Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds | Bentham Science
Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds

Author(s): Chen Xu, Meng-Yuan Fang, Ke Wang, Jing Liu, Guang-Ping Tai, Zhao-Ting Zhang* and Ban-Feng Ruan*

Volume 20, Issue 28, 2020

Page: [2578 - 2598] Pages: 21

DOI: 10.2174/1568026620666200924115611

Price: $65

Open Access Journals Promotions 2
Abstract

Flavonoids are compounds based on a 2-phenylchromonone scaffold. Flavonoids can be divided into flavonoids, flavonols, dihydroflavones, anthocyanins, chalcones and diflavones according to the oxidation degree of the central tricarbonyl chain, the connection position of B-ring (2-or 3-position), and whether the tricarbonyl chain forms a ring or not. There are a variety of biological activities about flavonoids, such as anti-inflammatory activity, anti-oxidation and anti-tumor activity, and the antiinflammatory activity is apparent. This paper reviews the anti-inflammatory activities and mechanisms of flavonoids and their derivatives reported in China and abroad from 2011 till date (2011-2020), in order to find a good drug scaffold for the study of anti-inflammatory activities.

Keywords: Natural products, Flavonoids, Anti-inflammatory activity, Anti-inflammatory mechanism, 2-phenylchromonone scaffold, Drug.

Graphical Abstract
[1]
Jin, H.; Lee, W.S.; Eun, S.Y.; Jung, J.H.; Park, H.S.; Kim, G.; Choi, Y.H.; Ryu, C.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, H.J. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB231 partly through suppression of the Akt pathway. Int. J. Oncol., 2014, 45(4), 1629-1637.
[http://dx.doi.org/10.3892/ijo.2014.2535] [PMID: 24993541]
[2]
Jin, S.; Lee, M.Y. Kaempferia parviflora extract as a potential anti-acne agent with anti-inflammatory, sebostatic and anti-propionibacterium acnes activity. Int. J. Mol. Sci., 2018, 19(11)E3457
[http://dx.doi.org/10.3390/ijms19113457] [PMID: 30400322]
[3]
Aladaileh, S.H.; Abukhalil, M.H.; Saghir, S.A.M.; Hanieh, H.; Alfwuaires, M.A.; Almaiman, A.A.; Bin-Jumah, M.; Mahmoud, A.M. Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules, 2019, 9(8)E346
[http://dx.doi.org/10.3390/biom9080346] [PMID: 31387329]
[4]
Albouchi, F.; Avola, R.; Dico, G.M.L.; Calabrese, V.; Graziano, A.C.E.; Abderrabba, M.; Cardile, V. Melaleuca styphelioides sm. polyphenols modulate interferon gamma/histamine-induced inflammation in human nctc 2544 keratinocytes. Molecules, 2018, 23(10)E2526
[http://dx.doi.org/10.3390/molecules23102526] [PMID: 30279388]
[5]
Pinho-Ribeiro, F.A.; Hohmann, M.S.; Borghi, S.M.; Zarpelon, A.C.; Guazelli, C.F.; Manchope, M.F.; Casagrande, R.; Verri, W.A., Jr Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-κB. Chem. Biol. Interact., 2015, 228, 88-99.
[http://dx.doi.org/10.1016/j.cbi.2015.01.011] [PMID: 25617481]
[6]
Kang, B-M.; An, B-K.; Jung, W-S.; Jung, H-K.; Cho, J-H.; Cho, H-W.; Jang, S.J.; Yun, Y.B.; Kuk, Y.I. Anti-inflammatory effect of tricin isolated from Alopecurus aequalis Sobol. on the LPS-induced inflammatory response in RAW 264.7 cells. Int. J. Mol. Med., 2016, 38(5), 1614-1620.
[http://dx.doi.org/10.3892/ijmm.2016.2765] [PMID: 28025993]
[7]
Gong, G.; Wang, H.; Kong, X.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. Flavonoids are identified from the extract of Scutellariae Radix to suppress inflammatory-induced angiogenic responses in cultured RAW 264.7 macrophages. Sci. Rep., 2018, 8(1), 17412.
[http://dx.doi.org/10.1038/s41598-018-35817-2] [PMID: 30479366]
[8]
Gugliandolo, A.; Giacoppo, S.; Ficicchia, M.; Aliquò, A.; Bramanti, P.; Mazzon, E. Eruca sativa seed extract: A novel natural product able to counteract neuroinflammation. Mol. Med. Rep., 2018, 17(5), 6235-6244.
[http://dx.doi.org/10.3892/mmr.2018.8695] [PMID: 29512782]
[9]
Guo, L.T.; Wang, S.Q.; Su, J.; Xu, L.X.; Ji, Z.Y.; Zhang, R.Y.; Zhao, Q.W.; Ma, Z.Q.; Deng, X.Y.; Ma, S.P. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J. Neuroinflammation, 2019, 16(1), 95.
[http://dx.doi.org/10.1186/s12974-019-1474-8] [PMID: 31068207]
[10]
Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[11]
Fang, X.; Li, Y.; Qiao, J.; Guo, Y.; Miao, M. Neuroprotective effect of total flavonoids from Ilex pubescens against focal cerebral ischemia/reperfusion injury in rats. Mol. Med. Rep., 2017, 16(5), 7439-7449.
[http://dx.doi.org/10.3892/mmr.2017.7540] [PMID: 28944915]
[12]
Fei, J.; Liang, B.; Jiang, C.; Ni, H.; Wang, L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother., 2019, 109, 1586-1592.
[http://dx.doi.org/10.1016/j.biopha.2018.09.161] [PMID: 30551412]
[13]
Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A., Jr Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules, 2020, 25(3)E762
[http://dx.doi.org/10.3390/molecules25030762] [PMID: 32050623]
[14]
Li, C.G.; Yan, L.; Mai, F.Y.; Shi, Z.J.; Xu, L.H.; Jing, Y.Y.; Zha, Q.B.; Ouyang, D.Y.; He, X.H. Baicalin inhibits NOD-like receptor family, pyrin containing domain 3 inflammasome activation in murine macrophages by augmenting protein kinase A signaling. Front. Immunol., 2017, 8, 1409.
[http://dx.doi.org/10.3389/fimmu.2017.01409] [PMID: 29163487]
[15]
Fu, Q.; Gao, Y.; Zhao, H.; Wang, Z.; Wang, J. Galangin protects human rheumatoid arthritis fibroblastlike synoviocytes via suppression of the NFκB/NLRP3 pathway. Mol. Med. Rep., 2018, 18(4), 3619-3624.
[http://dx.doi.org/10.3892/mmr.2018.9422] [PMID: 30152847]
[16]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[17]
Duan, Y.; Zhu, H. The advance in important target proteins. Curr. Top. Med. Chem., 2019, 19(15), 1275.
[http://dx.doi.org/10.2174/156802661915190827162456] [PMID: 31526338]
[18]
Liu, X.; Jia, L.; Gao, Y.; Li, B.; Tu, Y. Anti-inflammatory activity of total flavonoids from seeds of Camellia oleifera Abel. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(10), 920-922.
[http://dx.doi.org/10.1093/abbs/gmu071] [PMID: 25189429]
[19]
Lu, H.; Yao, H.; Zou, R.; Chen, X.; Xu, H. Galangin suppresses renal inflammation via the inhibition of nf-κb, pi3k/akt and nlrp3 in uric acid treated nrk-52e tubular epithelial cells. BioMed Res. Int., 2019, 20193018357
[http://dx.doi.org/10.1155/2019/3018357] [PMID: 31240210]
[20]
Luo, J.; Park, H. Synthesis of 8-triazolochrysin analogs through click reaction. Bull. Korean Chem. Soc., 2014, 35(12), 3645-3646.
[http://dx.doi.org/10.5012/bkcs.2014.35.12.3645]
[21]
Lyons, C.L.; Roche, H.M. Nutritional modulation of ampk-impact upon metabolic-inflammation. Int. J. Mol. Sci., 2018, 19(10)E3092
[http://dx.doi.org/10.3390/ijms19103092] [PMID: 30304866]
[22]
Park, S.Y.; Kim, H.Y.; Park, H.J.; Shin, H.K.; Hong, K.W.; Kim, C.D. Concurrent treatment with taxifolin and cilostazol on the lowering of β-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NF-κB/BACE1 signaling pathways. PLoS One, 2016, 11(12)e0168286
[http://dx.doi.org/10.1371/journal.pone.0168286] [PMID: 27977755]
[23]
Pawłowska, K.; Czerwińska, M.E.; Wilczek, M.; Strawa, J.; Tomczyk, M.; Granica, S. Anti-inflammatory potential of flavonoids from the aerial parts of corispermum marschallii. J. Nat. Prod., 2018, 81(8), 1760-1768.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00152] [PMID: 30109803]
[24]
Peng, Z.; Li, X.; Xing, D.; Du, X.; Wang, Z.; Liu, G.; Li, X. Nobiletin alleviates palmitic acidinduced NLRP3 inflammasome activation in a sirtuin 1dependent manner in AML12 cells. Mol. Med. Rep., 2018, 18(6), 5815-5822.
[http://dx.doi.org/10.3892/mmr.2018.9615] [PMID: 30387829]
[25]
Qi, S.; Feng, Z.; Li, Q.; Qi, Z.; Zhang, Y. Myricitrin modulates nadph oxidase-dependent ros production to inhibit endotoxin-mediated inflammation by blocking the jak/stat1 and nox2/p47phox pathways. Oxid. Med. Cell. Longev., 2017, 20179738745
[http://dx.doi.org/10.1155/2017/9738745] [PMID: 28751937]
[26]
Qu, J.; Liu, F.; Zhang, X.; Wang, J.; Oroxylin, A. Oroxylin a reduces vasoconstriction in rat aortic rings through promoting no production and nos protein expression via estrogen receptor signal pathway. Evid. Based Complement. Alternat. Med., 2020, 20209257950
[http://dx.doi.org/10.1155/2020/9257950] [PMID: 32082399]
[27]
Ren, Q.; Guo, F.; Tao, S.; Huang, R.; Ma, L.; Fu, P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed. Pharmacother., 2020, 122109772
[http://dx.doi.org/10.1016/j.biopha.2019.109772] [PMID: 31918290]
[28]
Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: a bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci., 2018, 20189794625
[http://dx.doi.org/10.1155/2018/9794625] [PMID: 29853868]
[29]
Tribolo, S.; Lodi, F.; Winterbone, M.S.; Saha, S.; Needs, P.W.; Hughes, D.A.; Kroon, P.A. Human metabolic transformation of quercetin blocks its capacity to decrease endothelial nitric oxide synthase (eNOS) expression and endothelin-1 secretion by human endothelial cells. J. Agric. Food Chem., 2013, 61(36), 8589-8596.
[http://dx.doi.org/10.1021/jf402511c] [PMID: 23947593]
[30]
Tsai, Y-C.; Wang, S-L.; Wu, M-Y.; Liao, C-H.; Lin, C-H.; Chen, J-J.; Fu, S-L. Pilloin, A flavonoid isolated from aquilaria sinensis, exhibits anti-inflammatory activity in vitro and in vivo. Molecules, 2018, 23(12), 3177.
[http://dx.doi.org/10.3390/molecules23123177] [PMID: 30513815]
[31]
Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules, 2017, 23(1)E4.
[http://dx.doi.org/10.3390/molecules23010004] [PMID: 29267231]
[32]
Su, K.Y. Yu, C.Y.; Chen, Y.P.; Hua, K.F.; Chen, Y.L. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement. Altern. Med., 2014, 14(21), 447-456.
[http://dx.doi.org/10.1186/1472-6882-14-21.] [PMID: 24417898; PMCID: PMC3900474.]
[33]
Liu, Y.; Jing, Y.Y.; Zeng, C.Y.; Li, C.G.; Xu, L.H.; Yan, L.; Bai, W.J.; Zha, Q.B.; Ouyang, D.Y.; He, X.H. Scutellarin suppresses nlrp3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front. Pharmacol., 2018, 8, 975.
[http://dx.doi.org/10.3389/fphar.2017.00975] [PMID: 29375379]
[34]
Tian, C.; Chen, X.; Chang, Y.; Wang, R.; Ning, J.; Cui, C.; Liu, M. The regulatory effect of flavonoids extracted from Abutilon theophrasti leaves on gene expression in LPS-induced ALI mice via the NF-κB and MAPK signaling pathways. Pharm. Biol., 2019, 57(1), 514-518.
[http://dx.doi.org/10.1080/13880209.2019.1648523] [PMID: 31401916]
[35]
Li, P.; Chen, D.; Huang, Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int. J. Mol. Med., 2018, 42(1), 237-247.
[http://dx.doi.org/10.3892/ijmm.2018.3585] [PMID: 29568876]
[36]
Li, Y.; Hao, N.; Zou, S.; Meng, T.; Tao, H.; Ming, P.; Li, M.; Ding, H.; Li, J.; Feng, S.; Wang, X.; Wu, J. Immune regulation of raw264.7 cells in vitro by flavonoids from astragalus complanatus via activating the nf-κb signalling pathway. J. Immunol. Res., 2018, 20187948068
[http://dx.doi.org/10.1155/2018/7948068] [PMID: 29850637]
[37]
Lee, E.; Jeong, K-W.; Shin, A.; Kim, Y. Anti-inflammatory activity of 3,6,3′-trihydroxyflavone in mouse macrophages, in vitro. Bull. Korean Chem. Soc., 2014, 35(11), 3169-3174.
[http://dx.doi.org/10.5012/bkcs.2014.35.11.3169]
[38]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Chaitanya, M.; Arunasree, K.M.; Alam, M.S. Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur. J. Med. Chem., 2013, 65, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.056] [PMID: 23693150]
[39]
Fan, C.; Wu, L.H.; Zhang, G.F.; Xu, F.; Zhang, S.; Zhang, X.; Sun, L.; Yu, Y.; Zhang, Y.; Ye, R.D. 4′-Hydroxywogonin suppresses lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and acute lung injury mice. PLoS One, 2017, 12(8)e0181191
[http://dx.doi.org/10.1371/journal.pone.0181191] [PMID: 28792498]
[40]
Li, D.; Shi, G.; Wang, J.; Zhang, D.; Pan, Y.; Dou, H.; Hou, Y. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res. Ther., 2019, 21(1), 105.
[http://dx.doi.org/10.1186/s13075-019-1876-0] [PMID: 31023362]
[41]
Kim, S.E.; Kawaguchi, K.; Hayashi, H.; Furusho, K.; Maruyama, M. Remission effects of dietary soybean isoflavones on dss-induced murine colitis and an lps-activated macrophage cell line. Nutrients, 2019, 11(8)E1746
[http://dx.doi.org/10.3390/nu11081746] [PMID: 31362418]
[42]
Kwak, C.S.; Son, D.; Chung, Y.S.; Kwon, Y.H. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages. Nutr. Res. Pract., 2015, 9(6), 569-578.
[http://dx.doi.org/10.4162/nrp.2015.9.6.569] [PMID: 26634044]
[43]
Larit, F.; León, F.; Benyahia, S.; Cutler, S.J. Total phenolic and flavonoid content and biological activities of extracts and isolated compounds of cytisus villosus pourr. Biomolecules, 2019, 9(11)E732
[http://dx.doi.org/10.3390/biom9110732] [PMID: 31766217]
[44]
Wu, C.C.; Chen, Y.R.; Lu, D.H.; Hsu, L.H.; Yang, K.C.; Sumi, S. Evaluation of the post-treatment anti-inflammatory capacity of osteoarthritic chondrocytes: An in vitro study using baicalein. Regen Ther, 2020, 14, 177-183.
[http://dx.doi.org/10.1016/j.reth.2020.02.002] [PMID: 32128354]
[45]
Fu, S.; Liu, H.; Chen, X.; Qiu, Y.; Ye, C.; Liu, Y.; Wu, Z.; Guo, L.; Hou, Y.; Hu, C.A. Baicalin inhibits haemophilus parasuis-induced high-mobility group box 1 release during inflammation. Int. J. Mol. Sci., 2018, 19(5)E1307
[http://dx.doi.org/10.3390/ijms19051307] [PMID: 29702580]
[46]
Ren, N.; Kim, E.; Li, B.; Pan, H.; Tong, T.; Yang, C.S.; Tu, Y. Flavonoids alleviating insulin resistance through inhibition of inflammatory signaling. J. Agric. Food Chem., 2019, 67(19), 5361-5373.
[http://dx.doi.org/10.1021/acs.jafc.8b05348] [PMID: 30612424]
[47]
Simões, M.A.M.; Pinto, D.C.G.A.; Neves, B.M.R.; Silva, A.M.S. Flavonoid profile of the genista tridentata l., a species used traditionally to treat inflammatory processes. Molecules, 2020, 25(4)E812
[http://dx.doi.org/10.3390/molecules25040812] [PMID: 32069907]
[48]
Fu, S.; Xu, L.; Li, S.; Qiu, Y.; Liu, Y.; Wu, Z.; Ye, C.; Hou, Y.; Hu, C.A. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-κB) signaling during Haemophilus parasuis infection. Vet. Res. (Faisalabad), 2016, 47(1), 80.
[http://dx.doi.org/10.1186/s13567-016-0359-4] [PMID: 27502767]
[49]
He, P.; Wu, Y.; Shun, J.; Liang, Y.; Cheng, M.; Wang, Y. Baicalin ameliorates liver injury induced by chronic plus binge ethanol feeding by modulating oxidative stress and inflammation via cyp2e1 and nrf2 in mice. Oxid. Med. Cell. Longev., 2017, 20174820414
[http://dx.doi.org/10.1155/2017/4820414] [PMID: 28951767]
[50]
Shen, K.; Feng, X.; Pan, H.; Zhang, F.; Xie, H.; Zheng, S. Baicalin ameliorates experimental liver cholestasis in mice by modulation of oxidative stress, inflammation, and nrf2 transcription factor. Oxid. Med. Cell. Longev., 2017, 20176169128
[http://dx.doi.org/10.1155/2017/6169128] [PMID: 28757911]
[51]
Arroyo-Currás, N.; Rosas-García, V.M.; Videa, M. Substituent inductive effects on the electrochemical oxidation of flavonoids studied by square wave voltammetry and ab initio calculations. Molecules, 2016, 21(11)E1422
[http://dx.doi.org/10.3390/molecules21111422] [PMID: 27801813]
[52]
Bai, C.; Li, T.; Sun, Q.; Xin, Q.; Xu, T.; Yu, J.; Wang, Y.; Wei, L. Protective effect of baicalin against severe burninduced remote acute lung injury in rats. Mol. Med. Rep., 2018, 17(2), 2689-2694.
[PMID: 29207058]
[53]
Sato, V.H.; Chewchinda, S.; Parichatikanond, W.; Vongsak, B. In vitro and in vivo evidence of hypouricemic and anti-inflammatory activities of Maclura cochinchinensis (Lour.) Corner heartwood extract. J. Tradit. Complement. Med., 2019, 10(1), 85-94.
[http://dx.doi.org/10.1016/j.jtcme.2019.03.003] [PMID: 31956562]
[54]
Fan, S.H.; Wang, Y.Y.; Lu, J.; Zheng, Y.L.; Wu, D.M.; Li, M.Q.; Hu, B.; Zhang, Z.F.; Cheng, W.; Shan, Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One, 2014, 9(2)e89961
[http://dx.doi.org/10.1371/journal.pone.0089961] [PMID: 24587153]
[55]
Liu, D.; Yu, X.; Sun, H.; Zhang, W.; Liu, G.; Zhu, L. Flos lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway Naunyn Schmiedebergs Arch. Pharmacol, 2020. (online ahead of print)
[http://dx.doi.org/10.1007/s00210-020-01814-4] [PMID: 32125461]
[56]
Yao, Y.; Chen, L.; Xiao, J.; Wang, C.; Jiang, W.; Zhang, R.; Hao, J. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int. J. Mol. Sci., 2014, 15(11), 20913-20926.
[http://dx.doi.org/10.3390/ijms151120913] [PMID: 25402649]
[57]
Hassan, A.H.E.; Yoo, S.Y.; Lee, K.W.; Yoon, Y.M.; Ryu, H.W.; Jeong, Y.; Shin, J.S.; Kang, S.Y.; Kim, S.Y.; Lee, H.H.; Park, B.Y.; Lee, K.T.; Lee, Y.S. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: Discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur. J. Med. Chem., 2019, 180, 253-267.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.030] [PMID: 31310917]
[58]
Hunto, S.T.; Shin, K.K.; Kim, H.G.; Park, S.H.; Oh, J.; Sung, G.H.; Hossain, M.A.; Rho, H.S.; Lee, J.; Kim, J.H.; Cho, J.Y. Phosphatidylinositide 3-kinase contributes to the anti-inflammatory effect of abutilon crispum l. medik methanol extract. Evid. Based Complement. Alternat. Med., 2018, 20181935902
[http://dx.doi.org/10.1155/2018/1935902] [PMID: 30598682]
[59]
Kim, H.G.; Choi, S.; Lee, J.; Hong, Y.H.; Jeong, D.; Yoon, K.; Yoon, D.H.; Sung, G.H.; Lee, S.; Hong, S.; Yi, Y.S.; Kim, J.H.; Cho, J.Y. Src is a prime target inhibited by celtis choseniana methanol extract in its anti-inflammatory action. Evid. Based Complement. Alternat. Med., 2018, 20183909038
[http://dx.doi.org/10.1155/2018/3909038] [PMID: 29725354]
[60]
Cui, S.; Wu, Q.; Wang, J.; Li, M.; Qian, J.; Li, S. Quercetin inhibits LPS-induced macrophage migration by suppressing the iNOS/FAK/paxillin pathway and modulating the cytoskeleton. Cell Adhes. Migr., 2019, 13(1), 1-12.
[http://dx.doi.org/10.1080/19336918.2018.1486142] [PMID: 29945484]
[61]
Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53.
[http://dx.doi.org/10.1016/j.phymed.2018.01.026] [PMID: 29519318]
[62]
Lee, K.M.; Hwang, M.K.; Lee, D.E.; Lee, K.W.; Lee, H.J. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J. Agric. Food Chem., 2010, 58(9), 5815-5820.
[http://dx.doi.org/10.1021/jf903698s] [PMID: 20377179]
[63]
Takashima, K.; Matsushima, M.; Hashimoto, K.; Nose, H.; Sato, M.; Hashimoto, N.; Hasegawa, Y.; Kawabe, T. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir. Res., 2014, 15, 150-160.
[http://dx.doi.org/10.1186/s12931-014-0150-x] [PMID: 25413579]
[64]
Li, Z.P.; Liu, H.B.; Zhang, Q.W.; Li, L.F.; Bao, W.R.; Ma, D.L.; Leung, C.H.; Bian, Z.X.; Lu, A.P.; Han, Q.B. Interference of quercetin on astragalus polysaccharide-induced macrophage activation. Molecules, 2018, 23(7)E1563
[http://dx.doi.org/10.3390/molecules23071563] [PMID: 29958399]
[65]
Nair, V.; Bang, W.Y.; Schreckinger, E.; Andarwulan, N.; Cisneros-Zevallos, L. Protective role of ternatin anthocyanins and quercetin glycosides from butterfly pea (clitoria ternatea leguminosae) blue flower petals against lipopolysaccharide (LPS)-induced inflammation in macrophage cells. J. Agric. Food Chem., 2015, 63(28), 6355-6365.
[http://dx.doi.org/10.1021/acs.jafc.5b00928] [PMID: 26120869]
[66]
Bouriche, H.; Kada, S.; Assaf, A.M.; Senator, A.; Gül, F.; Dimertas, I. Phytochemical screening and anti-inflammatory properties of Algerian Hertia cheirifolia methanol extract. Pharm. Biol., 2016, 54(11), 2584-2590.
[http://dx.doi.org/10.3109/13880209.2016.1172318] [PMID: 27159241]
[67]
Liu, L.L.; Zhang, Y.; Zhang, X.F.; Li, F.H. Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-κB/iNOS-mediated inflammatory responses in asthmatic mice model. Korean J. Physiol. Pharmacol., 2018, 22(5), 481-491.
[http://dx.doi.org/10.4196/kjpp.2018.22.5.481] [PMID: 30181695]
[68]
Shan, Q.; Zheng, G.H.; Han, X.R.; Wen, X.; Wang, S.; Li, M.Q.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; Zheng, Y.L. Troxerutin protects kidney tissue against bde-47-induced inflammatory damage through cxcr4-txnip/nlrp3 signaling. Oxid. Med. Cell. Longev., 2018, 20189865495
[http://dx.doi.org/10.1155/2018/9865495] [PMID: 29849929]
[69]
Tian, C.; Zhang, P.; Yang, C.; Gao, X.; Wang, H.; Guo, Y.; Liu, M. Extraction process, component analysis, and in vitro antioxidant, antibacterial, and anti-inflammatory activities of total flavonoid extracts from abutilon theophrasti medic. leaves. Mediators Inflamm., 2018, 20183508506
[http://dx.doi.org/10.1155/2018/3508506] [PMID: 29725269]
[70]
Tao, J.; Wei, Y.; Hu, T. Flavonoids of Polygonum hydropiper L. attenuates lipopolysaccharide-induced inflammatory injury via suppressing phosphorylation in MAPKs pathways. BMC Complement. Altern. Med., 2016, 16, 25.
[http://dx.doi.org/10.1186/s12906-016-1001-8] [PMID: 26801102]
[71]
Chen, L.Z.; Yao, L.; Jiao, M.M.; Shi, J.B.; Tan, Y.; Ruan, B.F.; Liu, X.H. Novel resveratrol-based flavonol derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur. J. Med. Chem., 2019, 175, 114-128.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.004] [PMID: 31077997]
[72]
Kim, D.C.; Quang, T.H.; Oh, H.; Kim, Y.C. Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via nf-κb and mapk pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules, 2017, 22(12)E2130
[http://dx.doi.org/10.3390/molecules22122130] [PMID: 29207498]
[73]
Zhang, B.; Wang, B.; Cao, S.; Wang, Y.; Wu, D. Silybin attenuates LPS-induced lung injury in mice by inhibiting NF-κB signaling and NLRP3 activation. Int. J. Mol. Med., 2017, 39(5), 1111-1118.
[http://dx.doi.org/10.3892/ijmm.2017.2935] [PMID: 28350048]
[74]
Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and anti-inflammatory properties of cherry extract: nanosystems-based strategies to improve endothelial function and intestinal absorption. Foods, 2020, 9(2)E207
[http://dx.doi.org/10.3390/foods9020207] [PMID: 32079234]
[75]
Kim, K.Y.; Kang, H. Sakuranetin inhibits inflammatory enzyme, cytokine, and costimulatory molecule expression in macrophages through modulation of jnk, p38, and stat1. Evid. Based Complement. Alternat. Med., 2016, 20169824203
[http://dx.doi.org/10.1155/2016/9824203] [PMID: 27668006]
[76]
Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and anti-inflammatory activities of flavanones from glycyrrhiza glabra l. (licorice) leaf phytocomplexes: identification of licoflavanone as a modulator of nf-kb/mapk pathway. Antioxidants, 2019, 8(6)E186
[http://dx.doi.org/10.3390/antiox8060186] [PMID: 31226797]
[77]
Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: an overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131] [PMID: 27564838]
[78]
Escribano-Ferrer, E.; Queralt Regué, J.; Garcia-Sala, X.; Boix Montañés, A.; Lamuela-Raventos, R.M. In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. J. Nat. Prod., 2019, 82(2), 177-182.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00366] [PMID: 30688453]
[79]
Liu, X.; Wang, N.; Fan, S.; Zheng, X.; Yang, Y.; Zhu, Y.; Lu, Y.; Chen, Q.; Zhou, H.; Zheng, J. The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci. Rep., 2016, 6, 39735.
[http://dx.doi.org/10.1038/srep39735] [PMID: 28004841]
[80]
Ran, X.; Li, Y.; Chen, G.; Fu, S.; He, D.; Huang, B.; Wei, L.; Lin, Y.; Guo, Y.; Hu, G. Farrerol ameliorates tnbs-induced colonic inflammation by inhibiting erk1/2, jnk1/2, and nf-κb signaling pathway. Int. J. Mol. Sci., 2018, 19(7)E2037
[http://dx.doi.org/10.3390/ijms19072037] [PMID: 30011811]
[81]
He, W.; Li, Y.; Liu, M.; Yu, H.; Chen, Q.; Chen, Y.; Ruan, J.; Ding, Z.; Zhang, Y.; Wang, T. citrus aurantium l. and its flavonoids regulate tnbs-induced inflammatory bowel disease through anti-inflammation and suppressing isolated jejunum contraction. Int. J. Mol. Sci., 2018, 19(10)E3057
[http://dx.doi.org/10.3390/ijms19103057] [PMID: 30301267]
[82]
Ben Lagha, A.; Dudonné, S.; Desjardins, Y.; Grenier, D. Wild blueberry (vaccinium angustifolium ait.) polyphenols target fusobacterium nucleatum and the host inflammatory response: potential innovative molecules for treating periodontal diseases. J. Agric. Food Chem., 2015, 63(31), 6999-7008.
[http://dx.doi.org/10.1021/acs.jafc.5b01525] [PMID: 26207764]
[83]
Berkoz, M. Diosmin suppresses the proinflammatory mediators in lipopolysaccharide-induced RAW264.7 macrophages via NF-κB and MAPKs signal pathways. Gen. Physiol. Biophys., 2019, 38(4), 315-324.
[http://dx.doi.org/10.4149/gpb_2019010] [PMID: 31241043]
[84]
Chen, C.; Guo, D.; Lu, G. Wogonin protects human retinal pigment epithelium cells from LPS-induced barrier dysfunction and inflammatory responses by regulating the TLR4/NF-κB signaling pathway. Mol. Med. Rep., 2017, 15(4), 2289-2295.
[http://dx.doi.org/10.3892/mmr.2017.6252] [PMID: 28260013]
[85]
Chen, L.; You, Q.; Hu, L.; Gao, J.; Meng, Q.; Liu, W.; Wu, X.; Xu, Q. The antioxidant procyanidin reduces reactive oxygen species signaling in macrophages and ameliorates experimental colitis in mice. Front. Immunol., 2018, 8, 1910.
[http://dx.doi.org/10.3389/fimmu.2017.01910] [PMID: 29354126]
[86]
Zheng, W.; Feng, Z.; Lou, Y.; Chen, C.; Zhang, C.; Tao, Z.; Li, H.; Cheng, L.; Ying, X. Silibinin protects against osteoarthritis through inhibiting the inflammatory response and cartilage matrix degradation in vitro and in vivo. Oncotarget, 2017, 8(59), 99649-99665.
[http://dx.doi.org/10.18632/oncotarget.20587] [PMID: 29245931]
[87]
Lv, H.; Liu, Q.; Wen, Z.; Feng, H.; Deng, X.; Ci, X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol., 2017, 12, 311-324.
[http://dx.doi.org/10.1016/j.redox.2017.03.001] [PMID: 28285192]
[88]
Zhang, Y.; Zheng, Y.; Shi, W.; Guo, Y.; Xu, T.; Li, Z.; Huang, C.; Li, J. Design, synthesis and investigation of the potential anti-inflammatory activity of 7-o-amide hesperetin derivatives. Molecules, 2019, 24(20)E3663
[http://dx.doi.org/10.3390/molecules24203663] [PMID: 31614601]
[89]
Chavan, H.V.; Adsul, L.K.; Kotmale, A.S.; Dhakane, V.D.; Thakare, V.N.; Bandgar, B.P. Design, synthesis, characterization and in vitro and in vivo anti-inflammatory evaluation of novel pyrazole-based chalcones. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 22-31.
[http://dx.doi.org/10.3109/14756366.2013.873037] [PMID: 24666306]
[90]
Lee, D.S.; Li, B. Im, N. K.; Kim, Y. C.; Jeong, G. S., 4,2′,5′-trihydroxy-4′-methoxychalcone from Dalbergia odorifera exhibits anti-inflammatory properties by inducing heme oxygenase-1 in murine macrophages. Int. Immunopharmacol., 2013, 16(1), 114-121.
[http://dx.doi.org/10.1016/j.intimp.2013.03.026] [PMID: 23566812]
[91]
Wang, L.; Yang, X.; Zhang, Y.; Chen, R.; Cui, Y.; Wang, Q. Anti-inflammatory chalcone-isoflavone dimers and chalcone dimers from caragana jubata. J. Nat. Prod., 2019, 82(10), 2761-2767.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00365] [PMID: 31577434]
[92]
Wen, R.; Lv, H.N.; Jiang, Y.; Tu, P.F. Anti-inflammatory flavone and chalcone derivatives from the roots of pongamia pinnata (l.) pierre. Phytochemistry, 2018, 149, 56-63.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.005] [PMID: 29459216]
[93]
Liu, Q.; Lv, H.; Wen, Z.; Ci, X.; Peng, L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the nod-like receptor protein 3 inflammasome and inhibits the nf-κb pathway in macrophages and in acute lung injury. Front. Immunol., 2017, 8, 1518.
[http://dx.doi.org/10.3389/fimmu.2017.01518] [PMID: 29163554]
[94]
Yang, M.; Li, N.; Li, F.; Zhu, Q.; Liu, X.; Han, Q.; Wang, Y.; Chen, Y.; Zeng, X.; Lv, Y.; Zhang, P.; Yang, C.; Liu, Z. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int. Immunopharmacol., 2013, 16(4), 466-474.
[http://dx.doi.org/10.1016/j.intimp.2013.04.029] [PMID: 23669332]
[95]
Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem., 2011, 54(23), 8110-8123.
[http://dx.doi.org/10.1021/jm200946h] [PMID: 21988173]
[96]
Anna-Maria Katsori, D.H-L. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1576-1598.
[97]
Bukhari, S.N.; Lauro, G.; Jantan, I.; Bifulco, G.; Amjad, M.W. Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorg. Med. Chem., 2014, 22(15), 4151-4161.
[http://dx.doi.org/10.1016/j.bmc.2014.05.052] [PMID: 24938495]
[98]
Dorn, C.; Kraus, B.; Motyl, M.; Weiss, T.S.; Gehrig, M.; Schölmerich, J.; Heilmann, J.; Hellerbrand, C. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res., 2010, 54(S2)(Suppl. 2), S205-S213.
[http://dx.doi.org/10.1002/mnfr.200900314] [PMID: 20087858]
[99]
Dunlap, T.L.; Wang, S.; Simmler, C.; Chen, S.N.; Pauli, G.F.; Dietz, B.M.; Bolton, J.L. Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chem. Res. Toxicol., 2015, 28(8), 1584-1594.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00157] [PMID: 26134484]
[100]
Fang, Q.; Zhao, L.; Wang, Y.; Zhang, Y.; Li, Z.; Pan, Y.; Kanchana, K.; Wang, J.; Tong, C.; Li, D.; Liang, G. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration. Toxicol. Appl. Pharmacol., 2015, 282(2), 129-138.
[http://dx.doi.org/10.1016/j.taap.2014.10.021] [PMID: 25447405]
[101]
Fu, Z.Y.; Jin, Q.H.; Qu, Y.L.; Guan, L.P. Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities. Bioorg. Med. Chem. Lett., 2019, 29(15), 1909-1912.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.051] [PMID: 31160177]
[102]
Hiba Iqbal, V.P. Atul Sangith,Baby Chandrika, Ranganathan Balasubramanian, Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res., 2014, 23, 4383-4394.
[http://dx.doi.org/10.1007/s00044-014-1007-z]
[103]
Honda, H.; Nagai, Y.; Matsunaga, T.; Okamoto, N.; Watanabe, Y.; Tsuneyama, K.; Hayashi, H.; Fujii, I.; Ikutani, M.; Hirai, Y.; Muraguchi, A.; Takatsu, K. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J. Leukoc. Biol., 2014, 96(6), 1087-1100.
[http://dx.doi.org/10.1189/jlb.3A0114-005RR] [PMID: 25210146]
[104]
Isa, N.M.; Abdelwahab, S.I.; Mohan, S.; Abdul, A.B.; Sukari, M.A.; Taha, M.M.; Syam, S.; Narrima, P.; Cheah, S.Ch.; Ahmad, S.; Mustafa, M.R. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot). Braz. J. Med. Biol. Res., 2012, 45(6), 524-530.
[http://dx.doi.org/10.1590/S0100-879X2012007500022] [PMID: 22358425]
[105]
Kuo, W.L.; Liao, H.R.; Chen, J.J. Biflavans, Flavonoids, and a Dihydrochalcone from the Stem Wood of Muntingia calabura and Their Inhibitory Activities on Neutrophil Pro-Inflammatory Responses. Molecules, 2014, 19(12), 20521-20535.
[http://dx.doi.org/10.3390/molecules191220521] [PMID: 25493635]
[106]
Lee, S.H.; Seo, G.S.; Kim, J.Y.; Jin, X.Y.; Kim, H.D.; Sohn, D.H. Heme oxygenase 1 mediates anti-inflammatory effects of 2′,4′,6′-tris(methoxymethoxy) chalcone. Eur. J. Pharmacol., 2006, 532(1-2), 178-186.
[http://dx.doi.org/10.1016/j.ejphar.2006.01.005] [PMID: 16480975]
[107]
Lee, Y.H.; Jeon, S.H.; Kim, S.H.; Kim, C.; Lee, S.J.; Koh, D.; Lim, Y.; Ha, K.; Shin, S.Y. A new synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med., 2012, 44(6), 369-377.
[http://dx.doi.org/10.3858/emm.2012.44.6.042] [PMID: 22382990]
[108]
Orlikova, B.; Schnekenburger, M.; Zloh, M.; Golais, F.; Diederich, M.; Tasdemir, D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep., 2012, 28(3), 797-805.
[http://dx.doi.org/10.3892/or.2012.1870] [PMID: 22710558]
[109]
Shin, S.Y.; Woo, Y.; Hyun, J.; Yong, Y.; Koh, D.; Lee, Y.H.; Lim, Y. Relationship between the structures of flavonoids and their NF-κB-dependent transcriptional activities. Bioorg. Med. Chem. Lett., 2011, 21(20), 6036-6041.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.077] [PMID: 21907578]
[110]
Zeng, J.; Chen, Y.; Ding, R.; Feng, L.; Fu, Z.; Yang, S.; Deng, X.; Xie, Z.; Zheng, S. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J. Neuroinflammation, 2017, 14(1), 119.
[http://dx.doi.org/10.1186/s12974-017-0895-5] [PMID: 28610608]
[111]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[112]
Gómez-Rivera, A.; Aguilar-Mariscal, H.; Romero-Ceronio, N.; Roa-de la Fuente, L.F.; Lobato-García, C.E. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg. Med. Chem. Lett., 2013, 23(20), 5519-5522.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.061] [PMID: 24012185]
[113]
Chen, W.; Ge, X.; Xu, F.; Zhang, Y.; Liu, Z.; Pan, J.; Song, J.; Dai, Y.; Zhou, J.; Feng, J.; Liang, G. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett., 2015, 25(15), 2998-3004.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.030] [PMID: 26048788]
[114]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[115]
Franchin, M.; Colón, D.F.; da Cunha, M.G.; Castanheira, F.V.; Saraiva, A.L.; Bueno-Silva, B.; Alencar, S.M.; Cunha, T.M.; Rosalen, P.L. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6. Sci. Rep., 2016, 6, 36401.
[http://dx.doi.org/10.1038/srep36401] [PMID: 27819273]
[116]
Huang, M.Y.; Tu, C.E.; Wang, S.C.; Hung, Y.L.; Su, C.C.; Fang, S.H.; Chen, C.S.; Liu, P.L.; Cheng, W.C.; Huang, Y.W.; Li, C.Y. Corylin inhibits LPS-induced inflammatory response and attenuates the activation of NLRP3 inflammasome in microglia. BMC Complement. Altern. Med., 2018, 18(1), 221.
[http://dx.doi.org/10.1186/s12906-018-2287-5] [PMID: 30107806]
[117]
Aladaileh, S.H.; Hussein, O.E.; Abukhalil, M.H.; Saghir, S.A.M.; Bin-Jumah, M.; Alfwuaires, M.A.; Germoush, M.O.; Almaiman, A.A.; Mahmoud, A.M. Formononetin upregulates nrf2/ho-1 signaling and prevents oxidative stress, inflammation, and kidney injury in methotrexate-induced rats. Antioxidants, 2019, 8(10)E430
[http://dx.doi.org/10.3390/antiox8100430] [PMID: 31561418]
[118]
Abdallah, B.M.; Ali, E.M. Butein promotes lineage commitment of bone marrow-derived stem cells into osteoblasts via modulating erk1/2 signaling pathways. Molecules, 2020, 25(8)E1885
[http://dx.doi.org/10.3390/molecules25081885] [PMID: 32325749]
[119]
Akbar, S.; Subhan, F.; Shahid, M.; Wadood, A.; Shahbaz, N.; Farooq, U.; Ayaz, M.; Raziq, N. 6-Methoxyflavanone abates cisplatin-induced neuropathic pain apropos anti-inflammatory mechanisms: A behavioral and molecular simulation study. Eur. J. Pharmacol., 2020, 872172972
[http://dx.doi.org/10.1016/j.ejphar.2020.172972] [PMID: 32006559]
[120]
Barakat, A.Z.; Hamed, A.R.; Bassuiny, R.I.; Abdel-Aty, A.M.; Mohamed, S.A. Date palm and saw palmetto seeds functional properties: antioxidant, anti-inflammatory and antimicrobial activities. J. Food Meas. Charact., 2020, 14(2), 1064-1072.
[http://dx.doi.org/10.1007/s11694-019-00356-5]
[121]
Adnan, M.; Chy, M.N.U.; Kamal, A.T.M.M.; Chowdhury, K.A.A.; Rahman, M.A.; Reza, A.S.M.A.; Moniruzzaman, M.; Rony, S.R.; Nasrin, M.S.; Azad, M.O.K.; Park, C.H.; Lim, Y.S.; Cho, D.H. Intervention in neuropsychiatric disorders by suppressing inflammatory and oxidative stress signal and exploration of in silico studies for potential lead compounds from holigarna caustica (dennst.) oken leaves. Biomolecules, 2020, 10(4)E561
[http://dx.doi.org/10.3390/biom10040561] [PMID: 32268590]
[122]
Ban, C.; Park, J.B.; Cho, S.; Kim, H.R.; Kim, Y.J.; Bae, H.; Kim, C.; Kang, H.; Jang, D.; Shin, Y.S.; Kim, D.O.; Kim, H.; Kweon, D.H. Characterization of ginkgo biloba leaf flavonoids as neuroexocytosis regulators. Molecules, 2020, 25(8)E1829
[http://dx.doi.org/10.3390/molecules25081829] [PMID: 32316426]
[123]
Cho, B.O.; Che, D.N.; Kim, J.S.; Kim, J.H.; Shin, J.Y.; Kang, H.J.; Jang, S.I. In vitro anti-inflammatory and anti-oxidative stress activities of kushenol c isolated from the roots of sophoraflavescens. Molecules, 2020, 25(8)E1768
[http://dx.doi.org/10.3390/molecules25081768] [PMID: 32290603]
[124]
Cirmi, S.; Randazzo, B.; Russo, C.; Musumeci, L.; Maugeri, A.; Montalbano, G.; Guerrera, M.C.; Lombardo, G.E.; Levanti, M. Anti-inflammatory effect of a flavonoid-rich extract of orange juice in adult zebrafish subjected to Vibrio anguillarum-induced enteritis. Nat. Prod. Res., 2020 (online ahead of print);
[http://dx.doi.org/10.1080/14786419.2020.1758096] [PMID: 32338069]
[125]
El-Hawary, S.S.; El-Kammar, H.A.; Farag, M.A.; Saleh, D.O.; El Dine, R.S. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS inrelation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids, 2020, 160108648
[http://dx.doi.org/10.1016/j.steroids.2020.108648] [PMID: 32298660]
[126]
Fattori, V.; Rasquel-Oliveira, F.S.; Artero, N.A.; Ferraz, C.R.; Borghi, S.M.; Casagrande, R.; Verri, W.A. Jr Diosmin Treats Lipopolysaccharide-Induced Inflammatory pain and peritonitis by blocking nf-κb activation in mice. J. Nat. Prod., 2020, 83(4), 1018-1026.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00887] [PMID: 32083866]
[127]
Gao, P.; Wang, L.; Zhao, L.; Zhang, Q.Y.; Zeng, K.W.; Zhao, M.B.; Jiang, Y.; Tu, P.F.; Guo, X.Y. Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus. Phytochemistry, 2020, 172112260
[http://dx.doi.org/10.1016/j.phytochem.2020.112260] [PMID: 31982646]
[128]
Gias, Z.T.; Afsana, F.; Debnath, P.; Alam, M.S.; Ena, T.N.; Hossain, M.H.; Jain, P.; Reza, H.M. A mechanistic approach to HPLC analysis, antinociceptive, anti-inflammatory and postoperative analgesic activities of panch phoron in mice. BMC Complement Med Ther, 2020, 20(1), 102.
[http://dx.doi.org/10.1186/s12906-020-02891-x] [PMID: 32228549]
[129]
Jian, T.; Chen, J.; Ding, X.; Lv, H.; Li, J.; Wu, Y.; Ren, B.; Tong, B.; Zuo, Y.; Su, K.; Li, W. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways. Food Funct., 2020, 11(4), 3516-3526.
[http://dx.doi.org/10.1039/C9FO02921D] [PMID: 32253400]
[130]
Guo, S.; He, M.; Liu, M.; Huang, W.; Ouyang, H.; Feng, Y.; Zhong, G.; Yang, S. Chemical profiling of embelia ribes by ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and its antioxidant and anti-inflammatory activities in vitro. J. Chromatogr. Sci., 2020, 58(3), 241-250.
[http://dx.doi.org/10.1093/chromsci/bmz097] [PMID: 31800022]
[131]
Huang, Q.P.; Guo, K.; Liu, Y.; Liu, Y.C.; Li, W.Y.; Geng, H.; Wang, Y.; Li, S.H. Diterpenoids and flavonoids from the twigs of cephalotaxus fortunei var. alpina. Chem. Biodivers., 2020, 17(6)e2000210
[http://dx.doi.org/10.1002/cbdv.202000210] [PMID: 32329218]
[132]
Li, W.; Xu, C.; Hao, C.; Zhang, Y.; Wang, Z.; Wang, S.; Wang, W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res., 2020, 177104714
[http://dx.doi.org/10.1016/j.antiviral.2020.104714] [PMID: 32165083]
[133]
Liu, M.; Zhang, G.; Song, M.; Wang, J.; Shen, C.; Chen, Z.; Huang, X.; Gao, Y.; Zhu, C.; Lin, C.; Mi, S.; Liu, C. Activation of farnesoid x receptor by schaftoside ameliorates acetaminophen-induced hepatotoxicity by modulating oxidative stress and inflammation. Antioxid. Redox Signal., 2020, 33(2), 87-116.
[http://dx.doi.org/10.1089/ars.2019.7791] [PMID: 32037847]
[134]
Lombard, N.; van Wyk, B.E.; Marianne le Roux, M. A review of the ethnobotany, contemporary uses, chemistry and pharmacology of the genus thesium (santalaceae). J. Ethnopharmacol., 2020, 256112745
[http://dx.doi.org/10.1016/j.jep.2020.112745] [PMID: 32188571]
[135]
Lorençoni, M.F.; Figueira, M.M.; Toledo, E. Silva, M.V.; Pimentel Schmitt, E.F.; Endringer, D.C.; Scherer, R.; Barth, T.; Vilela Bertolucci, S.K.; Fronza, M. Chemical composition and anti-inflammatory activity of essential oil and ethanolic extract of Campomanesia phaea (O. Berg.) Landrum leaves. J. Ethnopharmacol., 2020, 252112562
[http://dx.doi.org/10.1016/j.jep.2020.112562] [PMID: 31954197]
[136]
Maayah, Z.H.; Takahara, S.; Ferdaoussi, M.; Dyck, J.R.B. The anti-inflammatory and analgesic effects of formulated full-spectrum cannabis extract in the treatment of neuropathic pain associated with multiple sclerosis. Inflamm. Res., 2020, 69(6), 549-558.
[http://dx.doi.org/10.1007/s00011-020-01341-1] [PMID: 32239248]
[137]
Marsafari, M.; Samizadeh, H.; Rabiei, B.; Mehrabi, A.; Koffas, M.; Xu, P. Biotechnological production of flavonoids: an update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnol. J., 2020, 15(8)e1900432
[http://dx.doi.org/10.1002/biot.201900432] [PMID: 32267085]
[138]
Moulishankar, A.; Lakshmanan, K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief, 2020, 29105243
[http://dx.doi.org/10.1016/j.dib.2020.105243] [PMID: 32072001]
[139]
Opriș, O.; Lung, I.; Soran, M.L.; Ciorîță, A.; Copolovici, L. Investigating the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the composition and ultrastructure of green leafy vegetables with important nutritional values. Plant Physiol. Biochem., 2020, 151, 342-351.
[http://dx.doi.org/10.1016/j.plaphy.2020.03.046] [PMID: 32272352]
[140]
Owor, R.O.; Bedane, K.G.; Openda, Y.I.; Zühlke, S.; Derese, S.; Ong’amo, G.; Ndakala, A.; Spiteller, M. Synergistic anti-inflammatory activities of a new flavone and other flavonoids from Tephrosia hildebrandtii vatke. Nat. Prod. Res., 2020. (Online ahead of print)
[http://dx.doi.org/10.1080/14786419.2020.1736065] [PMID: 32233673]
[141]
Rea Martinez, J.; Montserrat-de la Paz, S.; De la Puerta, R.; García-Giménez, M.D.; Fernández-Arche, M.A. Characterization of bioactive compounds in defatted hempseed (Cannabis sativa L.) by UHPLC-HRMS/MS and anti-inflammatory activity in primary human monocytes. Food Funct., 2020, 11(5), 4057-4066.
[http://dx.doi.org/10.1039/D0FO00066C] [PMID: 32329481]
[142]
Riaz, M.; Ahmad, R.; Rahman, N.U.; Khan, Z.; Dou, D.; Sechel, G.; Manea, R. Traditional uses, Phyto-chemistry and pharmacological activities of Tagetes Patula L. J. Ethnopharmacol., 2020, 255112718
[http://dx.doi.org/10.1016/j.jep.2020.112718] [PMID: 32112898]
[143]
Santos, M.C.; Toson, N.S.B.; Pimentel, M.C.B.; Bordignon, S.A.L.; Mendez, A.S.L.; Henriques, A.T. Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). J. Ethnopharmacol., 2020, 255112781
[http://dx.doi.org/10.1016/j.jep.2020.112781] [PMID: 32209389]
[144]
Sobeh, M.; Rezq, S.; Cheurfa, M.; Abdelfattah, M.A.O.; Rashied, R.M.H.; El-Shazly, A.M.; Yasri, A.; Wink, M.; Mahmoud, M.F. Thymus algeriensis and thymus fontanesii: chemical composition, in vivo antiinflammatory, pain killing and antipyretic activities: a comprehensive comparison. Biomolecules, 2020, 10(4)E599
[http://dx.doi.org/10.3390/biom10040599] [PMID: 32294957]
[145]
Tu, Y.B.; Xiao, T.; Gong, G.Y.; Bian, Y.Q.; Li, Y.F. A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Nat. Prod. Res., 2020, 34(7), 981-987.
[http://dx.doi.org/10.1080/14786419.2018.1547294] [PMID: 30636441]
[146]
Wang, L.; Chen, W.; Li, M.; Zhang, F.; Chen, K.; Chen, W. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. J. Ethnopharmacol., 2020, 254112260
[http://dx.doi.org/10.1016/j.jep.2019.112260] [PMID: 31577937]
[147]
Zhang, B.; Lai, L.; Tan, Y.; Liang, Q.; Bai, F.; Mai, W.; Huang, Q.; Ye, Y. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-β1/Smad and NF-κB signaling pathways. J. Ethnopharmacol., 2020, 254112714
[http://dx.doi.org/10.1016/j.jep.2020.112714] [PMID: 32105750]
[148]
Zhang, X.; Feng, J.; Su, S.; Huang, L. Hepatoprotective effects of Camellia nitidissima aqueous ethanol extract against CCl4-induced acute liver injury in SD rats related to Nrf2 and NF-κB signalling. Pharm. Biol., 2020, 58(1), 239-246.
[http://dx.doi.org/10.1080/13880209.2020.1739719] [PMID: 32202453]
[149]
Wang, B.; Hui, Y.; Liu, L.; Zhao, A.; Chiou, Y.S.; Zhang, F.; Pan, M.H. Optimized extraction of phenolics from jujube peel and their anti-inflammatory effects in lps-stimulated murine macrophages. J. Agric. Food Chem., 2019, 67(6), 1666-1673.
[http://dx.doi.org/10.1021/acs.jafc.8b06309] [PMID: 30629413]
[150]
Xu, Y.; Chen, X.X.; Jiang, Y.X.; Zhang, D.D. Ethyl acetate fraction from hedyotis diffusa plus scutellaria barbata exerts anti-inflammatory effects by regulating mir-155 expression and jnk signaling pathway. Evid. Based Complement. Alternat. Med., 2018, 20183593408
[http://dx.doi.org/10.1155/2018/3593408] [PMID: 29725352]
[151]
Yang, L.; Peng, C.; Xia, J.; Zhang, W.; Tian, L.; Tian, Y.; Yang, X.; Cao, Y. Effects of icariside II ameliorates diabetic cardiomyopathy in streptozotocin-induced diabetic rats by activating Akt/NOS/NF-κB signaling. Mol. Med. Rep., 2017, 17(3), 4099-4105.
[http://dx.doi.org/10.3892/mmr.2017.8342]
[152]
Xiao, Q.; Qu, Z.; Zhao, Y.; Yang, L.; Gao, P. Orientin Ameliorates LPS-Induced Inflammatory Responses through the Inhibitory of the NF-κB Pathway and NLRP3 Inflammasome. Evid. Based Complement. Alternat. Med., 2017, 20172495496
[http://dx.doi.org/10.1155/2017/2495496] [PMID: 28197210]
[153]
Yao, J.; Liu, T.; Chen, R.J.; Liang, J.; Li, J.; Wang, C.G. Sphingosine-1-phosphate signal transducer and activator of transcription 3 signaling pathway contributes to baicalein-mediated inhibition of dextran sulfate sodium-induced experimental colitis in mice. Chin. Med. J. (Engl.), 2020, 133(3), 292-300.
[http://dx.doi.org/10.1097/CM9.0000000000000627] [PMID: 31904729]
[154]
Yu, C.H.; Suh, B.; Shin, I.; Kim, E.H.; Kim, D.; Shin, Y.J.; Chang, S.Y.; Baek, S.H.; Kim, H.; Bae, O.N. Inhibitory effects of a novel chrysin-derivative, cpd 6, on acute and chronic skin inflammation. Int. J. Mol. Sci., 2019, 20(11)E2607
[http://dx.doi.org/10.3390/ijms20112607] [PMID: 31141897]
[155]
Zhang, K.; Zeng, X.; Chen, Y.; Zhao, R.; Wang, H.; Wu, J. Therapeutic effects of Qian-Yu decoction and its three extracts on carrageenan-induced chronic prostatitis/chronic pelvic pain syndrome in rats. BMC Complement. Altern. Med., 2017, 17(1), 75.
[http://dx.doi.org/10.1186/s12906-016-1553-7] [PMID: 28122556]
[156]
Yamaguchi, M.; Levy, R.M. The combination of β-caryophyllene, baicalin and catechin synergistically suppresses the proliferation and promotes the death of RAW267.4 macrophages in vitro. Int. J. Mol. Med., 2016, 38(6), 1940-1946.
[http://dx.doi.org/10.3892/ijmm.2016.2801] [PMID: 27840942]
[157]
Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One, 2014, 9(9)e107072
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
[158]
Zuo, Y.; Yu, Y.; Wang, S.; Shao, W.; Zhou, B.; Lin, L.; Luo, Z.; Huang, R.; Du, J.; Bu, X. Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-κB activation inhibition. Eur. J. Med. Chem., 2012, 50, 393-404.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.023] [PMID: 22386368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy