalvin, D.; Nilius, A.M.; Pratt, S.D.; Soni, N.; Zhang, T.; Zhang, X.; Beutel, B.A. Novel inhibitors of bacterial protein synthesis: Structure-activity relationships for 1,8-naphthyridine derivatives incorporating position 3 and 4 variants. Bioorg. Med. Chem. Lett., 2004, 14(12), 3299-3302.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.091] [PMID: 15149694]
[29]
Foroumadi, A.; Mansouri, S.; Kiani, Z.; Rahmani, A. Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolones. Eur. J. Med. Chem., 2003, 38(9), 851-854.
[http://dx.doi.org/10.1016/S0223-5234(03)00148-X] [PMID: 14561484]
[30]
Badawneh, M.; Aljamal, J. Synthesis and antitubercular activity of piperidine and morpholine 1, 8 naphthyridine analogues. Int. J. Pharm. Pharm. Sci., 2016, 8(12), 252-257.
[http://dx.doi.org/10.22159/ijpps.2016v8i12.13503]
[31]
Naik, T.R.R.; Naik, H.S.B.; Raghavendra, M.; Gopal, S.; Naik, K. Synthesis of Thieno[2,3-b]benzo[1,8]Naphthyridine-2-Carboxilic acids under microwave irradiation and intraction with DNA studies. ARKIVOC, 2006, 1-15, 84-94.
[32]
Bhambi, D.; Salvi, V.K.; Bapna, A.; Pemawat, G.; Talesara, G.L. Synthesis and antimicrobial evaluation of alkoxypthalimide derivatives of naphthyridine Indian J. Chem., 2009, 48(B), 697, 704.
[33]
Badawneh, M.; Manera, C.; Mori, C.; Saccomanni, G.; Ferrarini, P.L. Synthesis of variously substituted 1,8-naphthyridine derivatives and evaluation of their antimycobacterial activity. Farmaco, 2002, 57(8), 631-639.
[http://dx.doi.org/10.1016/S0014-827X(02)01235-1] [PMID: 12361230]
[34]
Makhanya, T.R.; Gengan, R.M.; Ata, A. Synthesis and biological evaluation of novel fused indolo [3, 2-c][1, 8] naphthyridine derivatives as potential antibacterial agents. Synth. Commun., 2019, 49(6), 823-835.
[35]
Bhasker, G.V.; Satyanarayana, G.V.; Laxminarayana, E.; Latha, A.; Chary, M.T. Synthesis, antibacterial activity, and docking studies of some new 2-substituted-1, 8-naphthyridine derivatives. Indian J. Heterocyc CH., 2018, 28(02), 227-242.
[36]
Bhasker, G.V.; Satyanarayana, G.V.; Latha, A.; Laxminarayana, E.; Chary, M.T. Synthesis and antimicrobial activity of novel 1-[3-(1, 8-Naphthyridin-2-Yl) Phenyl]-3-Arylurea derivatives. Asian J. Chem., 2018, 30(4), 771-774.
[37]
Martins, L.B.; Monteze, N.M.; Calarge, C.; Ferreira, A.V.M.; Teixeira, A.L. Pathways linking obesity to neuropsychiatric disorders. Nutrition, 2019, 66, 16-21.
[http://dx.doi.org/10.1016/j.nut.2019.03.017] [PMID: 31200298]
[38]
Harvey, P.D.; Jones, M.T. Functional deficts in attenuated psuchosis syndrome and related conditions. Curr. Future Treat. Options. Res. Cogn., 2019.17100152
[39]
Mahesh, R.; Dhar, A.K.; Jindal, A.; Bhatt, S. 2-(4-substituted piperazin-1-yl)-1,8-naphthyridine-3-carboxylic acids: Novel 5-HT3 receptor antagonists with anxiolytic-like activity in rodent behavioral models. Cancer J. Physiol. Pharmacol., 2013, 91(10), 848-854.
[http://dx.doi.org/10.1139/cjpp-2013-0134] [PMID: 24144056]
[40]
Gowri Chandra Sekhar, K.V.; Rao, V.S.; Deuther-Conrad, W.; Reddy, A.S.; Brust, P.; Krishna Kumar, M.M. Design, synthesis, and preliminary in vitro and in vivo pharmacological evaluation of 2-4-[4-(2,5-Disubstituted Thiazol-4-Yl)Phenylethyl]Piperazin-1-Yl-1,8-Naphthyridine-3-Carbonitriles as atypical antipsychotic agents. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 561-568.
[http://dx.doi.org/10.3109/14756366.2010.537658] [PMID: 21171898]
[41]
Ferrari, P.L.; Betti, L.; Cavallini, T.; Giannaccini, G.; Lucacchini, A.; Manera, C.; Martinelli, A.; Ortore, G.; Saccomanni, G.; Tuccinardi, T. Study on affinity profile toward native human and bovine adenosine receptors of a series of 1,8-naphthyridine derivatives. J. Med. Chem., 2004, 47(12), 3019-3031.
[42]
Mahesh, R.; Kumar, B.; Jindal, A.; Bhatt, S.; Devadoss, T.; Pandey, D.K. Antidepressant-like activity of (4-phenylpiperazin-1-yl) (quinoxalin-2-yl) methanone (4a), a novel 5-HT(3) receptor antagonist: An investigation in behaviour-based rodent models of depression. Indian J. Pharmacol., 2012, 44(5), 560-565.
[http://dx.doi.org/10.4103/0253-7613.100371] [PMID: 23112413]
[43]
Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and depression: A systematic review and meta-analysis. J. Affect. Disord., 2017, 221, 36-46.
[http://dx.doi.org/10.1016/j.jad.2017.06.009] [PMID: 28628766]
[44]
Dhar, A.K.; Mahesh, R.; Jindal, A.; Devadoss, T.; Bhatt, S. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-HT3 receptor antagonists for the management of depression. Chem. Biol. Drug Des., 2014, 84(6), 721-731.
[http://dx.doi.org/10.1111/cbdd.12370] [PMID: 24903617]
[45]
Gautam, B. Jindal, A.; Dhar, A.; Behavior, R. M.-B. and; 2013, U. Antidepressant-like activity of 2-(4-Phenylpiperazin-1-Yl)-1, 8-Naphthyridine-3-Carboxylic acid (7a), a 5-HT3 receptor antagonist in behaviour based rodent models. Pharmacol. Biochem. Behav., 2013, 109, 91-97.
[http://dx.doi.org/10.1016/j.pbb.2013.05.006] [PMID: 23680574]
[46]
Mahesh, R.; Dhar, A.K.; Jindal, A.; Bhatt, S. Design, synthesis and evaluation of antidepressant activity of novel 2-methoxy 1, 8 naphthyridine 3-carboxamides as 5-HT3 receptor antagonists. Chem. Biol. Drug Des., 2014, 83(5), 583-591.
[http://dx.doi.org/10.1111/cbdd.12271] [PMID: 24330585]
[47]
Dhar, A.K.; Mahesh, R.; Jindal, A.; Bhatt, S. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: Novel 5-HT3 receptor antagonists with antidepressant-like activity. Arch. Pharm. (Weinheim), 2015, 348(1), 34-45.
[http://dx.doi.org/10.1002/ardp.201400293] [PMID: 25581677]
[48]
Bhatt, S.; Bagal, S.; Butola, S.; Dhar, A.; Mahesh, R. antidepressant- and anxiolytic-like effect of novel 5-Hydroxytryptamine3 receptor antagonist 2-[4-(3-Chlorophenyl) Piperazin-1-Yl]-1,8-Naphthyridine -3-Carboxylic Acid (7e)-: An approach using rodent behavioral antidepressant and anxiolytic test battery. Int. J. Nutr. Pharmacol. Neurol. Dis., 2016, 6(2), 81.
[http://dx.doi.org/10.4103/2231-0738.179968]
[49]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 19, 140-177.
[http://dx.doi.org/10.1021/op500305s]
[50]
Leonard, J.T.; Gangadhar, R.; Gnanasam, S.K.; Ramachandran, S.; Saravanan, M.; Sridhar, S.K. Synthesis and pharmacological activities of 1,8-naphthyridine derivatives. Biol. Pharm. Bull., 2002, 25(6), 798-802.
[http://dx.doi.org/10.1248/bpb.25.798] [PMID: 12081151]
[51]
Marco-Contelles, J.; León, R.; de Los Ríos, C.; Guglietta, A.; Terencio, J.; López, M.G.; García, A.G.; Villarroya, M. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem., 2006, 49(26), 7607-7610.
[http://dx.doi.org/10.1021/jm061047j] [PMID: 17181144]
[52]
de Aquino, R.A.N.; Modolo, L.V.; Alves, R.B.; de Fátima, Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org. Biomol. Chem., 2013, 11(48), 8395-8409.
[http://dx.doi.org/10.1039/c3ob41762j] [PMID: 24186541]
[53]
Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, 70, 165-188.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.050] [PMID: 24148993]
[54]
Speck-Planche, A.; Luan, F.; Cordeiro, M.N. Discovery of anti-Alzheimer agents: Current ligand-based approaches toward the design of acetylcholinesterase inhibitors. Mini Rev. Med. Chem., 2012, 12(6), 583-591.
[http://dx.doi.org/10.2174/138955712800493744] [PMID: 22587771]
[55]
Hameed, A.; Zehra, S.T.; Shah, S.J.A.; Khan, K.M.; Alharthy, R.D.; Furtmann, N.; Bajorath, J.; Tahir, M.N.; Iqbal, J. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives. Chem. Biol. Drug Des., 2015, 86(5), 1115-1120.
[http://dx.doi.org/10.1111/cbdd.12579] [PMID: 25951978]
[56]
Egea, J.; de los Rios, C. 1,8-Naphthyridine derivatives as cholinesterases inhibitors and cell Ca2+ regulators, a multitarget strategy for Alzheimer’s disease. Curr. Top. Med. Chem., 2011, 11(22), 2807-2823.
[http://dx.doi.org/10.2174/156802611798184418] [PMID: 22039881]
[57]
de Los Ríos, C.; Egea, J.; Marco-Contelles, J.; León, R.; Samadi, A.; Iriepa, I.; Moraleda, I.; Gálvez, E.; García, A.G.; López, M.G.; Villarroya, M.; Romero, A. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1,8-naphthyridine derivatives. J. Med. Chem., 2010, 53(14), 5129-5143.
[http://dx.doi.org/10.1021/jm901902w] [PMID: 20575555]
[58]
Soriano, E.; Samadi, A.; Chioua, M. Ríos, de los C.; Contelles, J. M. molecular modelling, synthesis and acetylcholinestrase inhibition of Ethyl-5-amino-2-methyl-6,7,8,9 tetrahydrobenzo[b][1,8]Naphthyridine-3-carboxylate. Bioorg. Med. Chem. Lett., 2010, 20(9), 2950-2953.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.010] [PMID: 20350807]
[59]
León, R. Ros, de los C.; Marco-Contelles, J.; Huertas, O.; Barril, X.; Javier Luque, F.; López, M. G.; García, A. G.; Villarroya, M. New Tacrine-dihydropyridinr hybrids that inhibit acetylcholinesterase, calcium entry and exhibit neuroprotection properties. Bioorg. Med. Chem., 2008, 16(16), 7759-7769.
[http://dx.doi.org/10.1016/j.bmc.2008.07.005] [PMID: 18640842]
[60]
Orozco, C.; de Los Rios, C.; Arias, E.; León, R.; García, A.G.; Marco, J.L.; Villarroya, M.; López, M.G. ITH4012 (ethyl 5-amino-6,7,8,9-tetrahydro-2-methyl-4-phenylbenzol[1,8]naphthyridine-3-carboxylate), a novel acetylcholinesterase inhibitor with “calcium promotor” and neuroprotective properties. J. Pharmacol. Exp. Ther., 2004, 310(3), 987-994.
[http://dx.doi.org/10.1124/jpet.104.068189] [PMID: 15111641]
[61]
Barreiro, E.J.; Camara, C.A.; Verli, H.; Brazil-Más, L.; Castro, N.G.; Cintra, W.M.; Aracava, Y.; Rodrigues, C.R.; Fraga, C.A.M. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4,3-d]pyridine and pyrazolo[3,4-b][1,8]naphthyridine isosteres: A new class of potent and selective acetylcholinesterase inhibitors. J. Med. Chem., 2003, 46(7), 1144-1152.
[http://dx.doi.org/10.1021/jm020391n] [PMID: 12646025]
[62]
Ramos, E.; Romero, A.; Egea, J.; Marco-Contelles, J.; Del Pino, J.; de Los Ríos, C. Analysis of gene expression profiles of CR80, a neuroprotective 1,8-Naphthyridine. Future Med. Chem., 2018, 10(11), 1289-1300.
[http://dx.doi.org/10.4155/fmc-2018-0004] [PMID: 29560738]
[63]
Kumar, V.; Jaggi, M.; Singh, A.T.; Madaan, A.; Sanna, V.; Singh, P.; Sharma, P.K.; Irchhaiya, R.; Burman, A.C. 1,8-Naphthyridine-3-carboxamide derivatives with anticancer and anti-inflammatory activity. Eur. J. Med. Chem., 2009, 44(8), 3356-3362.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.015] [PMID: 19361894]
[64]
Tsuzuki, Y.; Tomita, K.; Shibamori, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2. J. Med. Chem., 2004, 47(8), 2097-2109.
[http://dx.doi.org/10.1021/jm0304966] [PMID: 15056007]
[65]
Bucha, M.; Eppakayala, L.; Sripelly, S.S.; Maringanti, T.C. An efficient synthesis of thiophene containing 1,8-Naphthyridine derivatives. JUSPS, 2015, 27(3), 167-174. Ultra Scientist
[66]
Hou, X.; Luo, H.; Zhang, M.; Yan, G.; Pu, C.; Lan, S.; Li, R. Synthesis and biological evaluation of 3-(1,3,4-oxadiazol-2-yl)-1,8-naphthyridin-4(1H)-ones as cisplatin sensitizers. MedChemComm, 2018, 9(11), 1949-1960.
[http://dx.doi.org/10.1039/C8MD00464A] [PMID: 30568762]
[67]
Abu-Melha, S. Synthesis and biological evaluation of some novel 1,8-Naphthyridine derivatives. Acta Chim. Slov., 2017, 64(4), 919-930.
[http://dx.doi.org/10.17344/acsi.2017.3617] [PMID: 29318287]
[68]
Manera, C.; Malfitano, A.M.; Parkkari, T.; Lucchesi, V.; Carpi, S.; Fogli, S.; Bertini, S.; Laezza, C.; Ligresti, A.; Saccomanni, G.; Savinainen, J.R.; Ciaglia, E.; Pisanti, S.; Gazzerro, P.; Di Marzo, V.; Nieri, P.; Macchia, M.; Bifulco, M. New quinolone- and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno-modulatory activity. Eur. J. Med. Chem., 2015, 97, 10-18.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.034] [PMID: 25935384]
[69]
Thilagam, S.; Rajendran, S.P. Molecular docking and cytotoxic activity of 1,8-naphthyridine derivatives in human lung cancer. Indian J. Res., 2015, 4, 437-439.
[70]
Awasthi, A.; Lohani, M.; Singh, M.K.; Singh, A.T.; Jaggi, M. Pharmacokinetic evaluation of C-3 modified 1,8-naphthyridine-3-carboxamide derivatives with potent anticancer activity: Lead finding. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 710-721.
[http://dx.doi.org/10.3109/14756366.2013.845817] [PMID: 24156741]
[71]
Lee, S.H.; Kang, Y.J.; Sung, B.; Kim, D.H.; Lim, H.S.; Kim, H.R.; Kim, S.J.; Yoon, J.H.; Moon, H.R.; Chung, H.Y.; Kim, N.D. MHY-449, a novel dihydrobenzofuro[4,5-b][1,8] naphthyridin-6-one derivative, induces apoptotic cell death through modulation of Akt/FoxO1 and ERK signaling in PC3 human prostate cancer cells. Int. J. Oncol., 2014, 44(3), 905-911.
[http://dx.doi.org/10.3892/ijo.2014.2257] [PMID: 24424889]
[72]
Kumar, V.; Madaan, A.; Sanna, V.K.; Vishnoi, M.; Joshi, N.; Singh, A.T.; Jaggi, M.; Sharma, P.K.; Irchhaiya, R.; Burman, A.C. Anticancer and immunomodulatory activities of novel 1,8-naphthyridine derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1169-1178.
[http://dx.doi.org/10.1080/14756360802696802] [PMID: 19555167]
[73]
Sato, Y.; Nishizawa, S.; Yoshimoto, K.; Seino, T.; Ichihashi, T.; Morita, K.; Teramae, N. Influence of substituent modifications on the binding of 2-amino-1,8-naphthyridines to cytosine opposite an AP site in DNA duplexes: Thermodynamic characterization. Nucleic Acids Res., 2009, 37(5), 1411-1422.
[http://dx.doi.org/10.1093/nar/gkn1079] [PMID: 19136458]
[74]
Srivastava, S.K.; Jaggi, M.; Singh, A.T.; Madan, A.; Rani, N.; Vishnoi, M.; Agarwal, S.K.; Mukherjee, R.; Burman, A.C. Anticancer and anti-inflammatory activities of 1,8-naphthyridine-3-carboxamide derivatives. Bioorg. Med. Chem. Lett., 2007, 17(23), 6660-6664.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.006] [PMID: 17950602]
[75]
Dianzani, C.; Collino, M.; Gallicchio, M.; Di Braccio, M.; Roma, G.; Fantozzi, R. Effects of anti-inflammatory [1, 2, 4]triazolo[4, 3-a] [1, 8]naphthyridine derivatives on human stimulated PMN and endothelial cells: An in vitro study. J. Inflamm. (Lond.), 2006, 3(1), 4.
[http://dx.doi.org/10.1186/1476-9255-3-4] [PMID: 16569220]
[76]
Al-romaizan, A.N.; Jaber, T.S.; Ahmed, N.S. Naphthyridine derivatives: Design, synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line. Open Chem., 2019, 17(1), 943-954.
[77]
Elé Hadidy, S.A.; Selim, Y.A. New synthetic approaches for cytotoxic activity of novel 1, 8‐Naphthyridine derivatives. J. Heterocycl. Chem., 2018, 55(1), 103-114.
[http://dx.doi.org/10.1002/jhet.3011]
[78]
Di Braccio, M.; Grossi, G.; Alfei, S.; Ballabeni, V.; Tognolini, M.; Flammini, L.; Giorgio, C.; Bertoni, S.; Barocelli, E. 1,8-Naphthyridines IX. Potent anti-inflammatory and/or analgesic activity of a new group of substituted 5-amino[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, of some their Mannich base derivatives and of one novel substituted 5-amino-10-oxo-10H-pyrimido[1,2-a][1,8]naphthyridine-6-carboxamide derivative. Eur. J. Med. Chem., 2014, 86, 394-405.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.069] [PMID: 25194932]
[79]
Roma, G.; Di Braccio, M.; Grossi, G.; Piras, D.; Ballabeni, V.; Tognolini, M.; Bertoni, S.; Barocelli, E. 1,8-Naphthyridines VIII. Novel 5-aminoimidazo[1,2-a] [1,8]naphthyridine-6-carboxamide and 5-amino[1,2,4]triazolo[4,3-a] [1,8]naphthyridine-6-carboxamide derivatives showing potent analgesic or anti-inflammatory activity, respectively, and completely devoid of acute gastrolesivity. Eur. J. Med. Chem., 2010, 45(1), 352-366.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.020] [PMID: 19913952]
[80]
Di Braccio, M.; Grossi, G.; Roma, G.; Piras, D.; Mattioli, F.; Gosmar, M. 1,8-Naphthyridines VI. Synthesis and anti-inflammatory activity of 5-(alkylamino)-N,N-diethyl[1,2,4]triazolo[4,3-a][1,8] naphthyridine-6-carboxamides with a new substitution pattern on the triazole ring. Eur. J. Med. Chem., 2008, 43(3), 584-594.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.016] [PMID: 17602797]
[81]
Grossi, G.; Di Braccio, M.; Roma, G.; Ballabeni, V.; Tognolini, M.; Barocelli, E. 1,8-Naphthyridines v. novel N-substituted 5-amino-N,N-diethyl-9-isopropyl [1,2,4]triazolo[4,3-a] [1,8]naphthy-ridine-6-carboxamides, as potent anti-inflammatory and/or analgesic agents completely devoid of acute gastrolesivity. Eur. J. Med. Chem., 2005, 40(2), 155-165.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.022] [PMID: 15694650]
[82]
Patil, P.T.; Warekar, P.P.; Patil, K.T.; Undare, S.S.; Jamale, D.K.; Vibhute, S.S.; Valekar, N.J.; Kolekar, G.B.; Deshmukh, M.B.; Anbhule, P.V. A simple and efficient one-pot novel synthesis of pyrazolo [3, 4-b][1, 8] naphthyridine and pyrazolo [3, 4-d] pyrimido [1, 2-a] pyrimidine derivatives as anti-inflammatory agents. Res. Chem. Intermed., 2018, 44(2), 1119-1130.
[83]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[84]
Bachand, B.; Nguyen-Ba, N.; Siddiqui, A.; Levesque, S.U.S.U.S. patent US 6,340,690,, 2002.
[85]
Massari, S.; Daelemans, D.; Barreca, M.L.; Knezevich, A.; Sabatini, S.; Cecchetti, V.; Marcello, A.; Pannecouque, C.; Tabarrini, O.A. 1,8-naphthyridone derivative targets the HIV-1 Tat-mediated transcription and potently inhibits the HIV-1 replication. J. Med. Chem., 2010, 53(2), 641-648.
[http://dx.doi.org/10.1021/jm901211d] [PMID: 19958026]
[86]
Zhao, X.Z.; Smith, S.J.; Métifiot, M.; Marchand, C.; Boyer, P.L.; Pommier, Y.; Hughes, S.H.; Burke, T.R., Jr 4-amino-1-hydroxy-2-oxo-1,8-naphthyridine-containing compounds having high potency against raltegravir-resistant integrase mutants of HIV-1. J. Med. Chem., 2014, 57(12), 5190-5202.
[http://dx.doi.org/10.1021/jm5001908] [PMID: 24901667]
[87]
Wang, H.; Wang, S.; Cheng, L.; Chen, L.; Wang, Y.; Qing, J.; Huang, S.; Wang, Y.; Lei, X.; Wu, Y.; Ma, Z.; Zhang, L.; Tang, Y. discovery of imidazo[1,2-α][1,8]naphthyridine derivatives as potential hcv entry inhibitor. ACS Med. Chem. Lett., 2015, 6(9), 977-981.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00159] [PMID: 26396683]
[88]
Huang, S.; Qing, J.; Wang, S.; Wang, H.; Zhang, L.; Tang, Y. Design and synthesis of imidazo[1,2-α][1,8]naphthyridine derivatives as anti-HCV agents via direct C-H arylation. Org. Biomol. Chem., 2014, 12(15), 2344-2348.
[http://dx.doi.org/10.1039/C3OB42525H] [PMID: 24595428]
[89]
Yadav, A.; Kumari, R.; Yadav, A.; Mishra, J.P.; Srivatva, S.; Prabha, S. antioxidants and its functions in human body - a review. Res. Environ. Life Sci., 2016, 9(11), 1328-1331.
[90]
Nam, T.G.; Rector, C.L.; Kim, H.Y.; Sonnen, A.F.P.; Meyer, R.; Nau, W.M.; Atkinson, J.; Rintoul, J.; Pratt, D.A.; Porter, N.A. Tetrahydro-1,8-naphthyridinol analogues of α-tocopherol as antioxidants in lipid membranes and low-density lipoproteins. J. Am. Chem. Soc., 2007, 129(33), 10211-10219.
[http://dx.doi.org/10.1021/ja072371m] [PMID: 17655300]
[91]
Pirasath, S.; Kumanan, T.; Guruparan, M. A Study on knowledge, awareness, and medication adherence in patients with hypertension from a Tertiary Care Centre from Northern Sri Lanka Int; J. Hyp, 2017.
[92]
Abegaz, T.M.; Shehab, A.; Gebreyohannes, E.A.; Bhagavathula, A.S.; Elnour, A.A. Nonadherence to antihypertensive drugs: A systematic review and meta-analysis. Medicine (Baltimore), 2017, 96(4)e5641
[http://dx.doi.org/10.1097/MD.0000000000005641] [PMID: 28121920]
[93]
Badawneh, M.; Ferrarini, P.L.; Calderone, V.; Manera, C.; Martinotti, E.; Mori, C.; Saccomanni, G.; Testai, L. Synthesis and evaluation of antihypertensive activity of 1,8-naphthyridine derivatives. Part X. Eur. J. Med. Chem., 2001, 36(11-12), 925-934.
[http://dx.doi.org/10.1016/S0223-5234(01)01277-6] [PMID: 11755235]
[94]
Ferrarini, P.L.; Mori, C.; Badawneh, M.; Calderone, V.; Greco, R.; Manera, C.; Martinelli, A.; Nieri, P.; Saccomanni, G. Synthesis and β-blocking activity of (R,S)-(E)-oximeethers of 2, 3-dihydro-1,8-naphthyridine and 2,3-dihydrothiopyrano[2, 3-b]pyridine: Potential antihypertensive agents - part IX. Eur. J. Med. Chem., 2000, 35(9), 815-826.
[http://dx.doi.org/10.1016/S0223-5234(00)00173-2] [PMID: 11006483]
[95]
Cui, L.; Mharakurwa, S.; Ndiaye, D.; Rathod, P.K.; Rosenthal, P.J. Antimalarial drug resistance: Literature review and activities and findings of the icemr network. Am. J. Trop. Med. Hyg., 2015, 93(3)(Suppl.), 57-68.
[http://dx.doi.org/10.4269/ajtmh.15-0007] [PMID: 26259943]
[96]
Sweileh, W.M.; Al-Jabi, S.W.; AbuTaha, A.S.; Zyoud, S.H.; Anayah, F.M.A.; Sawalha, A.F. Bibliometric analysis of worldwide scientific literature in mobile - health: 2006-2016. BMC Med. Inform. Decis. Mak., 2017, 17(1), 72.
[http://dx.doi.org/10.1186/s12911-017-0476-7] [PMID: 28558687]
[97]
Zhu, S.; Zhang, Q.; Gudise, C.; Meng, L.; Wei, L.; Smith, E.; Kong, Y. Synthesis and evaluation of naphthyridine compounds as antimalarial agents. Bioorg. Med. Chem. Lett., 2007, 17(22), 6101-6106.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.044] [PMID: 17900897]
[98]
Anas, M.; Sharma, R.; Dhamodharan, V.; Pradeepkumar, P.I.; Manhas, A.; Srivastava, K.; Ahmed, S.; Kumar, N. Investigating pharmacological targeting of G-Quadruplexes in the human malaria parasite. Biochemistry, 2017, 56(51), 6691-6699.
[http://dx.doi.org/10.1021/acs.biochem.7b00964] [PMID: 29182860]
[99]
Olepu, S.; Suryadevara, P.K.; Rivas, K.; Yokoyama, K.; Verlinde, C.L.M.J.; Chakrabarti, D.; Van Voorhis, W.C.; Gelb, M.H. 2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials. Bioorg. Med. Chem. Lett., 2008, 18(2), 494-497.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.104] [PMID: 18077162]
[100]
Aggarwal, N.; Kumar, R.; Srivastava, C.; Dureja, P.; Khurana, J.M. Synthesis, biological activities and SAR studies of novel 1-Ethyl-7-methyl-4-oxo-1,4-dihydro-[1,8]naphthyridine-3-carboxylic acid based diacyl and sulfonyl acyl hydrazines. Pest Manag. Sci., 2014, 70(7), 1071-1082.
[http://dx.doi.org/10.1002/ps.3650] [PMID: 24038900]
[101]
Aggarwal, N.; Kumar, R.; Srivastva, C.; Dureja, P.; Khurana, J.M. Synthesis of nalidixic acid based hydrazones as novel pesticides. J. Agric. Food Chem., 2010, 58(5), 3056-3061.
[http://dx.doi.org/10.1021/jf904144e] [PMID: 20131903]
[102]
Ferrarini, P.L.; Badawneh, M.; Franconi, F.; Manera, C.; Miceli, M.; Mori, C.; Saccomanni, G. Synthesis and antiplatelet activity of some 2,7-di(N-cycloamino)-3-phenyl-1,8-naphthyridine derivatives. Farmaco, 2001, 56(4), 311-318.
[http://dx.doi.org/10.1016/S0014-827X(01)01075-8] [PMID: 11421260]
[103]
Ferrarini, P.L.; Mori, C.; Badawneh, M.; Franconi, F.; Manera, C.; Miceli, M.; Saccomanni, G. Synthesis and antiplatelet activity of some 3-phenyl-1,8-naphthyridine derivatives. Farmaco, 2000, 55(9-10), 603-610.
[http://dx.doi.org/10.1016/S0014-827X(00)00085-9] [PMID: 11152241]
[104]
Badawneh, M.; Aljamal, J. Antiplatelet aggregation activity of 4-phenyl-1,8- naphthyridine derivatives: Synthesis and evaluation. Int. J. Pharm. Pharm. Sci., 2016, 6, 290-304.
[105]
Malfitano, A.M.; Laezza, C.; D’Alessandro, A.; Procaccini, C.; Saccomanni, G.; Tuccinardi, T.; Manera, C.; Macchia, M.; Matarese, G.; Gazzerro, P.; Bifulco, M. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: Implications in multiple sclerosis. PLoS One, 2013, 8(5)e62511
[http://dx.doi.org/10.1371/journal.pone.0062511] [PMID: 23658734]
[106]
Pasquini, S.; Botta, L.; Semeraro, T.; Mugnaini, C.; Ligresti, A.; Palazzo, E.; Maione, S.; Di Marzo, V.; Corelli, F. Investigations on the 4-quinolone-3-carboxylic acid motif. 2. Synthesis and structure-activity relationship of potent and selective cannabinoid-2 receptor agonists endowed with analgesic activity in vivo. J. Med. Chem., 2008, 51(16), 5075-5084.
[http://dx.doi.org/10.1021/jm800552f] [PMID: 18680276]
[107]
Manera, C.; Saccomanni, G.; Adinolfi, B.; Benetti, V.; Ligresti, A.; Cascio, M.G.; Tuccinardi, T.; Lucchesi, V.; Martinelli, A.; Nieri, P.; Masini, E.; Di Marzo, V.; Ferrarini, P.L. Rational design, synthesis, and pharmacological properties of new 1,8-naphthyridin-2(1H)-on-3-carboxamide derivatives as highly selective cannabinoid-2 receptor agonists. J. Med. Chem., 2009, 52(12), 3644-3651.
[http://dx.doi.org/10.1021/jm801563d] [PMID: 19435366]
[108]
Manera, C.; Benetti, V.; Castelli, M.P.; Cavallini, T.; Lazzarotti, S.; Pibiri, F.; Saccomanni, G.; Tuccinardi, T.; Vannacci, A.; Martinelli, A.; Ferrarini, P.L. Design, synthesis, and biological evaluation of new 1,8-naphthyridin-4(1H)-on-3-carboxamide and quinolin-4(1H)-on-3-carboxamide derivatives as CB2 selective agonists. J. Med. Chem., 2006, 49(20), 5947-5957.
[http://dx.doi.org/10.1021/jm0603466] [PMID: 17004710]
[109]
Lucchesi, V.; Hurst, D.P.; Shore, D.M.; Bertini, S.; Ehrmann, B.M.; Allarà, M.; Lawrence, L.; Ligresti, A.; Minutolo, F.; Saccomanni, G.; Sharir, H.; Macchia, M.; Di Marzo, V.; Abood, M.E.; Reggio, P.H.; Manera, C. CB2-selective cannabinoid receptor ligands: synthesis, pharmacological evaluation, and molecular modeling investigation of 1,8-Naphthyridin-2(1H)-one-3-carboxamides. J. Med. Chem., 2014, 57(21), 8777-8791.
[http://dx.doi.org/10.1021/jm500807e] [PMID: 25272206]
[110]
Johansson, S.G.; Bieber, T.; Dahl, R.; Friedmann, P.S.; Lanier, B.Q.; Lockey, R.F.; Motala, C.; Martell, J.A.; Platts-Mills, T.A.; Ring, J.; Thien, F. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization. J. Allergy Clin. Immunol., 2004, 113(5), 832-836.
[111]
Gurjar, V.K.; Pal, D. Design, in silico studies, and synthesis of new 1, 8-naphthyridine-3-carboxylic acid analogues and evaluation of their H1R antagonism effects. RSC Adv., 2020, 10(23), 13907-13921.
[http://dx.doi.org/10.1039/D0RA00746C]
[112]
Fadel, S.; Hajbi, Y.; Khouili, M.; Lazar, S.; Suzenet, F.; Guillaumet, G. Synthesis of 3, 4-dihydro-1, 8-naphthyridin-2 (1H)-ones via microwave-activated inverse electron-demand Diels–Alder reactions. Beilstein J. Org. Chem., 2014, 10(1), 282-286.
[113]
Mohammed, S.; Khalid, M. A flexible synthesis of naphthyridine derivatives through diazotization, triflation, and Suzuki reaction. Indian J. Heterocy. Ch., 2019, 29(01), 21-25.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy