Cardiovascular Risk and Quality of Life in Autosomal Dominant Polycystic Kidney Disease Patients on Therapy With Tolvaptan: A Pilot Study | Bentham Science
Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Cardiovascular Risk and Quality of Life in Autosomal Dominant Polycystic Kidney Disease Patients on Therapy With Tolvaptan: A Pilot Study

Author(s): Silvia Lai*, Marco Mangiulli, Adolfo M. Perrotta, Antonietta Gigante, Ludovica Napoleoni, Elena Cipolloni, Anna P. Mitterhofer, Maria L. Gasperini, Maurizio Muscaritoli, Rosario Cianci, Antonello Giovannetti, Fabiana Falco, Daniela Mastroluca and Sandro Mazzaferro

Volume 19, Issue 5, 2021

Published on: 18 September, 2020

Page: [556 - 564] Pages: 9

DOI: 10.2174/1570161118999200918094809

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Cardiovascular (CV) complications are the most frequent cause of morbidity and mortality in autosomal dominant polycystic kidney disease (ADPKD) patients. In 2017, the Italian Medicines Agency authorised tolvaptan, a vasopressin V2 receptor antagonist, for the treatment of ADPKD, based on the Tolvaptan Phase 3 Efficacy and Safety Study in ADPKD (TEMPO 3: 4), TEMPO 4: 4 and Replicating Evidence of Preserved Renal Function: An Investigation of Tolvaptan Safety and Efficacy (REPRISE) studies.

Aim of the Study: The aim of the study was to assess the impact of tolvaptan on CV risk and quality of life, evaluated by nutritional, inflammatory, metabolic, instrumental parameters and psychocognitive tests on ADPKD patients.

Methods and Materials: We evaluated 36 patients with ADPKD; 10 patients (7 males, mean age 42.5±7.0 years) treated with tolvaptan and 26 controls (11 males, mean age 36.7±9.1 years). They underwent, at T0, monthly, and at T1 (1 year) clinical, laboratory and instrumental evaluation, in addition to psychocognitive tests.

Results: In ADPKD patients treated with tolvaptan, we found at T1, a decrease in carotid intima-- media thickness (p=0.048), epicardial adipose tissue thickness (p=0.002), C-reactive protein (p=0.026), sympathovagal balance during night (p=0.045) and increased flow-mediated dilation (p=0.023) with a reduction in depression (Hamilton and Beck tests, p=0.008 and p=0.002, respectively) compared with controls.

Conclusion: These preliminary results suggest that treatment with tolvaptan could improve early atherosclerosis and endothelial dysfunction markers and improve mood in ADPKD patients (probably by acting on endothelial cell and adipocyte V2 receptors).

Keywords: Autosomal dominant polycystic kidney disease, tolvaptan, cardiovascular disease, quality of life, renal disease.

[1]
Chebib FT, Torres VE. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am J Kidney Dis 2016; 67(5): 792-810.
[http://dx.doi.org/10.1053/j.ajkd.2015.07.037] [PMID: 26530876]
[2]
Ong AC, Harris PC. Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 2005; 67(4): 1234-47.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00201.x] [PMID: 15780076]
[3]
Porath B, Gainullin VG, Cornec-Le Gall E, et al. Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016; 98(6): 1193-207.
[http://dx.doi.org/10.1016/j.ajhg.2016.05.004] [PMID: 27259053]
[4]
Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014; 25(1): 18-32.
[http://dx.doi.org/10.1681/ASN.2013040398] [PMID: 24335972]
[5]
Ecder T. Cardiovascular complications in autosomal dominant polycystic kidney disease. Curr Hypertens Rev 2013; 9(1): 2-11.
[http://dx.doi.org/10.2174/1573402111309010002] [PMID: 23971638]
[6]
Lai S, Mastroluca D, Matino S, et al. Early Markers of Cardiovascular Risk in Autosomal Dominant Polycystic Kidney Disease. Kidney Blood Press Res 2017; 42(6): 1290-302.
[http://dx.doi.org/10.1159/000486011] [PMID: 29262409]
[7]
Barnawi RA, Attar RZ, Alfaer SS, Safdar OY. Is the light at the end of the tunnel nigh? A review of ADPKD focusing on the burden of disease and tolvaptan as a new treatment. Int J Nephrol Renovasc Dis 2018; 11: 53-67.
[http://dx.doi.org/10.2147/IJNRD.S136359] [PMID: 29440922]
[8]
Torres VE, Chapman AB, Devuyst O, et al. TEMPO 3:4 Trial Investigators. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012; 367(25): 2407-18.
[http://dx.doi.org/10.1056/NEJMoa1205511] [PMID: 23121377]
[9]
Torres VE, Chapman AB, Devuyst O, et al. REPRISE Trial Investigators. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N Engl J Med 2017; 377(20): 1930-42.
[http://dx.doi.org/10.1056/NEJMoa1710030] [PMID: 29105594]
[10]
Grantham JJ, Chapman AB, Blais J, et al. TEMPO 3:4 Investigators. Tolvaptan suppresses monocyte chemotactic protein-1 excretion in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant 2017; 32(6): 969-75.
[PMID: 27190355]
[11]
Torres VE, Chapman AB, Devuyst O, et al. TEMPO 4:4 Trial Investigators. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant 2018; 33(3): 477-89.
[http://dx.doi.org/10.1093/ndt/gfx043] [PMID: 28379536]
[12]
Irazabal MV, Rangel LJ, Bergstralh EJ, et al. CRISP Investigators. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol 2015; 26(1): 160-72.
[http://dx.doi.org/10.1681/ASN.2013101138] [PMID: 24904092]
[13]
Devuyst O, Chapman AB, Gansevoort RT, et al. Urine Osmolality, Response to Tolvaptan, and Outcome in Autosomal Dominant Polycystic Kidney Disease: Results from the TEMPO 3:4 Trial. J Am Soc Nephrol 2017; 28(5): 1592-602.
[http://dx.doi.org/10.1681/ASN.2016040448] [PMID: 27920153]
[14]
Rodriguez CJ, Swett K, Agarwal SK, et al. Systolic blood pressure levels among adults with hypertension and incident cardiovascular events: the atherosclerosis risk in communities study. JAMA Intern Med 2014; 174(8): 1252-61.
[http://dx.doi.org/10.1001/jamainternmed.2014.2482] [PMID: 24935209]
[15]
Iacobellis G, Ribaudo MC, Assael F, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88(11): 5163-8.
[http://dx.doi.org/10.1210/jc.2003-030698] [PMID: 14602744]
[16]
Lang RM, Bierig M, Devereux RB, et al. Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18(12): 1440-63.
[http://dx.doi.org/10.1016/j.echo.2005.10.005] [PMID: 16376782]
[17]
Orscelik O, Kocyigit I, Baran O, et al. Impairment of heart rate recovery index in autosomal-dominant polycystic kidney disease patients without hypertension. Blood Press 2012; 21(5): 300-5.
[http://dx.doi.org/10.3109/08037051.2012.680691] [PMID: 22545873]
[18]
Lai S, Mangiulli M, Perrotta AM, et al. Reduction in Heart Rate Variability in Autosomal Dominant Polycystic Kidney Disease. Kidney Blood Press Res 2019; 44(5): 1142-8.
[http://dx.doi.org/10.1159/000502419] [PMID: 31550720]
[19]
Ho CY, Solomon SD. A clinician’s guide to tissue Doppler imaging. Circulation 2006; 113(10): e396-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.579268] [PMID: 16534017]
[20]
Corretti MC, Anderson TJ, Benjamin EJ, et al. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39(2): 257-65.
[http://dx.doi.org/10.1016/S0735-1097(01)01746-6] [PMID: 11788217]
[21]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[22]
Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med 2016; 4: 2050312116671725.
[http://dx.doi.org/10.1177/2050312116671725]
[23]
Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 1967; 6(4): 278-96.
[http://dx.doi.org/10.1111/j.2044-8260.1967.tb00530.x] [PMID: 6080235]
[24]
Steer RA, Rissmiller DJ, Beck AT. Use of the Beck Depression Inventory-II with depressed geriatric inpatients. Behav Res Ther 2000; 38(3): 311-8.
[http://dx.doi.org/10.1016/S0005-7967(99)00068-6] [PMID: 10665163]
[25]
Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 2005; 1(3): 183-98.
[PMID: 17319104]
[26]
Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340(8828): 1111-5.
[http://dx.doi.org/10.1016/0140-6736(92)93147-F] [PMID: 1359209]
[27]
Wang D, Iversen J, Wilcox CS, Strandgaard S. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease. Kidney Int 2003; 64(4): 1381-8.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00236.x] [PMID: 12969157]
[28]
Kocaman O, Oflaz H, Yekeler E, et al. Endothelial dysfunction and increased carotid intima-media thickness in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis 2004; 43(5): 854-60.
[http://dx.doi.org/10.1053/j.ajkd.2004.01.011] [PMID: 15112176]
[29]
Al-Nimri MA, Komers R, Oyama TT, Subramanya AR, Lindsley JN, Anderson S. Endothelial-derived vasoactive mediators in polycystic kidney disease. Kidney Int 2003; 63(5): 1776-84.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00913.x] [PMID: 12675853]
[30]
O’Leary DH, Polak JF. Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol 2002; 90(10C): 18L-21L.
[http://dx.doi.org/10.1016/S0002-9149(02)02957-0] [PMID: 12459422]
[31]
Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 2009; 22(12): 1311-9.
[http://dx.doi.org/10.1016/j.echo.2009.10.013] [PMID: 19944955]
[32]
Sag S, Yildiz A, Gullulu S, et al. Early atherosclerosis in normotensive patients with autosomal dominant polycystic kidney disease: the relation between epicardial adipose tissue thickness and carotid intima-media thickness. Springerplus 2016; 5: 211.
[http://dx.doi.org/10.1186/s40064-016-1871-8] [PMID: 27026905]
[33]
Concistrè A, Petramala L, Scoccia G, et al. Epicardial Fat Thickness in Patients with Autosomal Dominant Polycystic Kidney Disease. Cardiorenal Med 2018; 8(3): 199-207.
[http://dx.doi.org/10.1159/000488064] [PMID: 29723863]
[34]
Gheorghiade M, Niazi I, Ouyang J, et al. Tolvaptan Investigators. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 2003; 107(21): 2690-6.
[http://dx.doi.org/10.1161/01.CIR.0000070422.41439.04] [PMID: 12742979]
[35]
Burnett JC, Smith WB, Ouyang J, Zimmer CA, Orlandi C. Tolvaptan (OPC-41061), a V2 vasopressin receptor antagonist, protects against the decline in renal function observed with loop diuretic therapy. J Card Fail 2003; 9: 36.
[http://dx.doi.org/10.1016/S1071-9164(03)00234-3]
[36]
Udelson JE, McGrew FA, Flores E, et al. Multicenter, randomized, double-blind, placebo-controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. J Am Coll Cardiol 2007; 49(22): 2151-9.
[http://dx.doi.org/10.1016/j.jacc.2007.01.091] [PMID: 17543634]
[37]
Kaufmann JE, Iezzi M, Vischer UM. Desmopressin (DDAVP) induces NO production in human endothelial cells via V2 receptor- and cAMP-mediated signaling. J Thromb Haemost 2003; 1(4): 821-8.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00197.x] [PMID: 12871421]
[38]
Kaufmann JE, Vischer UM. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J Thromb Haemost 2003; 1(4): 682-9.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00190.x] [PMID: 12871401]
[39]
Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006; 4(6): 1186-93.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01949.x] [PMID: 16706957]
[40]
Massberg S, Brand K, Grüner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196(7): 887-96.
[http://dx.doi.org/10.1084/jem.20012044] [PMID: 12370251]
[41]
Theilmeier G, Michiels C, Spaepen E, et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 2002; 99(12): 4486-93.
[http://dx.doi.org/10.1182/blood.V99.12.4486] [PMID: 12036879]
[42]
Methia N, André P, Denis CV, Economopoulos M, Wagner DD. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 2001; 98(5): 1424-8.
[http://dx.doi.org/10.1182/blood.V98.5.1424] [PMID: 11520791]
[43]
Lee Y, Blount KL, Dai F, et al. Semaphorin 7A in circulating regulatory T cells is increased in autosomal-dominant polycystic kidney disease and decreases with tolvaptan treatment. Clin Exp Nephrol 2018; 22(4): 906-16.
[http://dx.doi.org/10.1007/s10157-018-1542-x] [PMID: 29453607]
[44]
Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based human protein atlas. Nat Biotechnol 2010; 28(12): 1248-50.
[http://dx.doi.org/10.1038/nbt1210-1248] [PMID: 21139605]
[45]
Li HR, Lu TM, Cheng HM, et al. Additive Value of Heart Rate Variability in Predicting Obstructive Coronary Artery Disease Beyond Framingham Risk. Circ J 2016; 80(2): 494-501.
[http://dx.doi.org/10.1253/circj.CJ-15-0588] [PMID: 26701182]
[46]
Koźniewska E, Szczepańska-Sadowska E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. J Cardiovasc Pharmacol 1990; 15(4): 579-85.
[http://dx.doi.org/10.1097/00005344-199004000-00009] [PMID: 1691387]
[47]
Juul KV, Bichet DG, Nielsen S, Nørgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol 2014; 306(9): F931-40.
[http://dx.doi.org/10.1152/ajprenal.00604.2013] [PMID: 24598801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy