Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers | Bentham Science
Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers

Author(s): Suresh Madheswaran, Neelakshi Mungra, Fleury A.N. Biteghe, Jean De la Croix Ndong, Afolake T. Arowolo, Henry A. Adeola, Dharanidharan Ramamurthy, Krupa Naran, Nonhlanhla P. Khumalo and Stefan Barth*

Volume 21, Issue 2, 2021

Published on: 28 July, 2020

Page: [162 - 186] Pages: 25

DOI: 10.2174/1871520620666200728123006

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells.

Objective: This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens.

Results: mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths.

Conclusion: Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.

Keywords: Skin cancer, cancer biomarker, diagnostic imaging, targeted treatment, antibody-drug conjugate, photodynamic therapy.

Graphical Abstract
[1]
Firnhaber, J.M. Diagnosis and treatment of Basal cell and squamous cell carcinoma. Am. Fam. Physician, 2012, 86(2), 161-168.
[PMID: 22962928]
[2]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Epidermis and its renewal by stem cells. In: Molecular Biology of the Cell, 4th ed; W. W. Norton & Company: NewYork, 2002, pp. 1-9.
[3]
Busam, K.J.; Charles, C.; Lee, G.; Halpern, A.C. Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy. Mod. Pathol., 2001, 14(9), 862-868.
[http://dx.doi.org/10.1038/modpathol.3880402] [PMID: 11557781]
[4]
Samarasinghe, V.; Madan, V. Nonmelanoma skin cancer. J. Cutan. Aesthet. Surg., 2012, 5(1), 3-10.
[http://dx.doi.org/10.4103/0974-2077.94323] [PMID: 22557848]
[5]
Yu, H.; Shu, X-O.; Shi, R.; Dai, Q.; Jin, F.; Gao, Y-T.; Li, B.D.L.; Zheng, W. Plasma sex steroid hormones and breast cancer risk in Chinese women. Int. J. Cancer, 2003, 105(1), 92-97.
[http://dx.doi.org/10.1002/ijc.11034] [PMID: 12672036]
[6]
Cangkrama, M.; Ting, S.B.; Darido, C. Stem cells behind the barrier. Int. J. Mol. Sci., 2013, 14(7), 13670-13686.
[http://dx.doi.org/10.3390/ijms140713670] [PMID: 23812084]
[7]
Linos, E.; Swetter, S.M.; Cockburn, M.G.; Colditz, G.A.; Clarke, C.A. Increasing burden of melanoma in the United States. J. Invest. Dermatol., 2009, 129(7), 1666-1674.
[http://dx.doi.org/10.1038/jid.2008.423] [PMID: 19131946]
[8]
Xie, R.; Chung, J.Y.; Ylaya, K.; Williams, R.L.; Guerrero, N.; Nakatsuka, N.; Badie, C.; Hewitt, S.M. Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J. Histochem. Cytochem., 2011, 59(4), 356-365.
[http://dx.doi.org/10.1369/0022155411398488] [PMID: 21411807]
[9]
Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo, 2014, 28(6), 1005-1011.
[PMID: 25398793]
[10]
Hong, H.; Sun, J.; Cai, W. Anatomical and molecular imaging of skin cancer. Clin. Cosmet. Investig. Dermatol., 2008, 1, 1-17.
[PMID: 21437135]
[12]
Eide, M.J.; Krajenta, R.; Johnson, D.; Long, J.J.; Jacobsen, G.; Asgari, M.M.; Lim, H.W.; Johnson, C.C. Identification of patients with nonmelanoma skin cancer using health maintenance organization claims data. Am. J. Epidemiol., 2010, 171(1), 123-128.
[http://dx.doi.org/10.1093/aje/kwp352] [PMID: 19969529]
[13]
Lara, F.; Santamaría, J.R.; Garbers, L.E.F. Recurrence rate of basal cell carcinoma with positive histopathological margins and related risk factors. An. Bras. Dermatol., 2017, 92(1), 58-62.
[http://dx.doi.org/10.1590/abd1806-4841.20174867] [PMID: 28225958]
[14]
Matos, I.; Machado, M.; Semedo, C.; Santos, J.; Sousa, S. A rare case of metastatic basal cell carcinoma. Int. J. Oral Maxillofac. Surg., 2019, 48, 219.
[http://dx.doi.org/10.1016/j.ijom.2019.03.676]
[15]
Mcdaniel, B.; Badri, T.; Regional, S. Basal Cell Carcinoma; StatPearls: Florida, 2019.
[16]
Codazzi, D.; Van Der Velden, J.; Carminati, M.; Bruschi, S.; Bocchiotti, M.A.; Di Serio, C.; Barberis, M.; Robotti, E. Positive compared with negative margins in a single-centre retrospective study on 3957 consecutive excisions of basal cell carcinomas. Associated risk factors and preferred surgical management. J. Plast. Surg. Hand Surg., 2014, 48(1), 38-43.
[http://dx.doi.org/10.3109/2000656X.2013.800526] [PMID: 23731130]
[17]
von Schuckmann, L.A.; Hughes, M.C.B.; Ghiasvand, R.; Malt, M.; van der Pols, J.C.; Beesley, V.L.; Khosrotehrani, K.; Smithers, B.M.; Green, A.C. Risk of melanoma recurrence after diagnosis of a high-risk primary tumor. JAMA Dermatol., 2019, 155(6), 688-693.
[http://dx.doi.org/10.1001/jamadermatol.2019.0440] [PMID: 31042258]
[18]
Venables, Z.C.; Autier, P.; Nijsten, T.; Wong, K.F.; Langan, S.M.; Rous, B.; Broggio, J.; Harwood, C.; Henson, K.; Proby, C.M.; Rashbass, J.; Leigh, I.M. Nationwide incidence of metastatic cutaneous squamous cell carcinoma in England. JAMA Dermatol., 2019, 155(3), 298-306.
[http://dx.doi.org/10.1001/jamadermatol.2018.4219] [PMID: 30484823]
[19]
Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol., 2018, 78(2), 237-247.
[http://dx.doi.org/10.1016/j.jaad.2017.08.059] [PMID: 29332704]
[20]
Khan, K.; Mykula, R.; Kerstein, R.; Rabey, N.; Bragg, T.; Crick, A.; Heppell, S.; Budny, P.; Potter, M. A 5-year follow-up study of 633 cutaneous SCC excisions: Rates of local recurrence and lymph node metastasis. J. Plast. Reconstr. Aesthet. Surg., 2018, 71(8), 1153-1158.
[http://dx.doi.org/10.1016/j.bjps.2018.03.019] [PMID: 29803777]
[21]
Verkouteren, J.A.C.; Ramdas, K.H.R.; Wakkee, M.; Nijsten, T. Epidemiology of basal cell carcinoma: Scholarly review. Br. J. Dermatol., 2017, 177(2), 359-372.
[http://dx.doi.org/10.1111/bjd.15321] [PMID: 28220485]
[22]
Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept., 2017, 7(2), 1-6.
[http://dx.doi.org/10.5826/dpc.0702a01] [PMID: 28515985]
[23]
Ryu, T.H.; Kye, H.; Choi, J.E.; Ahn, H.H.; Kye, Y.C.; Seo, S.H. Features causing confusion between basal cell carcinoma and squamous cell carcinoma in clinical diagnosis. Ann. Dermatol., 2018, 30(1), 64-70.
[http://dx.doi.org/10.5021/ad.2018.30.1.64] [PMID: 29386834]
[24]
Ibrahim, Y.L.; Lambert, S.; Kazakov, D.V.; Kaya, G. An unusual morphological presentation of cutaneous squamous cell carcinoma mimicking microcystic adnexal carcinoma: A diagnostic pitfall. Dermatopathology (Basel), 2018, 5(2), 64-68.
[http://dx.doi.org/10.1159/000488981] [PMID: 29998100]
[25]
Prassas, I.; Diamandis, E.P. Translational researchers beware! Unreliable commercial immunoassays (ELISAs) can jeopardize your research. Clin. Chem. Lab. Med., 2014, 52(6), 765-766.
[http://dx.doi.org/10.1515/cclm-2013-1078] [PMID: 24497227]
[26]
Patel, P.; Kuzmanov, U.; Mital, S. Avoiding false discovery in biomarker research. BMC Biochem., 2016, 17(1), 17.
[http://dx.doi.org/10.1186/s12858-016-0073-x] [PMID: 27474398]
[27]
Kanner, W.A.; Brill, L.B., II; Patterson, J.W.; Wick, M.R. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J. Cutan. Pathol., 2010, 37(7), 744-750.
[http://dx.doi.org/10.1111/j.1600-0560.2010.01534.x] [PMID: 20184665]
[28]
Luzar, B.; Calonje, E. Morphological and immunohistochemical characteristics of atypical fibroxanthoma with a special emphasis on potential diagnostic pitfalls: A review. J. Cutan. Pathol., 2010, 37(3), 301-309.
[http://dx.doi.org/10.1111/j.1600-0560.2009.01425.x] [PMID: 19807823]
[29]
Viray, H.; Bradley, W.R.; Schalper, K.A.; Rimm, D.L.; Gould Rothberg, B.E. Marginal and joint distributions of S100, HMB-45, and Melan-A across a large series of cutaneous melanomas. Arch. Pathol. Lab. Med., 2013, 137(8), 1063-1073.
[http://dx.doi.org/10.5858/arpa.2012-0284-OA] [PMID: 23899062]
[30]
Pujani, M.; Hassan, M.J.; Jetley, S. Atypical fibroxanthoma in a young female misdiagnosed clinically as a malignant melanoma--An unusual presentation. J. Cancer Res. Ther., 2015, 11(4), 1027.
[http://dx.doi.org/10.4103/0973-1482.150353] [PMID: 26881598]
[31]
Stanoszek, L.M.; Wang, G.Y.; Harms, P.W. Histologic mimics of basal cell Carcinoma. Arch. Pathol. Lab. Med., 2017, 141(11), 1490-1502.
[http://dx.doi.org/10.5858/arpa.2017-0222-RA] [PMID: 29072946]
[32]
Prioleau, J.; Schnitt, S.J. p53 antigen loss in stored paraffin slides. N. Engl. J. Med., 1995, 332(22), 1521-1522.
[http://dx.doi.org/10.1056/NEJM199506013322217] [PMID: 7739705]
[33]
Jacobs, T.W.; Prioleau, J.E.; Stillman, I.E.; Schnitt, S.J. Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J. Natl. Cancer Inst., 1996, 88(15), 1054-1059.
[http://dx.doi.org/10.1093/jnci/88.15.1054] [PMID: 8683636]
[34]
Scalia, C.R.; Boi, G.; Bolognesi, M.M.; Riva, L.; Manzoni, M.; DeSmedt, L.; Bosisio, F.M.; Ronchi, S.; Leone, B.E.; Cattoretti, G. Antigen masking during fixation and embedding, dissected. J. Histochem. Cytochem., 2017, 65(1), 5-20.
[http://dx.doi.org/10.1369/0022155416673995] [PMID: 27798289]
[35]
Heinzmann, K.; Carter, L.M.; Lewis, J.S.; Aboagye, E.O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng., 2017, 1(9), 697-713.
[http://dx.doi.org/10.1038/s41551-017-0131-8] [PMID: 31015673]
[36]
Parra, E.R. Immune Cell Profiling in Cancer using Multiplex Immunofluorescence and Digital Analysis Approaches.. In: Immunohistochemistry; IntechOpen: UK,. , 2018.
[37]
Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res., 2015, 4(3), 256-269.
[PMID: 26213686]
[38]
Jacquelot, N.; Pitt, J.M.; Enot, D.P.; Roberti, M.P.; Duong, C.P.M.; Rusakiewicz, S.; Eggermont, A.M.; Zitvogel, L. Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. OncoImmunology, 2017, 6(8)e1299303
[http://dx.doi.org/10.1080/2162402X.2017.1299303]] [PMID: 28919986]
[39]
Compton, L.A.; Murphy, G.F.; Lian, C.G. Diagnostic immunohistochemistry in cutaneous neoplasia: An update. Dermatopathology (Basel), 2015, 2(1), 15-42.
[http://dx.doi.org/10.1159/000377698] [PMID: 27047932]
[40]
Hyams, D.M.; Cook, R.W.; Buzaid, A.C. Identification of risk in cutaneous melanoma patients: Prognostic and predictive markers. J. Surg. Oncol., 2019, 119(2), 175-186.
[http://dx.doi.org/10.1002/jso.25319] [PMID: 30548543]
[41]
Lee, H.T.; Lee, S.H.; Heo, Y.S. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules, 2019, 24(6), 1-16.
[http://dx.doi.org/10.3390/molecules24061190] [PMID: 30917623]
[42]
Zhao, Q.; Piyush, T.; Chen, C.; Hollingsworth, M.A.; Hilkens, J.; Rhodes, J.M.; Yu, L.G. MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis. Cell Death Dis., 2014, 5(10)e1438
[http://dx.doi.org/10.1038/cddis.2014.421]] [PMID: 25275599]
[43]
Tarhini, A.; Kudchadkar, R.R. Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treat. Rev., 2018, 71, 8-18.
[http://dx.doi.org/10.1016/j.ctrv.2018.09.005] [PMID: 30273812]
[44]
Belleudi, F.; Marra, E.; Mazzetta, F.; Fattore, L.; Giovagnoli, M.R.; Mancini, R.; Aurisicchio, L.; Torrisi, M.R.; Ciliberto, G. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle, 2012, 11(7), 1455-1467.
[http://dx.doi.org/10.4161/cc.19861] [PMID: 22421160]
[45]
Tiwary, S.; Preziosi, M.; Rothberg, P.G.; Zeitouni, N.; Corson, N.; Xu, L. ERBB3 Is required for metastasis formation of melanoma cells. Oncogenesis, 1907, 2014, 3.
[PMID: 25000258]
[46]
Reschke, M.; Mihic-Probst, D.; van der Horst, E.H.; Knyazev, P.; Wild, P.J.; Hutterer, M.; Meyer, S.; Dummer, R.; Moch, H.; Ullrich, A. HER3 is a determinant for poor prognosis in melanoma. Clin. Cancer Res., 2008, 14(16), 5188-5197.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0186] [PMID: 18698037]
[47]
Villada, G.; Kryvenko, O.N.; Campuzano-Zuluaga, G.; Kovacs, C.; Chapman, J.; Gomez-Fernandez, C. A limited immunohistochemical panel to distinguish basal cell carcinoma of cutaneous origin from basaloid squamous cell carcinoma of the head and neck. Appl. Immunohistochem. Mol. Morphol., 2018, 26(2), 126-131.
[PMID: 27438511]
[48]
Dasgeb, B.; Mohammadi, T.M.; Mehregan, D.R. Use of Ber-EP4 and epithelial specific antigen to differentiate clinical simulators of basal cell carcinoma. Biomark. Cancer, 2013, 5, 7-11.
[http://dx.doi.org/10.4137/BIC.S11856] [PMID: 24179394]
[49]
Sunjaya, A.P.; Sunjaya, A.F.; Tan, S.T. The use of BEREP4 immunohistochemistry staining for detection of basal cell carcinoma. J. Skin Cancer, 2017, 2017 Article ID 2692604
[http://dx.doi.org/10.1155/2017/2692604]
[50]
Mirkina, I.; Hadzijusufovic, E.; Krepler, C.; Mikula, M.; Mechtcheriakova, D.; Strommer, S.; Stella, A.; Jensen-Jarolim, E.; Höller, C.; Wacheck, V.; Pehamberger, H.; Valent, P. Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R. PLoS One, 2014, 9(1)e84417
[http://dx.doi.org/10.1371/journal.pone.0084417]] [PMID: 24489649]
[51]
Colmont, C.S.; Benketah, A.; Reed, S.H.; Hawk, N.V.; Telford, W.G.; Ohyama, M.; Udey, M.C.; Yee, C.L.; Vogel, J.C.; Patel, G.K. CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proc. Natl. Acad. Sci. USA, 2013, 110(4), 1434-1439.
[http://dx.doi.org/10.1073/pnas.1211655110] [PMID: 23292936]
[52]
Pilch, Z.; Tonecka, K.; Skorzynski, M.; Sas, Z.; Braniewska, A.; Kryczka, T.; Boon, L.; Golab, J.; Meyaard, L.; Rygiel, T.P. The pro-tumor effect of CD200 expression is not mimicked by agonistic CD200R antibodies. PLoS One, 2019, 14(1)e0210796
[http://dx.doi.org/10.1371/journal.pone.0210796]] [PMID: 30653571]
[53]
Stumpfova, M.; Ratner, D.; Desciak, E.B.; Eliezri, Y.D.; Owens, D.M. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res., 2010, 70(7), 2962-2972.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4380] [PMID: 20332223]
[54]
Gaiser, M.R.; Hirsch, D.; Gaiser, T. Loss of epithelial Cell Adhesion Molecule (EpCAM) in infiltrative basal cell carcinoma. Int. J. Clin. Exp. Pathol., 2018, 11(1), 406-412.
[PMID: 31938125]
[55]
Chantima, W.; Thepthai, C.; Cheunsuchon, P.; Dharakul, T. EpCAM expression in squamous cell carcinoma of the uterine cervix detected by monoclonal antibody to the membrane-proximal part of EpCAM. BMC Cancer, 2017, 17(1), 811.
[http://dx.doi.org/10.1186/s12885-017-3798-z] [PMID: 29202724]
[56]
Wang, X.; Lan, H.; Li, J.; Su, Y.; Xu, L. Muc1 promotes migration and lung metastasis of melanoma cells. Am. J. Cancer Res., 2015, 5(9), 2590-2604.
[PMID: 26609470]
[57]
Panchamoorthy, G.; Jin, C.; Raina, D.; Bharti, A.; Yamamoto, M.; Adeebge, D.; Zhao, Q.; Bronson, R.; Jiang, S.; Li, L.; Suzuki, Y.; Tagde, A.; Ghoroghchian, P.P.; Wong, K.K.; Kharbanda, S.; Kufe, D. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 2018, 3(12), 1-11.
[http://dx.doi.org/10.1172/jci.insight.99880] [PMID: 29925694]
[58]
Giehl, K.A.; Nägele, U.; Volkenandt, M.; Berking, C. Protein expression of melanocyte growth factors (bFGF, SCF) and their receptors (FGFR-1, c-kit) in nevi and melanoma. J. Cutan. Pathol., 2007, 34(1), 7-14.
[http://dx.doi.org/10.1111/j.1600-0560.2006.00569.x] [PMID: 17214848]
[59]
Straume, O.; Akslen, L.A. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol., 2002, 160(3), 1009-1019.
[http://dx.doi.org/10.1016/S0002-9440(10)64922-X] [PMID: 11891198]
[60]
Fässler, M.; Diem, S.; Mangana, J.; Hasan Ali, O.; Berner, F.; Bomze, D.; Ring, S.; Niederer, R.; Del Carmen Gil Cruz, C.; Pérez Shibayama, C.I.; Krolik, M.; Siano, M.; Joerger, M.; Recher, M.; Risch, L.; Güsewell, S.; Risch, M.; Speiser, D.E.; Ludewig, B.; Levesque, M.P.; Dummer, R.; Flatz, L. Antibodies as biomarker candidates for response and survival to checkpoint inhibitors in melanoma patients. J. Immunother. Cancer, 2019, 7(1), 50.
[http://dx.doi.org/10.1186/s40425-019-0523-2] [PMID: 30786924]
[61]
Zaenker, P.; Lo, J.; Pearce, R.; Cantwell, P.; Cowell, L.; Lee, M.; Quirk, C.; Law, H.; Gray, E.; Ziman, M. A diagnostic autoantibody signature for primary cutaneous melanoma. Oncotarget, 2018, 9(55), 30539-30551.
[http://dx.doi.org/10.18632/oncotarget.25669] [PMID: 30093967]
[62]
Schütz, B.; Koppensteiner, A.; Schörghofer, D.; Kinslechner, K.; Timelthaler, G.; Eferl, R.; Hengstschläger, M.; Missbichler, A.; Hundsberger, H.; Mikula, M. Generation of metastatic melanoma specific antibodies by affinity purification. Sci. Rep., 2016, 6, 1-11.
[http://dx.doi.org/10.1038/srep37253]
[63]
Bluemel, C.; Hausmann, S.; Fluhr, P.; Sriskandarajah, M.; Stallcup, W.B.; Baeuerle, P.A.; Kufer, P. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol. Immunother., 2010, 59(8), 1197-1209.
[http://dx.doi.org/10.1007/s00262-010-0844-y] [PMID: 20309546]
[64]
Horn, L.A.; Ciavattone, N.G.; Atkinson, R.; Woldergerima, N.; Wolf, J.; Clements, V.K.; Sinha, P.; Poudel, M.; Ostrand-Rosenberg, S. CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget, 2017, 8(35), 57964-57980.
[http://dx.doi.org/10.18632/oncotarget.19865] [PMID: 28938530]
[65]
Torisu-Itakura, H.; Schoellhammer, H.F.; Sim, M.S.; Irie, R.F.; Hausmann, S.; Raum, T.; Baeuerle, P.A.; Morton, D.L. Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells. J. Immunother., 2011, 34(8), 597-605.
[http://dx.doi.org/10.1097/CJI.0b013e3182307fd8] [PMID: 21904216]
[66]
Bailis, J.M.; Lee, F.; Giffin, M.; Hughes, P.; Tsoi, J.; Robert, L.; Graeber, T.G.; Ribas, A.; Coxon, A. Abstract 553: Melanoma subtypes that emerge during adaptive resistance to therapy are targets for bispecific T cell engager (BiTE®) antibody constructs directed to CDH19 and DLL3. Cancer Res., 2019, 3, 553-553.
[67]
Wang, J.; Chong, K.K.; Nakamura, Y.; Nguyen, L.; Huang, S.K.; Kuo, C.; Zhang, W.; Yu, H.; Morton, D.L.; Hoon, D.S.B. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J. Invest. Dermatol., 2013, 133(8), 2050-2058.
[http://dx.doi.org/10.1038/jid.2013.114] [PMID: 23474948]
[68]
Tekle, C.; Nygren, M.K.; Chen, Y.W.; Dybsjord, I.; Nesland, J.M.; Maelandsmo, G.M.; Fodstad, O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int. J. Cancer, 2012, 130(10), 2282-2290.
[http://dx.doi.org/10.1002/ijc.26238] [PMID: 21671471]
[69]
Baughman, J.; Loo, D.; Chen, F.; Moore, P.; Bonvini, E.; Vasselli, J.; Wigginton, J.; Cohen, R. A Phase I, open-label, dose escalation study of MGA271 in combination with pembrolizumab in patients with B7-H3-expressing melanoma, squamous cell cancer of the head and neck, or squamous cell non-small cell lung cancer. J. Immunother. Cancer, 2015, 3(Suppl. 2), 177.
[http://dx.doi.org/10.1186/2051-1426-3-S2-P177]
[70]
Safety study of enoblituzumab (MGA271) in Combination With Pembrolizumab or MGA012 in Refractory Cancer.. https://clinicaltrials.gov/ct2/show/NCT02475213
[71]
Safety study of MGA271 in refractory cancer. . https://clinicaltrials. gov/ct2/show/NCT01391143
[72]
Li, X.; Regezi, J.; Ross, F.P.; Blystone, S.; Ilić, D.; Leong, S.P.L.; Ramos, D.M. Integrin alphavbeta3 mediates K1735 murine melanoma cell motility in vivo and in vitro. J. Cell Sci., 2001, 114(Pt 14), 2665-2672.
[PMID: 11683393]
[73]
Van Belle, P.A.; Elenitsas, R.; Satyamoorthy, K.; Wolfe, J.T.; Guerry, D., IV; Schuchter, L.; Van Belle, T.J.; Albelda, S.; Tahin, P.; Herlyn, M.; Elder, D.E. Progression-related expression of beta3 integrin in melanomas and nevi. Hum. Pathol., 1999, 30(5), 562-567.
[http://dx.doi.org/10.1016/S0046-8177(99)90202-2] [PMID: 10333228]
[74]
Si, Z.; Hersey, P. Immunohistological examination of the relationship between metastatic potential and expression of adhesion molecules and ‘selectins’ on melanoma cells. Pathology, 1994, 26(1), 6-15.
[http://dx.doi.org/10.1080/00313029400169011] [PMID: 7513076]
[75]
Petitclerc, E.; Strömblad, S.; von Schalscha, T.L.; Mitjans, F.; Piulats, J.; Montgomery, A.M.P.; Cheresh, D.A.; Brooks, P.C. Integrin α(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res., 1999, 59(11), 2724-2730.
[PMID: 10363998]
[76]
Vogetseder, A.; Thies, S.; Ingold, B.; Roth, P.; Weller, M.; Schraml, P.; Goodman, S.L.; Moch, H. αv-Integrin isoform expression in primary human tumors and brain metastases. Int. J. Cancer, 2013, 133(10), 2362-2371.
[http://dx.doi.org/10.1002/ijc.28267] [PMID: 23661241]
[77]
Mitjans, F.; Meyer, T.; Fittschen, C.; Goodman, S.; Jonczyk, A.; Marshall, J.F.; Reyes, G.; Piulats, J. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins. Int. J. Cancer, 2000, 87(5), 716-723.
[http://dx.doi.org/10.1002/1097-0215(20000901)87:5<716:AID-IJC14>3.0.CO;2-R] [PMID: 10925366]
[78]
Study of the tumor saturation and biological activity of MEDI-522(Abergrin) in patients with advanced malignant melanoma.. https://clinicaltrials.gov/ct2/show/NCT00111696
[79]
Ghanem, G.; Fabrice, J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol. Oncol., 2011, 5(2), 150-155.
[http://dx.doi.org/10.1016/j.molonc.2011.01.006] [PMID: 21324755]
[80]
Patel, D.; Balderes, P.; Lahiji, A.; Melchior, M.; Ng, S.; Bassi, R.; Wu, Y.; Griffith, H.; Jimenez, X.; Ludwig, D.L.; Hicklin, D.J.; Kang, X. Generation and characterization of a therapeutic human antibody to melanoma antigen TYRP1. Hum. Antibodies, 2007, 16(3-4), 127-136.
[http://dx.doi.org/10.3233/HAB-2007-163-407] [PMID: 18334748]
[81]
Takechi, Y.; Hara, I.; Naftzger, C.; Xu, Y.; Houghton, A.N. A melanosomal membrane protein is a cell surface target for melanoma therapy. Clin. Cancer Res., 1996, 2(11), 1837-1842.
[PMID: 9816138]
[82]
Bolander, A.; Agnarsdóttir, M.; Strömberg, S.; Ponten, F.; Hesselius, P.; Uhlen, M.; Bergqvist, M. The protein expression of TRP-1 and galectin-1 in cutaneous malignant melanomas. Cancer Genomics Proteomics, 2008, 5(6), 293-300.
[PMID: 19287070]
[83]
Boross, P.; Jansen, J.H.M.; van Tetering, G.; Nederend, M.; Brandsma, A.; Meyer, S.; Torfs, E.; van den Ham, H.J.; Meulenbroek, L.; de Haij, S.; Leusen, J.H. Anti-tumor activity of human IgG1 anti-gp75 TA99 mAb against B16F10 melanoma in human FcgammaRI transgenic mice. Immunol. Lett., 2014, 160(2), 151-157.
[http://dx.doi.org/10.1016/j.imlet.2014.02.005] [PMID: 24613852]
[84]
An open-label, dose-escalation study of IMC-20D7S in participants with malignant melanoma.. https://clinicaltrials.gov/ct2/show/NCT01137006.
[85]
Campoli, M.R.; Chang, C.C.; Kageshita, T.; Wang, X.; McCarthy, J.B.; Ferrone, S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): A Melanoma cell Surface Chondroitin sulfate Proteoglycan (MSCP) with biological and clinical significance. Crit. Rev. Immunol., 2004, 24(4), 267-296.
[http://dx.doi.org/10.1615/CritRevImmunol.v24.i4.40] [PMID: 15588226]
[86]
Wilson, B.S.; Imai, K.; Natali, P.G.; Ferrone, S. Distribution and molecular characterization of a cell-surface and a cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int. J. Cancer, 1981, 28(3), 293-300.
[http://dx.doi.org/10.1002/ijc.2910280307] [PMID: 7033148]
[87]
Giacomini, P.; Natali, P.; Ferrone, S. Analysis of the interaction between a human high molecular weight melanoma-associated antigen and the monoclonal antibodies to three distinct antigenic determinants. J. Immunol., 1985, 135(1), 696-702.
[PMID: 2582052]
[88]
Goto, Y.; Ferrone, S.; Arigami, T.; Kitago, M.; Tanemura, A.; Sunami, E.; Nguyen, S.L.; Turner, R.R.; Morton, D.L.; Hoon, D.S.B. Human high molecular weight-melanoma-associated antigen: utility for detection of metastatic melanoma in sentinel lymph nodes. Clin. Cancer Res., 2008, 14(11), 3401-3407.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1842] [PMID: 18519770]
[89]
de Bruyn, M.; Rybczynska, A.A.; Wei, Y.; Schwenkert, M.; Fey, G.H.; Dierckx, R.A.J.O.; van Waarde, A.; Helfrich, W.; Bremer, E. Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Mol. Cancer, 2010, 9, 301.
[http://dx.doi.org/10.1186/1476-4598-9-301] [PMID: 21092273]
[90]
Schwenkert, M.; Birkholz, K.; Schwemmlein, M.; Kellner, C.; Kügler, M.; Peipp, M.; Nettelbeck, D.M.; Schuler-Thurner, B.; Schaft, N.; Dörrie, J.; Ferrone, S.; Kämpgen, E.; Fey, G.H. A single chain immunotoxin, targeting the melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells. Melanoma Res., 2008, 18(2), 73-84.
[http://dx.doi.org/10.1097/CMR.0b013e3282f7c8f9] [PMID: 18337643]
[91]
Allen, B.J.; Singla, A.A.; Rizvi, S.M.A.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy, 2011, 3(9), 1041-1050.
[http://dx.doi.org/10.2217/imt.11.97] [PMID: 21913827]
[92]
Wang, X.; Katayama, A.; Wang, Y.; Yu, L.; Favoino, E.; Sakakura, K.; Favole, A.; Tsuchikawa, T.; Silver, S.; Watkins, S.C.; Kageshita, T.; Ferrone, S. Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4. Cancer Res., 2011, 71(24), 7410-7422.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1134] [PMID: 22021902]
[93]
Monoclonal antibody therapy in treating patients with primary or metastatic melanoma or brain tumors.. https://clinicaltrials.gov/ct2/show/NCT00002754
[94]
Ohmi, Y.; Kambe, M.; Ohkawa, Y.; Hamamura, K.; Tajima, O.; Takeuchi, R.; Furukawa, K.; Furukawa, K. Differential roles of gangliosides in malignant properties of melanomas. PLoS One, 2018, 13(11)e0206881
[http://dx.doi.org/10.1371/journal.pone.0206881]] [PMID: 30462668]
[95]
Furukawa, K.; Hamamura, K.; Ohkawa, Y.; Ohmi, Y.; Furukawa, K. Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj. J., 2012, 29(8-9), 579-584.
[http://dx.doi.org/10.1007/s10719-012-9423-0] [PMID: 22763744]
[96]
Thomas, C.P.; Buronfosse, A.; Combaret, V.; Pedron, S.; Fertil, B.; Portoukalian, J. Gangliosides protect human melanoma cells from ionizing radiation-induced clonogenic cell death. Glycoconj. J., 1996, 13(3), 377-384.
[http://dx.doi.org/10.1007/BF00731470] [PMID: 8781968]
[97]
Hamamura, K.; Furukawa, K.; Hayashi, T.; Hattori, T.; Nakano, J.; Nakashima, H.; Okuda, T.; Mizutani, H.; Hattori, H.; Ueda, M.; Urano, T.; Lloyd, K.O.; Furukawa, K. Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11041-11046.
[http://dx.doi.org/10.1073/pnas.0503658102] [PMID: 16040804]
[98]
Zou, W.; Borrelli, S.; Gilbert, M.; Liu, T.; Pon, R.A.; Jennings, H.J. Bioengineering of surface GD3 ganglioside for immunotargeting human melanoma cells. J. Biol. Chem., 2004, 279(24), 25390-25399.
[http://dx.doi.org/10.1074/jbc.M402787200] [PMID: 15047693]
[99]
Torres Demichelis, V.; Vilcaes, A.A.; Iglesias-Bartolomé, R.; Ruggiero, F.M.; Daniotti, J.L. Targeted delivery of immunotoxin by antibody to ganglioside GD3: A novel drug delivery route for tumor cells. PLoS One, 2013, 8(1)e55304
[http://dx.doi.org/10.1371/journal.pone.0055304]] [PMID: 23383146]
[100]
Forero, A.; Shah, J.; Carlisle, R.; Triozzi, P.L.; LoBuglio, A.F.; Wang, W.Q.; Fujimori, M.; Conry, R.M. A phase I study of an anti-GD3 monoclonal antibody, KW-2871, in patients with metastatic melanoma. Cancer Biother. Radiopharm., 2006, 21(6), 561-568.
[http://dx.doi.org/10.1089/cbr.2006.21.561] [PMID: 17257071]
[101]
A study of a monoclonal antibody, KW-2871, in patients with advanced melanoma.. https://clinicaltrials.gov/ct2/show/NCT00199342
[102]
Watanabe, T.; Pukel, C.S.; Takeyama, H.; Lloyd, K.O.; Shiku, H.; Li, L.T.; Travassos, L.R.; Oettgen, H.F.; Old, L.J. Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J. Exp. Med., 1982, 156(6), 1884-1889.
[http://dx.doi.org/10.1084/jem.156.6.1884] [PMID: 7175442]
[103]
Lammie, G.; Cheung, N.; Gerald, W.; Rosenblum, M.; Cordoncardo, C. Ganglioside Gd(2) expression in the human nervous-system and in neuroblastomas - an immunohistochemical study. Int. J. Oncol., 1993, 3(5), 909-915.
[http://dx.doi.org/10.3892/ijo.3.5.909] [PMID: 21573452]
[104]
Tsao, C.Y.; Sabbatino, F.; Cheung, N.K.V.; Hsu, J.C.; Villani, V.; Wang, X.; Ferrone, S. Anti-proliferative and pro-apoptotic activity of GD2 ganglioside-specific monoclonal antibody 3F8 in human melanoma cells. OncoImmunology, 2015, 4(8)e1023975
[http://dx.doi.org/10.1080/2162402X.2015.1023975]] [PMID: 26405581]
[105]
Monoclonal antibody therapy in treating patients with stage III or stage IV melanoma. . https://clinicaltrials.gov/ct2/show/NCT00004184
[106]
Florescu, D.E.; Stepan, A.E.; Mărgăritescu, C.; Ciurea, R.N.; Stepan, M.D.; Simionescu, C.E. The involvement of EGFR, HER2 and HER3 in the basal cell carcinomas aggressiveness. Rom. J. Morphol. Embryol., 2018, 59(2), 479-484.
[PMID: 30173251]
[107]
Boone, B.; Jacobs, K.; Ferdinande, L.; Taildeman, J.; Lambert, J.; Peeters, M.; Bracke, M.; Pauwels, P.; Brochez, L. EGFR in melanoma: clinical significance and potential therapeutic target. J. Cutan. Pathol., 2011, 38(6), 492-502.
[http://dx.doi.org/10.1111/j.1600-0560.2011.01673.x] [PMID: 21352258]
[108]
Gross, A.; Niemetz-Rahn, A.; Nonnenmacher, A.; Tucholski, J.; Keilholz, U.; Fusi, A. Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway. Target. Oncol., 2015, 10(1), 77-84.
[http://dx.doi.org/10.1007/s11523-014-0318-9] [PMID: 24824730]
[109]
Cañueto, J.; Cardeñoso, E.; García, J.L.; Santos-Briz, Á.; Castellanos-Martín, A.; Fernández-López, E.; Blanco Gómez, A.; Pérez-Losada, J.; Román-Curto, C. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br. J. Dermatol., 2017, 176(5), 1279-1287.
[http://dx.doi.org/10.1111/bjd.14936] [PMID: 27510450]
[110]
Talimogene Laherparepvec and Panitumumab for the Treatment of Locally Advanced or Metastatic Squamous Cell Carcinoma of the Skin.. https://clinicaltrials.gov/ct2/show/NCT04163952
[111]
Wimmer, E.; Kraehn-Senftleben, G.; Issing, W.J. HER3 expression in cutaneous tumors. Anticancer Res., 2008, 28(2A), 973-979.
[112]
Korabiowska, M.; Mirecka, J.; Brinck, U.; Hoefer, K.; Marx, D.; Schauer, A. Differential expression of cerbB3 in naevi and malignant melanomas. Anticancer Res., 1996, 16(1), 471-474.
[PMID: 8615656]
[113]
Capone, E.; Giansanti, F.; Ponziani, S.; Lamolinara, A.; Iezzi, M.; Cimini, A.; Angelucci, F.; Sorda, R.; Laurenzi, V.; Natali, P.G.; Ippoliti, R.; Iacobelli, S.; Sala, G. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget, 2017, 8(56), 95412-95424.
[http://dx.doi.org/10.18632/oncotarget.20728] [PMID: 29221137]
[114]
Study of CDX-3379, a human monoclonal antibody targeting ERBB3, in combination with the MEK inhibitor, trametinib, in patients with advanced stage NRAS mutant and BRAF/NRAS wildtype (WT) melanoma.. https://clinicaltrials.gov/ct2/show/NCT03580382
[115]
Gambichler, T.; Grothe, S.; Rotterdam, S.; Altmeyer, P.; Kreuter, A. Protein expression of carcinoembryonic antigen cell adhesion molecules in benign and malignant melanocytic skin lesions. Am. J. Clin. Pathol., 2009, 131(6), 782-787.
[http://dx.doi.org/10.1309/AJCP24KXJVBZXENS] [PMID: 19461083]
[116]
Nichita, L.; Zurac, S.; Bastian, A.; Stinga, P.; Nedelcu, R.; Brinzea, A.; Turcu, G.; Ion, D.; Jilaveanu, L.; Sticlaru, L.; Popp, C.; Cioplea, M. Comparative analysis of CEACAM1 expression in thin melanomas with and without regression. Oncol. Lett., 2019, 17(5), 4149-4154.
[http://dx.doi.org/10.3892/ol.2019.10067] [PMID: 30944609]
[117]
Sapoznik, S.; Ortenberg, R.; Schachter, J.; Markel, G. CEACAM1 in malignant melanoma: A diagnostic and therapeutic target. Curr. Top. Med. Chem., 2012, 12(1), 3-10.
[http://dx.doi.org/10.2174/156802612798919259] [PMID: 22196267]
[118]
Thies, A.; Berlin, A.; Brunner, G.; Schulze, H.J.; Moll, I.; Pfüller, U.; Wagener, C.; Schachner, M.; Altevogt, P.; Schumacher, U. Glycoconjugate profiling of primary melanoma and its sentinel node and distant metastases: Implications for diagnosis and pathophysiology of metastases. Cancer Lett., 2007, 248(1), 68-80.
[http://dx.doi.org/10.1016/j.canlet.2006.05.020] [PMID: 16822608]
[119]
Wicklein, D.; Otto, B.; Suling, A.; Elies, E.; Lüers, G.; Lange, T.; Feldhaus, S.; Maar, H.; Schröder-Schwarz, J.; Brunner, G.; Wagener, C.; Schumacher, U. CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells. Sci. Rep., 2018, 8(1), 11893.
[http://dx.doi.org/10.1038/s41598-018-30338-4] [PMID: 30089785]
[120]
Ortenberg, R.; Sapir, Y.; Raz, L.; Hershkovitz, L.; Ben Arav, A.; Sapoznik, S.; Barshack, I.; Avivi, C.; Berkun, Y.; Besser, M.J.; Ben-Moshe, T.; Schachter, J.; Markel, G. Novel immunotherapy for malignant melanoma with a monoclonal antibody that blocks CEACAM1 homophilic interactions. Mol. Cancer Ther., 2012, 11(6), 1300-1310.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0526] [PMID: 22466331]
[121]
Ortenberg, R.; Sapoznik, S.; Zippel, D.; Shapira-Frommer, R.; Itzhaki, O.; Kubi, A.; Zikich, D.; Besser, M.J.; Schachter, J.; Markel, G. Serum CEACAM1 elevation correlates with melanoma progression and failure to respond to adoptive cell transfer immunotherapy. J. Immunol. Res., 2015, 2015902137
[http://dx.doi.org/10.1155/2015/902137]] [PMID: 26688824]
[122]
Study of CM-24 (MK-6018) Alone and In Combination With Pembrolizumab (MK-3475) in Participants With Selected Advanced or Recurrent Malignancies (MK-6018-001). . https://clinicaltrials.gov/ct2/show/NCT02346955
[123]
Qian, F.; Zhang, Z.C.; Wu, X.F.; Li, Y.P.; Xu, Q. Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem. Biophys. Res. Commun., 2005, 333(4), 1269-1275.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.039] [PMID: 15979576]
[124]
Ricart, A.D.; Tolcher, A.W.; Liu, G.; Holen, K.; Schwartz, G.; Albertini, M.; Weiss, G.; Yazji, S.; Ng, C.; Wilding, G. Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clin. Cancer Res., 2008, 14(23), 7924-7929.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0378] [PMID: 19047123]
[125]
Almokadem, S.; Belani, C.P. Volociximab in cancer. Expert Opin. Biol. Ther., 2012, 12(2), 251-257.
[http://dx.doi.org/10.1517/14712598.2012.646985] [PMID: 22192080]
[126]
Volociximab in Combination With DTIC in Patients With Metastatic Melanoma Not Previously Treated With Chemotherapy. https://clinicaltrials.gov/ct2/show/NCT00099970
[127]
Loescher, L.J.; Janda, M.; Soyer, H.P.; Shea, K.; Curiel-Lewandrowski, C. Advances in skin cancer early detection and diagnosis. Semin. Oncol. Nurs., 2013, 29(3), 170-181.
[http://dx.doi.org/10.1016/j.soncn.2013.06.003] [PMID: 23958215]
[128]
Rigel, D.S.; Russak, J.; Friedman, R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J. Clin., 2010, 60(5), 301-316.
[http://dx.doi.org/10.3322/caac.20074] [PMID: 20671054]
[129]
In vitro dielectric properties of rat skin tissue for microwave skin cancer detection - IEEE Conference Publication.. https://ieeexplore.ieee.org/document/8713068
[130]
Thomas, L.; Puig, S. Dermoscopy, digital dermoscopy and other diagnostic tools in the early detection of melanoma and follow-up of high-risk skin cancer patients. Acta Derm. Venereol., 2017, 97(Suppl. 218), 14-21.
[PMID: 28676882]
[131]
Anderson, K.S.; LaBaer, J. The sentinel within: Exploiting the immune system for cancer biomarkers. J. Proteome Res., 2005, 4(4), 1123-1133.
[http://dx.doi.org/10.1021/pr0500814] [PMID: 16083262]
[132]
Zaenker, P.; Gray, E.S.; Ziman, M.R. Autoantibody production in cancer- the humoral immune response toward autologous antigens in cancer patients. Autoimmun. Rev., 2016, 15(5), 477-483.
[http://dx.doi.org/10.1016/j.autrev.2016.01.017] [PMID: 26827909]
[133]
Gray, E.S.; Rizos, H.; Reid, A.L.; Boyd, S.C.; Pereira, M.R.; Lo, J.; Tembe, V.; Freeman, J.; Lee, J.H.J.; Scolyer, R.A.; Siew, K.; Lomma, C.; Cooper, A.; Khattak, M.A.; Meniawy, T.M.; Long, G.V.; Carlino, M.S.; Millward, M.; Ziman, M. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget, 2015, 6(39), 42008-42018.
[http://dx.doi.org/10.18632/oncotarget.5788] [PMID: 26524482]
[134]
Stark, M.S.; Klein, K.; Weide, B.; Haydu, L.E.; Pflugfelder, A.; Tang, Y.H.; Palmer, J.M.; Whiteman, D.C.; Scolyer, R.A.; Mann, G.J.; Thompson, J.F.; Long, G.V.; Barbour, A.P.; Soyer, H.P.; Garbe, C.; Herington, A.; Pollock, P.M.; Hayward, N.K. The prognostic and predictive value of melanoma-related microRNAs using tissue and serum: a microRNA expression analysis. EBioMedicine, 2015, 2(7), 671-680.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.011] [PMID: 26288839]
[135]
Freeman, J.B.; Gray, E.S.; Millward, M.; Pearce, R.; Ziman, M. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells. J. Transl. Med., 2012, 10, 192.
[http://dx.doi.org/10.1186/1479-5876-10-192] [PMID: 22978632]
[136]
DiFronzo, L.A.; Gupta, R.K.; Essner, R.; Foshag, L.J.; O’Day, S.J.; Wanek, L.A.; Stern, S.L.; Morton, D.L. Enhanced humoral immune response correlates with improved disease-free and overall survival in American Joint Committee on Cancer stage II melanoma patients receiving adjuvant polyvalent vaccine. J. Clin. Oncol., 2002, 20(15), 3242-3248.
[http://dx.doi.org/10.1200/JCO.2002.01.065] [PMID: 12149297]
[137]
Petricoin, E.; Wulfkuhle, J.; Espina, V.; Liotta, L.A. Clinical proteomics: revolutionizing disease detection and patient tailoring therapy. J. Proteome Res., 2004, 3(2), 209-217.
[http://dx.doi.org/10.1021/pr049972m] [PMID: 15113096]
[138]
Zhu, Q.; Liu, M.; Dai, L.; Ying, X.; Ye, H.; Zhou, Y.; Han, S.; Zhang, J.Y. Using immunoproteomics to identify Tumor-Associated Antigens (TAAs) as biomarkers in cancer immunodiagnosis. Autoimmun. Rev., 2013, 12(12), 1123-1128.
[http://dx.doi.org/10.1016/j.autrev.2013.06.015] [PMID: 23806562]
[139]
Liu, W.; Peng, B.; Lu, Y.; Xu, W.; Qian, W.; Zhang, J.Y. Autoantibodies to tumor-associated antigens as biomarkers in cancer immunodiagnosis. Autoimmun. Rev., 2011, 10(6), 331-335.
[http://dx.doi.org/10.1016/j.autrev.2010.12.002] [PMID: 21167321]
[140]
Jia, J.; Wang, W.; Meng, W.; Ding, M.; Ma, S.; Wang, X. Development of a multiplex autoantibody test for detection of lung cancer. PLoS One, 2014, 9(4)e95444
[http://dx.doi.org/10.1371/journal.pone.0095444]] [PMID: 24755629]
[141]
Palit, A.; Inamadar, A.C. Immunohistochemistry: Relevance in dermatology. Indian J. Dermatol., 2011, 56(6), 629-640.
[http://dx.doi.org/10.4103/0019-5154.91818] [PMID: 22345760]
[142]
Duraiyan, J.; Govindarajan, R.; Kaliyappan, K.; Palanisamy, M. Applications of immunohistochemistry. J. Pharm. Bioallied Sci., 2012, 4(6)(Suppl. 2), S307-S309.
[http://dx.doi.org/10.4103/0975-7406.100281] [PMID: 23066277]
[143]
Prieto, V.G.; Shea, C.R. Use of immunohistochemistry in melanocytic lesions. J. Cutan. Pathol., 2008, 35(s2)(Suppl. 2), 1-10.
[http://dx.doi.org/10.1111/j.1600-0560.2008.01130.x] [PMID: 18976412]
[144]
Alhumaidi, A. Practical immunohistochemistry of epithelial skin tumor. Indian J. Dermatol. Venereol. Leprol., 2012, 78(6), 698-708.
[http://dx.doi.org/10.4103/0378-6323.102359] [PMID: 23075638]
[145]
Hudson, A.R.; Smoller, B.R. Immunohistochemistry in diagnostic dermatopathology. Dermatol. Clin., 1999, 17(3), 667-689.
[http://dx.doi.org/10.1016/S0733-8635(05)70115-7] [PMID: 10410866]
[146]
Kaur, S.; Venktaraman, G.; Jain, M.; Senapati, S.; Garg, P.K.; Batra, S.K. Recent trends in antibody-based oncologic imaging. Cancer Lett., 2012, 315(2), 97-111.
[http://dx.doi.org/10.1016/j.canlet.2011.10.017] [PMID: 22104729]
[147]
Brassell, S.A.; Rosner, I.L.; McLeod, D.G. Update on magnetic resonance imaging, ProstaScint, and novel imaging in prostate cancer. Curr. Opin. Urol., 2005, 15(3), 163-166.
[http://dx.doi.org/10.1097/01.mou.0000165549.94663.2d] [PMID: 15815192]
[148]
Debie, P.; Hernot, S. Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front. Pharmacol., 2019, 10, 510.
[http://dx.doi.org/10.3389/fphar.2019.00510] [PMID: 31139085]
[149]
Debie, P.; Devoogdt, N.; Hernot, S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies (Basel), 2019, 8(1), 12.
[http://dx.doi.org/10.3390/antib8010012] [PMID: 31544818]
[150]
Perissinotti, A.; Vidal-Sicart, S.; Nieweg, O.; Valdés Olmos, R. Melanoma and nuclear medicine. Melanoma Manag., 2014, 1(1), 57-74.
[http://dx.doi.org/10.2217/mmt.14.10] [PMID: 30190811]
[151]
Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; Eggermont, A.M.; Flaherty, K.T.; Gimotty, P.A.; Kirkwood, J.M.; McMasters, K.M.; Mihm, M.C., Jr; Morton, D.L.; Ross, M.I.; Sober, A.J.; Sondak, V.K. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol., 2009, 27(36), 6199-6206.
[http://dx.doi.org/10.1200/JCO.2009.23.4799] [PMID: 19917835]
[152]
Testori, A.; De Salvo, G.L.; Montesco, M.C.; Trifirò, G.; Mocellin, S.; Landi, G.; Macripò, G.; Carcoforo, P.; Ricotti, G.; Giudice, G.; Picciotto, F.; Donner, D.; Di Filippo, F.; Soteldo, J.; Casara, D.; Schiavon, M.; Vecchiato, A.; Pasquali, S.; Baldini, F.; Mazzarol, G.; Rossi, C.R. Italian Melanoma Intergroup. Clinical considerations on sentinel node biopsy in melanoma from an Italian multicentric study on 1,313 patients (SOLISM-IMI). Ann. Surg. Oncol., 2009, 16(7), 2018-2027.
[http://dx.doi.org/10.1245/s10434-008-0273-8] [PMID: 19132446]
[153]
Carter, L.M.; Poty, S.; Sharma, S.K.; Lewis, J.S. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy-Model, vector, and radionuclide selection. J. Labelled Comp. Radiopharm., 2018, 61(9), 611-635.
[http://dx.doi.org/10.1002/jlcr.3612] [PMID: 29412489]
[154]
Holland, J.P. Antibody-based radiopharmaceuticals for imaging and therapy. J. Labelled Comp. Radiopharm., 2018, 61(9), 610.
[http://dx.doi.org/10.1002/jlcr.3636] [PMID: 29771470]
[155]
Nitipir, C.; Niculae, D.; Orlov, C.; Barbu, M.A.; Popescu, B.; Popa, A.M.; Pantea, A.M.S.; Stanciu, A.E.; Galateanu, B.; Ginghina, O.; Papadakis, G.Z.; Izotov, B.N.; Spandidos, D.A.; Tsatsakis, A.M.; Negrei, C. Update on radionuclide therapy in oncology. Oncol. Lett., 2017, 14(6), 7011-7015.
[PMID: 29344129]
[156]
Altai, M.; Membreno, R.; Cook, B.; Tolmachev, V.; Zeglis, B.M. Pretargeted imaging and therapy. J. Nucl. Med., 2017, 58(10), 1553-1559.
[http://dx.doi.org/10.2967/jnumed.117.189944] [PMID: 28687600]
[157]
Houghton, J.L.; Zeglis, B.M.; Abdel-Atti, D.; Sawada, R.; Scholz, W.W.; Lewis, J.S. Pretargeted immuno-PET of pancreatic cancer: Overcoming circulating antigen and internalized antibody to reduce radiation doses. J. Nucl. Med., 2016, 57(3), 453-459.
[http://dx.doi.org/10.2967/jnumed.115.163824] [PMID: 26471693]
[158]
van de Watering, F.C.; Rijpkema, M.; Robillard, M.; Oyen, W.J.; Boerman, O.C. Pretargeted imaging and radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry. Front. Med. (Lausanne), 2014, 1, 44.
[http://dx.doi.org/10.3389/fmed.2014.00044] [PMID: 25593917]
[159]
Klein, M.; Lotem, M.; Peretz, T.; Zwas, S.T.; Mizrachi, S.; Liberman, Y.; Chisin, R.; Schachter, J.; Ron, I.G.; Iosilevsky, G.; Kennedy, J.A.; Revskaya, E.; de Kater, A.W.; Banaga, E.; Klutzaritz, V.; Friedmann, N.; Galun, E.; Denardo, G.L.; Denardo, S.J.; Casadevall, A.; Dadachova, E.; Thornton, G.B. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J. Skin Cancer, 2013, 2013828329
[http://dx.doi.org/10.1155/2013/828329]] [PMID: 23365757]
[160]
Spiegelberg, D.; Nilvebrant, J. CD44v6-targeted imaging of head and neck squamous cell carcinoma: Antibody-based approaches. Contrast Media Mol. Imaging, 2017, 20172709547
[http://dx.doi.org/10.1155/2017/2709547]] [PMID: 29097914]
[161]
Peltek, O.O.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Current outlook on radionuclide delivery systems: From design consideration to translation into clinics. J. Nanobiotechnology, 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12951-019-0524-9] [PMID: 31434562]
[162]
Shirkavand, A.; Farivar, S.; Mohajerani, E.; Ataie-Fashtami, L.; Ghazimoradi, M.H. Non-invasive reflectance spectroscopy for normal and cancerous skin cells refractive index determination: An in vitro study. Lasers Surg. Med., 2019, 51(8), 742-750.
[http://dx.doi.org/10.1002/lsm.23095] [PMID: 31094015]
[163]
Bakos, R.M.; Blumetti, T.P.; Roldán-Marín, R.; Salerni, G. Noninvasive imaging tools in the diagnosis and treatment of skin cancers. Am. J. Clin. Dermatol., 2018, 19(Suppl. 1), 3-14.
[http://dx.doi.org/10.1007/s40257-018-0367-4] [PMID: 30374899]
[164]
Lim, L.; Nichols, B.; Migden, M.R.; Rajaram, N.; Reichenberg, J.S.; Markey, M.K.; Ross, M.I.; Tunnell, J.W. Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis. J. Biomed. Opt., 2014, 19(11)117003
[http://dx.doi.org/10.1117/1.JBO.19.11.117003]] [PMID: 25375350]
[165]
Cerussi, A.E.; Tanamai, V.W.; Hsiang, D.; Butler, J.; Mehta, R.S.; Tromberg, B.J. Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1955, 2011(369), 4512-4530.
[166]
Antonsson, J.; Eriksson, O.; Blomstedt, P.; Bergenheim, A.T.I.; Hariz, M.; Richter, J.; Zsigmond, P.; Wårdell, K. Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation. J. Neural Eng., 2008, 5(2), 185-190.
[http://dx.doi.org/10.1088/1741-2560/5/2/009] [PMID: 18460743]
[167]
Malvehy, J.; Pellacani, G. Dermoscopy, confocal microscopy and other non-invasive tools for the diagnosis of non-melanoma skin cancers and other skin conditions. Acta Derm. Venereol., 2017, 97(Suppl. 218), 22-30.
[PMID: 28676883]
[168]
Langley, R.G.B.; Rajadhyaksha, M.; Dwyer, P.J.; Sober, A.J.; Flotte, T.J.; Anderson, R.R. Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. J. Am. Acad. Dermatol., 2001, 45(3), 365-376.
[http://dx.doi.org/10.1067/mjd.2001.117395] [PMID: 11511832]
[169]
Lovatto, L.; Carrera, C.; Salerni, G.; Alós, L.; Malvehy, J.; Puig, S. In vivo reflectance confocal microscopy of equivocal melanocytic lesions detected by digital dermoscopy follow-up. J. Eur. Acad. Dermatol. Venereol., 2015, 29(10), 1918-1925.
[http://dx.doi.org/10.1111/jdv.13067] [PMID: 25752663]
[170]
Stanganelli, I.; Longo, C.; Mazzoni, L.; Magi, S.; Medri, M.; Lanzanova, G.; Farnetani, F.; Pellacani, G. Integration of reflectance confocal microscopy in sequential dermoscopy follow-up improves melanoma detection accuracy. Br. J. Dermatol., 2015, 172(2), 365-371.
[http://dx.doi.org/10.1111/bjd.13373] [PMID: 25154446]
[171]
Levine, A.; Wang, K.; Markowitz, O. Optical coherence tomography in the diagnosis of skin cancer. Dermatol. Clin., 2017, 35(4), 465-488.
[http://dx.doi.org/10.1016/j.det.2017.06.008] [PMID: 28886803]
[172]
Dubois, A.; Levecq, O.; Azimani, H.; Siret, D.; Barut, A.; Suppa, M.; Del Marmol, V.; Malvehy, J.; Cinotti, E.; Rubegni, P.; Perrot, J.L. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J. Biomed. Opt., 2018, 23(10), 1-9.
[http://dx.doi.org/10.1117/1.JBO.23.10.106007] [PMID: 30353716]
[173]
Banzhaf, C.A.; Themstrup, L.; Ring, H.C.; Mogensen, M.; Jemec, G.B.E. Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res. Technol., 2014, 20(2), 170-176.
[http://dx.doi.org/10.1111/srt.12102] [PMID: 24103017]
[174]
Rajabi-Estarabadi, A.; Bittar, J.M.; Zheng, C.; Nascimento, V.; Camacho, I.; Feun, L.G.; Nasiriavanaki, M.; Kunz, M.; Nouri, K. Optical coherence tomography imaging of melanoma skin cancer. Lasers Med. Sci., 2019, 34(2), 411-420.
[http://dx.doi.org/10.1007/s10103-018-2696-1] [PMID: 30539405]
[175]
Stenquist, B.; Ericson, M.B.; Strandeberg, C.; Mölne, L.; Rosén, A.; Larkö, O.; Wennberg, A.M. Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery. Br. J. Dermatol., 2006, 154(2), 305-309.
[http://dx.doi.org/10.1111/j.1365-2133.2005.07035.x] [PMID: 16433801]
[176]
Galletly, N.P.; McGinty, J.; Dunsby, C.; Teixeira, F.; Requejo-Isidro, J.; Munro, I.; Elson, D.S.; Neil, M.A.A.; Chu, A.C.; French, P.M.W.; Stamp, G.W. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol., 2008, 159(1), 152-161.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08577.x] [PMID: 18460029]
[177]
Lui, H.; Zhao, J.; McLean, D.; Zeng, H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res., 2012, 72(10), 2491-2500.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4061] [PMID: 22434431]
[178]
Chen, K.; Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics, 2011, 1, 189-200.
[http://dx.doi.org/10.7150/thno/v01p0189] [PMID: 21547159]
[179]
Park, J.H.; Kim, H.Y.; Lee, H.; Yun, E.K. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy. Eur. J. Oncol. Nurs., 2015, 19(6), 597-603.
[http://dx.doi.org/10.1016/j.ejon.2015.03.006] [PMID: 26088125]
[180]
Hoption Cann, S.A.; van Netten, J.P.; van Netten, C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J., 2003, 79(938), 672-680.
[PMID: 14707241]
[181]
Schwartz, R.S. Paul Ehrlich’s magic bullets. N. Engl. J. Med., 2004, 350(11), 1079-1080.
[http://dx.doi.org/10.1056/NEJMp048021] [PMID: 15014180]
[182]
Reichert, J.M. Monoclonal antibodies as innovative therapeutics. Curr. Pharm. Biotechnol., 2008, 9(6), 423-430.
[http://dx.doi.org/10.2174/138920108786786358] [PMID: 19075682]
[183]
Cai, H.H. Therapeutic monoclonal antibodies approved by FDA in 2017. MOJ Immunol., 2018, 6(3), 82-84.
[184]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[185]
Kubota, T.; Niwa, R.; Satoh, M.; Akinaga, S.; Hanai, N. Engineered therapeutic antibodies with improved effector functions Japanese Cancer Assoc., 2009., 100(9), 1566-1572..
[186]
Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody-drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol., 2010, 14(4), 529-537.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.170] [PMID: 20643572]
[187]
Pietersz, G.A.; Rowland, A.; Smyth, M.J.; McKenzie, I.F.C. Chemoimmunoconjugates for the treatment of cancer. Adv. Immunol., 1994, 56, 301-387.
[http://dx.doi.org/10.1016/S0065-2776(08)60455-1] [PMID: 8073950]
[188]
Kampmeier, F.; Niesen, J.; Koers, A.; Ribbert, M.; Brecht, A.; Fischer, R.; Kiessling, F.; Barth, S.; Thepen, T. Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(10), 1926-1934.
[http://dx.doi.org/10.1007/s00259-010-1482-5] [PMID: 20449589]
[189]
Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K.S.; Abbaszadeh-Goudarzi, K.; Abbaszadeh-Goudarzi, G.; Johari, B.; Zali, M.R.; Bagheri, N. Antibody-Drug Conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol., 2019, 234(5), 5628-5642.
[http://dx.doi.org/10.1002/jcp.27419] [PMID: 30478951]
[190]
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance--challenges and solutions. Drug Resist. Updat., 2015, 18, 36-46.
[http://dx.doi.org/10.1016/j.drup.2014.11.001] [PMID: 25476546]
[191]
Smith, L.M.; Nesterova, A.; Alley, S.C.; Torgov, M.Y.; Carter, P.J. Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol. Cancer Ther., 2006, 5(6), 1474-1482.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0026] [PMID: 16818506]
[192]
Tse, K.F.; Jeffers, M.; Pollack, V.A.; McCabe, D.A.; Shadish, M.L.; Khramtsov, N.V.; Hackett, C.S.; Shenoy, S.G.; Kuang, B.; Boldog, F.L.; MacDougall, J.R.; Rastelli, L.; Herrmann, J.; Gallo, M.; Gazit-Bornstein, G.; Senter, P.D.; Meyer, D.L.; Lichenstein, H.S.; LaRochelle, W.J. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin. Cancer Res., 2006, 12(4), 1373-1382.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2018] [PMID: 16489096]
[193]
Asundi, J.; Reed, C.; Arca, J.; McCutcheon, K.; Ferrando, R.; Clark, S.; Luis, E.; Tien, J.; Firestein, R.; Polakis, P. An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin. Cancer Res., 2011, 17(5), 965-975.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2340] [PMID: 21245091]
[194]
Rich, J.N.; Shi, Q.; Hjelmeland, M.; Cummings, T.J.; Kuan, C.T.; Bigner, D.D.; Counter, C.M.; Wang, X.F. Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J. Biol. Chem., 2003, 278(18), 15951-15957.
[http://dx.doi.org/10.1074/jbc.M211498200] [PMID: 12590137]
[195]
Lahav, R.; Heffner, G.; Patterson, P.H. An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11496-11500.
[http://dx.doi.org/10.1073/pnas.96.20.11496] [PMID: 10500205]
[196]
Rolland, Y.; Demeule, M.; Fenart, L.; Béliveau, R. Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res., 2009, 22(1), 86-98.
[http://dx.doi.org/10.1111/j.1755-148X.2008.00525.x] [PMID: 19017294]
[197]
Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des., 2013, 81(1), 113-121.
[http://dx.doi.org/10.1111/cbdd.12085] [PMID: 23253133]
[198]
Parslow, A.C.; Parakh, S.; Lee, F-T.; Gan, H.K.; Scott, A.M. Antibody-drug conjugates for cancer therapy. Biomedicines, 2016, 4(3), 14.
[http://dx.doi.org/10.3390/biomedicines4030014] [PMID: 28536381]
[199]
Senter, P.D. Potent antibody-drug conjugates for cancer therapy. Curr. Opin. Chem. Biol., 2009, 13(3), 235-244.
[http://dx.doi.org/10.1016/j.cbpa.2009.03.023] [PMID: 19414278]
[200]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[201]
Tothill, R.; Estall, V.; Rischin, D. Merkel cell carcinoma: emerging biology, current approaches, and future directions. Am. Soc. Clin. Oncol. Educ. Book, 2015, 35, e519-e526.
[http://dx.doi.org/10.14694/EdBook_AM.2015.35.e519] [PMID: 25993218]
[202]
Teicher, B.A.; Chari, R.V.J. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[203]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[204]
Oroudjev, E.; Lopus, M.; Wilson, L.; Audette, C.; Provenzano, C.; Erickson, H.; Kovtun, Y.; Chari, R.; Jordan, M.A. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol. Cancer Ther., 2010, 9(10), 2700-2713.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0645] [PMID: 20937595]
[205]
Mullard, A. Maturing antibody-drug conjugate pipeline hits 30. Nat. Rev. Drug Discov., 2013, 12(5), 329-332.
[http://dx.doi.org/10.1038/nrd4009] [PMID: 23629491]
[206]
de Goeij, B.E.; Lambert, J.M. New developments for antibody-drug conjugate-based therapeutic approaches. Curr. Opin. Immunol., 2016, 40, 14-23.
[http://dx.doi.org/10.1016/j.coi.2016.02.008] [PMID: 26963132]
[207]
Younes, A.; Kim, S.; Romaguera, J.; Copeland, A.; Farial, S.C.; Kwak, L.W.; Fayad, L.; Hagemeister, F.; Fanale, M.; Neelapu, S.; Lambert, J.M.; Morariu-Zamfir, R.; Payrard, S.; Gordon, L.I. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J. Clin. Oncol., 2012, 30(22), 2776-2782.
[http://dx.doi.org/10.1200/JCO.2011.39.4403] [PMID: 22753910]
[208]
Thompson, J.A.; Motzer, R.J.; Molina, A.M.; Choueiri, T.K.; Heath, E.I.; Redman, B.G.; Sangha, R.S.; Ernst, D.S.; Pili, R.; Kim, S.K.; Reyno, L.; Wiseman, A.; Trave, F.; Anand, B.; Morrison, K.; Doñate, F.; Kollmannsberger, C.K. Conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res., 2018, 24(18), 4399-4406.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0481] [PMID: 29848572]
[209]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[210]
Kovtun, Y.V.; Audette, C.A.; Mayo, M.F.; Jones, G.E.; Doherty, H.; Maloney, E.K.; Erickson, H.K.; Sun, X.; Wilhelm, S.; Ab, O.; Lai, K.C.; Widdison, W.C.; Kellogg, B.; Johnson, H.; Pinkas, J.; Lutz, R.J.; Singh, R.; Goldmacher, V.S.; Chari, R.V. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res., 2010, 70(6), 2528-2537.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3546] [PMID: 20197459]
[211]
Penn, I. Post-transplant malignancy: The role of immunosuppression. Drug Saf., 2000, 23(2), 101-113.
[http://dx.doi.org/10.2165/00002018-200023020-00002] [PMID: 10945373]
[212]
Rangwala, S.; Tsai, K.Y. Roles of the immune system in skin cancer. Br. J. Dermatol., 2011, 165(5), 953-965.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10507.x] [PMID: 21729024]
[213]
Berg, D.; Otley, C.C. Skin cancer in organ transplant recipients: Epidemiology, pathogenesis, and management. J. Am. Acad. Dermatol., 2002, 47(1), 1-17.
[http://dx.doi.org/10.1067/mjd.2002.125579] [PMID: 12077575]
[214]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[215]
Mocellin, S.; Pasquali, S.; Rossi, C.R.; Nitti, D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: A systematic review and meta-analysis. J. Natl. Cancer Inst., 2010, 102(7), 493-501.
[http://dx.doi.org/10.1093/jnci/djq009] [PMID: 20179267]
[216]
Tsai, K.Y. Systemic adjuvant therapy for patients with high-risk melanoma. Arch. Dermatol., 2007, 143(6), 779-782.
[http://dx.doi.org/10.1001/archderm.143.6.779] [PMID: 17576946]
[217]
Cornell, R.C.; Greenway, H.T.; Tucker, S.B.; Edwards, L.; Ashworth, S.; Vance, J.C.; Tanner, D.J.; Taylor, E.L.; Smiles, K.A.; Peets, E.A. Intralesional interferon therapy for basal cell carcinoma. J. Am. Acad. Dermatol., 1990, 23(4 Pt 1), 694-700.
[http://dx.doi.org/10.1016/0190-9622(90)70276-N] [PMID: 2229497]
[218]
Chimenti, S.; Peris, K.; Di Cristofaro, S.; Fargnoli, M.C.; Torlone, G. Use of recombinant interferon alfa-2b in the treatment of basal cell carcinoma. Dermatology (Basel), 1995, 190(3), 214-217.
[http://dx.doi.org/10.1159/000246688] [PMID: 7599384]
[219]
Urosevic, M.; Dummer, R. Immunotherapy for nonmelanoma skin cancer: does it have a future? Cancer, 2002, 94(2), 477-485.
[http://dx.doi.org/10.1002/cncr.10178] [PMID: 11900233]
[220]
Buechner, S.A.; Wernli, M.; Harr, T.; Hahn, S.; Itin, P.; Erb, P. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (Apo-1/Fas)-CD95 ligand-induced suicide. J. Clin. Invest., 1997, 100(11), 2691-2696.
[http://dx.doi.org/10.1172/JCI119814] [PMID: 9389732]
[221]
Kooy, A.J.W.; Prens, E.P.; Van Heukelum, A.; Vuzevski, V.D.; Van Joost, T.; Tank, B. Interferon-gamma-induced ICAM-1 and CD40 expression, complete lack of HLA-DR and CD80 (B7.1), and inconsistent HLA-ABC expression in basal cell carcinoma: A possible role for interleukin-10? J. Pathol., 1999, 187(3), 351-357.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199902)187:3<351:AID-PATH227>3.0.CO;2-6] [PMID: 10398091]
[222]
Rogalski, C.; Dummer, R.; Burg, G. Immunomodulators in the treatment of cutaneous lymphoma. J. Eur. Acad. Dermatol. Venereol., 1999, 13(2), 83-90.
[http://dx.doi.org/10.1111/j.1468-3083.1999.tb00858.x] [PMID: 10568485]
[223]
Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5), 405-413.
[http://dx.doi.org/10.1016/1074-7613(94)90071-X] [PMID: 7882171]
[224]
Hodi, F.S.; Mihm, M.C.; Soiffer, R.J.; Haluska, F.G.; Butler, M.; Seiden, M.V.; Davis, T.; Henry-Spires, R.; MacRae, S.; Willman, A.; Padera, R.; Jaklitsch, M.T.; Shankar, S.; Chen, T.C.; Korman, A.; Allison, J.P.; Dranoff, G. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4712-4717.
[http://dx.doi.org/10.1073/pnas.0830997100] [PMID: 12682289]
[225]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[http://dx.doi.org/10.1056/NEJMra1703481] [PMID: 29320654]
[226]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[227]
Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J-F.; Testori, A.; Grob, J-J.; Davidson, N.; Richards, J.; Maio, M.; Hauschild, A.; Miller, W.H., Jr; Gascon, P.; Lotem, M.; Harmankaya, K.; Ibrahim, R.; Francis, S.; Chen, T.T.; Humphrey, R.; Hoos, A.; Wolchok, J.D. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med., 2011, 364(26), 2517-2526.
[http://dx.doi.org/10.1056/NEJMoa1104621] [PMID: 21639810]
[228]
Sullivan, R.J.; Flaherty, K.T. Pembrolizumab for treatment of patients with advanced or unresectable melanoma. Clin. Cancer Res., 2015, 21(13), 2892-2897.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3061] [PMID: 25931451]
[229]
Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356.
[http://dx.doi.org/10.1056/NEJMoa1709684] [PMID: 28889792]
[230]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; Ferrucci, P.F.; Smylie, M.; Hogg, D.; Hill, A.; Márquez-Rodas, I.; Haanen, J.; Guidoboni, M.; Maio, M.; Schöffski, P.; Carlino, M.S.; Lebbé, C.; McArthur, G.; Ascierto, P.A.; Daniels, G.A.; Long, G.V.; Bastholt, L.; Rizzo, J.I.; Balogh, A.; Moshyk, A.; Hodi, F.S.; Wolchok, J.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2019, 381(16), 1535-1546.
[http://dx.doi.org/10.1056/NEJMoa1910836] [PMID: 31562797]
[231]
Pen, J.J.; Keersmaecker, B.D.; Heirman, C.; Corthals, J.; Liechtenstein, T.; Escors, D.; Thielemans, K.; Breckpot, K. Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther., 2014, 21(3), 262-271.
[http://dx.doi.org/10.1038/gt.2013.80] [PMID: 24401835]
[232]
Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; Shaheen, M.; Ernstoff, M.S.; Minor, D.; Salama, A.K.; Taylor, M.; Ott, P.A.; Rollin, L.M.; Horak, C.; Gagnier, P.; Wolchok, J.D.; Hodi, F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med., 2015, 372(21), 2006-2017.
[http://dx.doi.org/10.1056/NEJMoa1414428] [PMID: 25891304]
[233]
Kobold, S.; Pantelyushin, S.; Rataj, F.; Vom Berg, J. Rationale for combining bispecific T Cell activating antibodies with checkpoint blockade for cancer therapy. Front. Oncol., 2018, 8, 285.
[http://dx.doi.org/10.3389/fonc.2018.00285] [PMID: 30090763]
[234]
Carter, P.J.; Lazar, G.A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov., 2018, 17(3), 197-223.
[http://dx.doi.org/10.1038/nrd.2017.227] [PMID: 29192287]
[235]
Koopmans, I.; Hendriks, M.A.J.M.; van Ginkel, R.J.; Samplonius, D.F.; Bremer, E.; Helfrich, W. Bispecific antibody approach for improved melanoma-selective PD-L1 immune checkpoint blockade. J. Invest. Dermatol., 2019, 139(11), 2343-2351.
[http://dx.doi.org/10.1016/j.jid.2019.01.038] [PMID: 31128201]
[236]
Sullivan, L.A.; Brekken, R.A. The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs, 2010, 2(2), 165-175.
[http://dx.doi.org/10.4161/mabs.2.2.11360] [PMID: 20190566]
[237]
Dewing, D.; Emmett, M.; Pritchard Jones, R. The roles of angiogenesis in malignant melanoma : trends in basic science research over the last 100 years. ISRN Oncol., 2012, 2012546927
[http://dx.doi.org/10.5402/2012/546927]] [PMID: 22720169]
[238]
Dvorak, H.F. Angiogenesis: Update 2005. J. Thromb. Haemost., 2005, 3(8), 1835-1842.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01361.x] [PMID: 16102050]
[239]
Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[240]
Johnson, K.E.; Wilgus, T.A. Multiple roles for VEGF in non-melanoma skin cancer: Angiogenesis and beyond. J. Skin Cancer, 2012, 2012483439
[http://dx.doi.org/10.1155/2012/483439]] [PMID: 23125933]
[241]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[242]
Mueller, M.M.; Fusenig, N.E. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation, 2002, 70(9-10), 486-497.
[http://dx.doi.org/10.1046/j.1432-0436.2002.700903.x] [PMID: 12492491]
[243]
Larcher, F.; Murillas, R.; Bolontrade, M.; Conti, C.J.; Jorcano, J.L. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene, 1998, 17(3), 303-311.
[http://dx.doi.org/10.1038/sj.onc.1201928] [PMID: 9690512]
[244]
Rafii, S.; Lyden, D.; Benezra, R.; Hattori, K.; Heissig, B. Vascular and haematopoietic stem cells: Novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer, 2002, 2(11), 826-835.
[http://dx.doi.org/10.1038/nrc925] [PMID: 12415253]
[245]
Pötgens, A.J.; Lubsen, N.H.; van Altena, M.C.; Schoenmakers, J.G.; Ruiter, D.J.; de Waal, R.M. Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. Am. J. Pathol., 1995, 146(1), 197-209.
[PMID: 7531947]
[246]
Viac, J.; Palacio, S.; Schmitt, D.; Claudy, A. Expression of vascular endothelial growth factor in normal epidermis, epithelial tumors and cultured keratinocytes. Arch. Dermatol. Res., 1997, 289(3), 158-163.
[http://dx.doi.org/10.1007/s004030050172] [PMID: 9128764]
[247]
Bowden, J.; Brennan, P.A.; Umar, T.; Cronin, A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J. Cutan. Pathol., 2002, 29(10), 585-589.
[http://dx.doi.org/10.1034/j.1600-0560.2002.291003.x] [PMID: 12453295]
[248]
Mantena, S.K.; Roy, A.M.; Katiyar, S.K. Epigallocatechin-3-gallate inhibits photocarcinogenesis through inhibition of angiogenic factors and activation of CD8+ T cells in tumors. Photochem. Photobiol., 2005, 81(5), 1174-1179.
[http://dx.doi.org/10.1562/2005-04-11-RA-487] [PMID: 15938647]
[249]
Kim, K.B.; Sosman, J.A.; Fruehauf, J.P.; Linette, G.P.; Markovic, S.N.; McDermott, D.F.; Weber, J.S.; Nguyen, H.; Cheverton, P.; Chen, D.; Peterson, A.C.; Carson, W.E., III; O’Day, S.J. BEAM: A randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J. Clin. Oncol., 2012, 30(1), 34-41.
[http://dx.doi.org/10.1200/JCO.2011.34.6270] [PMID: 22124101]
[250]
Corrie, P.G.; Marshall, A.; Nathan, P.D.; Lorigan, P.; Gore, M.; Tahir, S.; Faust, G.; Kelly, C.G.; Marples, M.; Danson, S.J.; Marshall, E.; Houston, S.J.; Board, R.E.; Waterston, A.M.; Nobes, J.P.; Harries, M.; Kumar, S.; Goodman, A.; Dalgleish, A.; Martin-Clavijo, A.; Westwell, S.; Casasola, R.; Chao, D.; Maraveyas, A.; Patel, P.M.; Ottensmeier, C.H.; Farrugia, D.; Humphreys, A.; Eccles, B.; Young, G.; Barker, E.O.; Harman, C.; Weiss, M.; Myers, K.A.; Chhabra, A.; Rodwell, S.H.; Dunn, J.A.; Middleton, M.R.; Nathan, P.; Lorigan, P.; Dziewulski, P.; Holikova, S.; Panwar, U.; Tahir, S.; Faust, G.; Thomas, A.; Corrie, P.; Sirohi, B.; Kelly, C.; Middleton, M.; Marples, M.; Danson, S.; Lester, J.; Marshall, E.; Ajaz, M.; Houston, S.; Board, R.; Eaton, D.; Waterston, A.; Nobes, J.; Loo, S.; Gray, G.; Stubbings, H.; Gore, M.; Harries, M.; Kumar, S.; Goodman, A.; Dalgleish, A.; Martin-Clavijo, A.; Marsden, J.; Westwell, S.; Casasola, R.; Chao, D.; Maraveyas, A.; Marshall, E.; Patel, P.; Ottensmeier, C.; Farrugia, D.; Humphreys, A.; Eccles, B.; Dega, R.; Herbert, C.; Price, C.; Brunt, M.; Scott-Brown, M.; Hamilton, J.; Hayward, R.L.; Smyth, J.; Woodings, P.; Nayak, N.; Burrows, L.; Wolstenholme, V.; Wagstaff, J.; Nicolson, M.; Wilson, A.; Barlow, C.; Scrase, C.; Podd, T.; Gonzalez, M.; Stewart, J.; Highley, M.; Wolstenholme, V.; Grumett, S.; Goodman, A.; Talbot, T.; Nathan, K.; Coltart, R.; Gee, B.; Gore, M.; Farrugia, D.; Martin-Clavijo, A.; Marsden, J.; Price, C.; Farrugia, D.; Nathan, K.; Coltart, R.; Nathan, K.; Coltart, R. AVAST-M Investigators. Adjuvant bevacizumab for melanoma patients at high risk of recurrence: survival analysis of the AVAST-M trial. Ann. Oncol., 2018, 29(8), 1843-1852.
[http://dx.doi.org/10.1093/annonc/mdy229] [PMID: 30010756]
[251]
Fallah, A.; Sadeghinia, A.; Kahroba, H.; Samadi, A.; Heidari, H.R.; Bradaran, B.; Zeinali, S.; Molavi, O. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother., 2019, 110, 775-785.
[http://dx.doi.org/10.1016/j.biopha.2018.12.022] [PMID: 30554116]
[252]
Hodi, F.S.; Lawrence, D.; Lezcano, C.; Wu, X.; Zhou, J.; Sasada, T.; Zeng, W.; Giobbie-Hurder, A.; Atkins, M.B.; Ibrahim, N.; Friedlander, P.; Flaherty, K.T.; Murphy, G.F.; Rodig, S.; Velazquez, E.F.; Mihm, M.C., Jr; Russell, S.; DiPiro, P.J.; Yap, J.T.; Ramaiya, N.; Van den Abbeele, A.D.; Gargano, M.; McDermott, D. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res., 2014, 2(7), 632-642.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0053] [PMID: 24838938]
[253]
Schmittnaegel, M.; Rigamonti, N.; Kadioglu, E.; Cassará, A.; Wyser Rmili, C.; Kiialainen, A.; Kienast, Y.; Mueller, H-J.; Ooi, C-H.; Laoui, D.; De Palma, M. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med., 2017, 9(385)eaak9670
[http://dx.doi.org/10.1126/scitranslmed.aak9670]] [PMID: 28404865]
[254]
Killock, D. Immunotherapy: Combine and conquer - antiangiogenic immunotherapy. Nat. Rev. Clin. Oncol., 2017, 14(6), 327-327.
[http://dx.doi.org/10.1038/nrclinonc.2017.65] [PMID: 28466876]
[255]
Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; Bergers, G. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med., 2017, 9(385), 385.
[http://dx.doi.org/10.1126/scitranslmed.aak9679] [PMID: 28404866]
[256]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[257]
Griffin, L.L.; Lear, J.T. Photodynamic therapy and non-melanoma skin cancer. Cancers (Basel), 2016, 8(10), 1-13.
[http://dx.doi.org/10.3390/cancers8100098] [PMID: 27782094]
[258]
Baldea, I.; Filip, A.G. Photodynamic therapy in melanoma--an update. J. Physiol. Pharmacol., 2012, 63(2), 109-118.
[PMID: 22653896]
[259]
Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic therapy for metastatic melanoma treatment: A review. Technol. Cancer Res. Treat., 2018, 171533033818791795
[http://dx.doi.org/10.1177/1533033818791795]] [PMID: 30099929]
[260]
Kleemann, B.; Loos, B.; Scriba, T.J.; Lang, D.; Davids, L.M. St John’s Wort (Hypericum perforatum L.) photomedicine: Hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One, 2014, 9(7)e103762
[http://dx.doi.org/10.1371/journal.pone.0103762]] [PMID: 25076130]
[261]
Uzdensky, A.B.; Ma, L.W.; Iani, V.; Hjortland, G.O.; Steen, H.B.; Moan, J. Intracellular localisation of hypericin in human glioblastoma and carcinoma cell lines. Lasers Med. Sci., 2001, 16(4), 276-283.
[http://dx.doi.org/10.1007/PL00011364] [PMID: 11702633]
[262]
Ritz, R.; Roser, F.; Radomski, N.; Strauss, W.S.L.; Tatagiba, M.; Gharabaghi, A. Subcellular colocalization of hypericin with respect to endoplasmic reticulum and Golgi apparatus in glioblastoma cells. Anticancer Res., 2008, 28(4B), 2033-2038.
[PMID: 18751371]
[263]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic Therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[264]
Maduray, K.; Odhav, B.; Nyokong, T. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Photodiagn. Photodyn. Ther., 2012, 9(1), 32-39.
[http://dx.doi.org/10.1016/j.pdpdt.2011.07.001] [PMID: 22369726]
[265]
Maduray, K.; Karsten, A.; Odhav, B.; Nyokong, T. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy. J. Photochem. Photobiol. B, 2011, 103(2), 98-104.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.01.020] [PMID: 21367615]
[266]
Dora, A.; Ramirez, P.; Moriyama, L.T.; De Oliveira, R.; Inada, N.M.; Bagnato, V.S.; Kurachi, C.; Gabriela, A. Single visit PDT for basal cell carcinoma - A new therapeutic protocol. Photodiagn. Photodyn. Ther., 2019, 19, 30120-30126.
[267]
Roozeboom, M.H.; Arits, A.H.H.M.; Nelemans, P.J.; Kelleners-Smeets, N.W.J. Overall treatment success after treatment of primary superficial basal cell carcinoma: A systematic review and meta-analysis of randomized and nonrandomized trials. Br. J. Dermatol., 2012, 167(4), 733-756.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11061.x] [PMID: 22612571]
[268]
Cosgarea, R.; Susan, M.; Crisan, M.; Senila, S. Photodynamic therapy using topical 5-aminolaevulinic acid vs. surgery for basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol., 2013, 27(8), 980-984.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04619.x] [PMID: 22738399]
[269]
Fiechter, S.; Skaria, A.; Nievergelt, H.; Anex, R.; Borradori, L.; Parmentier, L. Facial basal cell carcinomas recurring after photodynamic therapy: A retrospective analysis of histological subtypes. Dermatology (Basel), 2012, 224(4), 346-351.
[http://dx.doi.org/10.1159/000339335] [PMID: 22759732]
[270]
Lucena, S.R.; Salazar, N.; Gracia-Cazaña, T.; Zamarrón, A.; González, S.; Juarranz, Á.; Gilaberte, Y. Combined treatments with photodynamic therapy for non-melanoma skin cancer. Int. J. Mol. Sci., 2015, 16(10), 25912-25933.
[http://dx.doi.org/10.3390/ijms161025912] [PMID: 26516853]
[271]
Clark, C.M.; Furniss, M.; Mackay-Wiggan, J.M. Basal cell carcinoma: An evidence-based treatment update. Am. J. Clin. Dermatol., 2014, 15(3), 197-216.
[http://dx.doi.org/10.1007/s40257-014-0070-z] [PMID: 24733429]
[272]
Rapozzi, V.; Jori, G. Resistance to photodynamic therapy in cancer. Anticancer Res., 2015, 35(7), 4377-4377.
[273]
Gerritsen, M.J.P.; Smits, T.; Kleinpenning, M.M.; van de Kerkhof, P.C.M.; van Erp, P.E.J. Pretreatment to enhance protoporphyrin IX accumulation in photodynamic therapy. Dermatology (Basel), 2009, 218(3), 193-202.
[http://dx.doi.org/10.1159/000183753] [PMID: 19077380]
[274]
Christensen, E.; Mørk, C.; Skogvoll, E. High and sustained efficacy after two sessions of topical 5-aminolaevulinic acid photodynamic therapy for basal cell carcinoma: A prospective, clinical and histological 10-year follow-up study. Br. J. Dermatol., 2012, 166(6), 1342-1348.
[http://dx.doi.org/10.1111/j.1365-2133.2012.10878.x] [PMID: 22309486]
[275]
Kuijpers, D.I.; Smeets, N.W.; Krekels, G.A.; Thissen, M.R. Photodynamic therapy as adjuvant treatment of extensive basal cell carcinoma treated with Mohs micrographic surgery. Dermatol. Surg., 2004, 30(5), 794-798.
[PMID: 15099328]
[276]
Al-Niaimi, F.; Sheth, N.; Kurwa, H.A.; Mallipeddi, R. Photodynamic therapy followed by Mohs micrographic surgery compared to Mohs Micrographic surgery alone for the treatment of basal cell carcinoma: Results of a pilot single-blinded randomised controlled trial. J. Cutan. Aesthet. Surg., 2015, 8(2), 88-91.
[http://dx.doi.org/10.4103/0974-2077.158443] [PMID: 26157307]
[277]
Milla, L.N.; Cogno, I.S.; Rodríguez, M.E.; Sanz-Rodríguez, F.; Zamarrón, A.; Gilaberte, Y.; Carrasco, E.; Rivarola, V.A.; Juarranz, A. Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J. Cell. Biochem., 2011, 112(9), 2266-2278.
[http://dx.doi.org/10.1002/jcb.23145] [PMID: 21503960]
[278]
Calzavara-Pinton, P.G.; Venturini, M.; Sala, R.; Capezzera, R.; Parrinello, G.; Specchia, C.; Zane, C. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma. Br. J. Dermatol., 2008, 159(1), 137-144.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08593.x] [PMID: 18489606]
[279]
Sharma, K.V.; Davids, L.M. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol. Int., 2012, 36(12), 1261-1266.
[http://dx.doi.org/10.1042/CBI20120108] [PMID: 23005701]
[280]
Mikeš, J.; Jendzelovsky, R.; Fedoročko, P. Cellular aspects of photodynamic therapy with hypericin. Photodynamic Ther; New Res, 2013, pp. 111-147.
[281]
Head, C.S.; Luu, Q.; Sercarz, J.; Saxton, R. Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma. World J. Surg. Oncol., 2006, 4(87), 87.
[http://dx.doi.org/10.1186/1477-7819-4-87] [PMID: 17147827]
[282]
Yu, C-H.; Yu, C-C. Photodynamic therapy with 5-Aminolevulinic Acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS One, 2014, 9(1)e87129
[http://dx.doi.org/10.1371/journal.pone.0087129]] [PMID: 24475244]
[283]
Huang, Y.Y.; Vecchio, D.; Avci, P.; Yin, R.; Garcia-Diaz, M.; Hamblin, M.R. Melanoma resistance to photodynamic therapy: New insights. Biol. Chem., 2013, 394(2), 239-250.
[http://dx.doi.org/10.1515/hsz-2012-0228] [PMID: 23152406]
[284]
Sheleg, S.V.; Zhavrid, E.A.; Khodina, T.V.; Kochubeev, G.A.; Istomin, Y.P.; Chalov, V.N.; Zhuravkin, I.N. Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatol. Photoimmunol. Photomed., 2004, 20(1), 21-26.
[http://dx.doi.org/10.1111/j.1600-0781.2004.00078.x] [PMID: 14738529]
[285]
Saczko, J.; Kulbacka, J.; Chwiłkowska, A.; Drag-Zalesińiska, M.; Wysocka, T.; Lugowski, M.; Banaś, T. The influence of photodynamic therapy on apoptosis in human melanoma cell line. Folia Histochem. Cytobiol., 2005, 43(3), 129-132.
[PMID: 16201311]
[286]
Robertson, C.A.; Abrahamse, H.; Evans, D. The in vitro PDT efficacy of a novel metallophthalocyanine (MPc) derivative and established 5-ALA photosensitizing dyes against human metastatic melanoma cells. Lasers Surg. Med., 2010, 42(10), 766-776.
[http://dx.doi.org/10.1002/lsm.20980] [PMID: 21246581]
[287]
Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10)1010428317734691
[http://dx.doi.org/10.1177/1010428317734691]] [PMID: 28990490]
[288]
Li, Z.; Wang, Y.F.; Zeng, C.; Hu, L.; Liang, X.J. Ultrasensitive tyrosinase-activated turn-on near-infrared fluorescent probe with a rationally designed urea bond for selective imaging and photodamage to melanoma cells. Anal. Chem., 2018, 90(6), 3666-3669.
[http://dx.doi.org/10.1021/acs.analchem.7b05369] [PMID: 29493226]
[289]
Choromańska, A.; Saczko, J.; Kulbacka, J.; Skolucka, N.; Majkowski, M. The potential role of photodynamic therapy in the treatment of malignant melanoma--an in vitro study. Adv. Clin. Exp. Med., 2012, 21(2), 179-185.
[PMID: 23214281]
[290]
Davids, L.M.; Kleemann, B.; Kacerovská, D.; Pizinger, K.; Kidson, S.H. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J. Photochem. Photobiol. B, 2008, 91(2-3), 67-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.01.011] [PMID: 18342534]
[291]
Garg, A.D.; Agostinis, P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem. Photobiol. Sci., 2014, 13(3), 474-487.
[http://dx.doi.org/10.1039/C3PP50333J] [PMID: 24493131]
[292]
Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875.
[http://dx.doi.org/10.1038/nrc3380] [PMID: 23151605]
[293]
Zheng, Y.; Yin, G.; Le, V.; Zhang, A.; Chen, S.; Liang, X.; Liu, J. Photodynamic-therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy. Int. J. Biol. Sci., 2016, 12(1), 120-132.
[http://dx.doi.org/10.7150/ijbs.12852] [PMID: 26722223]
[294]
Sharma, K.V.; Davids, L.M. Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death. Photodiagn. Photodyn. Ther., 2012, 9(2), 156-163.
[http://dx.doi.org/10.1016/j.pdpdt.2011.09.003] [PMID: 22594986]
[295]
Chen, K.G.; Valencia, J.C.; Gillet, J.P.; Hearing, V.J.; Gottesman, M.M. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res., 2009, 22(6), 740-749.
[http://dx.doi.org/10.1111/j.1755-148X.2009.00630.x] [PMID: 19725928]
[296]
Nelson, J.S.; McCullough, J.L.; Berns, M.W. Photodynamic therapy of human malignant melanoma xenografts in athymic nude mice. J. Natl. Cancer Inst., 1988, 80(1), 56-60.
[http://dx.doi.org/10.1093/jnci/80.1.56] [PMID: 2963136]
[297]
Gupta, V.; Su, Y.S.; Wang, W.; Kardosh, A.; Liebes, L.F.; Hofman, F.M.; Schönthal, A.H.; Chen, T.C. Enhancement of glioblastoma cell killing by combination treatment with temozolomide and tamoxifen or hypericin. Neurosurg. Focus, 2006, 20(4)E20
[http://dx.doi.org/10.3171/foc.2006.20.4.13]] [PMID: 16709026]
[298]
Biteghe, F.N.; Davids, L.M. A combination of photodynamic therapy and chemotherapy displays a differential cytotoxic effect on human metastatic melanoma cells. J. Photochem. Photobiol. B, 2017, 166, 18-27.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.11.004] [PMID: 27852006]
[299]
Tudor, D.; Nenu, I.; Filip, G.A.; Olteanu, D.; Cenariu, M.; Tabaran, F.; Ion, R.M.; Gligor, L.; Baldea, I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One, 2017, 12(3)e0173241
[http://dx.doi.org/10.1371/journal.pone.0173241]] [PMID: 28278159]
[300]
Lin, S.; Yang, L.; Shi, H.; Du, W.; Qi, Y.; Qiu, C.; Liang, X.; Shi, W.; Liu, J. Endoplasmic reticulum-targeting photosensitizer Hypericin confers chemo-sensitization towards oxaliplatin through inducing pro-death autophagy. Int. J. Biochem. Cell Biol., 2017, 87, 54-68.
[http://dx.doi.org/10.1016/j.biocel.2017.04.001] [PMID: 28392376]
[301]
Osiecka, B.; Jurczyszyn, K.; Ziółkowski, P. The application of Levulan-based photodynamic therapy with imiquimod in the treatment of recurrent basal cell carcinoma. Med. Sci. Monit., 2012, 18(2), PI5-PI9.
[http://dx.doi.org/10.12659/MSM.882449] [PMID: 22293891]
[302]
Anand, S.; Wilson, C.; Hasan, T.; Maytin, E.V. Vitamin D3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy. Cancer Res., 2011, 71(18), 6040-6050.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0805] [PMID: 21807844]
[303]
Anand, S.; Rollakanti, K.R.; Horst, R.L.; Hasan, T.; Maytin, E.V. Combination of oral vitamin D3 with photodynamic therapy enhances tumor cell death in a murine model of cutaneous squamous cell carcinoma. Photochem. Photobiol., 2014, 90(5), 1126-1135.
[PMID: 24807677]
[304]
Rollakanti, K.; Anand, S.; Maytin, E.V. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models. Proc. SPIE Int. Soc. Opt. Eng., 2015, 1-13..
[305]
Anand, S.; Honari, G.; Hasan, T.; Elson, P.; Maytin, E.V. Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo. Clin. Cancer Res., 2009, 15(10), 3333-3343.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3054] [PMID: 19447864]
[306]
Ishida, N.; Watanabe, D.; Akita, Y.; Nakano, A.; Yamashita, N.; Kuhara, T.; Yanagishita, T.; Takeo, T.; Tamada, Y.; Matsumoto, Y. Etretinate enhances the susceptibility of human skin squamous cell carcinoma cells to 5-aminolaevulic acid-based photodynamic therapy. Clin. Exp. Dermatol., 2009, 34(3), 385-389.
[http://dx.doi.org/10.1111/j.1365-2230.2008.03003.x] [PMID: 19077103]
[307]
Nowis, D.; Makowski, M.; Stokłosa, T.; Legat, M.; Issat, T.; Gołab, J. Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim. Pol., 2005, 52(2), 339-352.
[http://dx.doi.org/10.18388/abp.2005_3447] [PMID: 15990919]
[308]
Zitvogel, L.; Casares, N.; Péquignot, M.O.; Chaput, N.; Albert, M.L.; Kroemer, G. Immune response against dying tumor cells. Adv. Immunol., 2004, 84, 131-179.
[http://dx.doi.org/10.1016/S0065-2776(04)84004-5] [PMID: 15246252]
[309]
Almeida, R.D.; Manadas, B.J.; Carvalho, A.P.; Duarte, C.B. Intracellular signaling mechanisms in photodynamic therapy. Biochim. Biophys. Acta, 2004, 1704(2), 59-86.
[PMID: 15363861]
[310]
Kiesslich, T.; Plaetzer, K.; Oberdanner, C.B.; Berlanda, J.; Obermair, F.J.; Krammer, B. Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment-based production of reactive oxygen species and apoptosis-induction. FEBS Lett., 2005, 579(1), 185-190.
[http://dx.doi.org/10.1016/j.febslet.2004.11.073] [PMID: 15620711]
[311]
Tammela, T.; Saaristo, A.; Holopainen, T.; Ylä-Herttuala, S.; Andersson, L.C.; Virolainen, S.; Immonen, I.; Alitalo, K. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med., 2011, 3(69)69ra11
[http://dx.doi.org/10.1126/scitranslmed.3001699]] [PMID: 21307301]
[312]
Majumdar, P.; Nomula, R.; Zhao, J. Activatable triplet photosensitizers: Magic bullets for targeted photodynamic therapy. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(30), 5982-5997.
[http://dx.doi.org/10.1039/C4TC00659C]
[313]
Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat., 2005, 4(3), 283-293.
[http://dx.doi.org/10.1177/153303460500400308] [PMID: 15896084]
[314]
Popovic, A.; Wiggins, T.; Davids, L.M. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model. J. Photochem. Photobiol. B, 2015, 149, 249-256.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.06.009] [PMID: 26114219]
[315]
Idris, N.M.; Jayakumar, M.K.G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev., 2015, 44(6), 1449-1478.
[http://dx.doi.org/10.1039/C4CS00158C] [PMID: 24969662]
[316]
Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol., 2009, 4(11), 710-711.
[http://dx.doi.org/10.1038/nnano.2009.326] [PMID: 19898521]
[317]
Guo, C.; Yu, H.; Feng, B.; Gao, W.; Yan, M.; Zhang, Z.; Li, Y.; Liu, S. Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent. Biomaterials, 2015, 52(1), 407-416.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.054] [PMID: 25818447]
[318]
Li, H.; Yu, C.; Jiang, J.; Huang, C.; Yao, X.; Xu, Q.; Yu, F.; Lou, L.; Fang, J. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol. Ther., 2016, 17(4), 346-354.
[http://dx.doi.org/10.1080/15384047.2016.1139248] [PMID: 26853765]
[319]
Serwotka-Suszczak, A.M.; Sochaj-Gregorczyk, A.M.; Pieczykolan, J.; Krowarsch, D.; Jelen, F.; Otlewski, J. A conjugate based on anti-HER2 diaffibody and auristatin E targets HER2-positive cancer cells. Int. J. Mol. Sci., 2017, 18(2), 1-16.
[http://dx.doi.org/10.3390/ijms18020401] [PMID: 28216573]
[320]
Woitok, M.; Klose, D.; Niesen, J.; Richter, W.; Abbas, M.; Stein, C.; Fendel, R.; Bialon, M.; Püttmann, C.; Fischer, R.; Barth, S.; Kolberg, K. The efficient elimination of solid tumor cells by EGFR-specific and HER2-specific scFv-SNAP fusion proteins conjugated to benzylguanine-modified auristatin F. Cancer Lett., 2016, 381(2), 323-330.
[http://dx.doi.org/10.1016/j.canlet.2016.08.003] [PMID: 27502168]
[321]
Woitok, M.; Klose, D.; Di Fiore, S.; Richter, W.; Stein, C.; Gresch, G.; Grieger, E.; Barth, S.; Fischer, R.; Kolberg, K.; Niesen, J. Comparison of a mouse and a novel human scFv-SNAP-auristatin F drug conjugate with potent activity against EGFR-overexpressing human solid tumor cells. OncoTargets Ther., 2017, 10, 3313-3327.
[http://dx.doi.org/10.2147/OTT.S140492] [PMID: 28740407]
[322]
del Carmen, M.G.; Rizvi, I.; Chang, Y.; Moor, A.C.; Oliva, E.; Sherwood, M.; Pogue, B.; Hasan, T. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl. Cancer Inst., 2005, 97(20), 1516-1524.
[http://dx.doi.org/10.1093/jnci/dji314] [PMID: 16234565]
[323]
Kratschmer, C.; Levy, M. Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol. Ther. Nucleic Acids, 2018, 10, 227-236.
[http://dx.doi.org/10.1016/j.omtn.2017.11.013] [PMID: 29499935]
[324]
Sommer, A.; Kopitz, C.; Schatz, C.A.; Nising, C.F.; Mahlert, C.; Lerchen, H.G.; Stelte-Ludwig, B.; Hammer, S.; Greven, S.; Schuhmacher, J.; Braun, M.; Zierz, R.; Wittemer-Rump, S.; Harrenga, A.; Dittmer, F.; Reetz, F.; Apeler, H.; Jautelat, R.; Huynh, H.; Ziegelbauer, K.; Kreft, B. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res., 2016, 76(21), 6331-6339.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0180] [PMID: 27543601]
[325]
Beckley, N.S.; Lazzareschi, K.P.; Chih, H.W.; Sharma, V.K.; Flores, H.L. Investigation into temperature-induced aggregation of an antibody-drug conjugate. Bioconjug. Chem., 2013, 24(10), 1674-1683.
[http://dx.doi.org/10.1021/bc400182x] [PMID: 24070051]
[326]
Kobayashi, H.; Choyke, P.L. Near-infrared photoimmunotherapy of cancer. Acc. Chem. Res., 2019, 52(8), 2332-2339.
[http://dx.doi.org/10.1021/acs.accounts.9b00273] [PMID: 31335117]
[327]
Kobayashi, H.; Griffiths, G.L.; Choyke, P.L. Near-infrared photoimmunotherapy: Photoactivatable Antibody-Drug Conjugates (ADCs). Bioconjug. Chem., 2020, 31(1), 28-36.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00546] [PMID: 31479610]
[328]
von Felbert, V.; Bauerschlag, D.; Maass, N.; Bräutigam, K.; Meinhold-Heerlein, I.; Woitok, M.; Barth, S.; Hussain, A.F. A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J. Cancer Res. Clin. Oncol., 2016, 142(5), 1003-1011.
[http://dx.doi.org/10.1007/s00432-016-2122-7] [PMID: 26847542]
[329]
Nagaya, T.; Nakamura, Y.; Sato, K.; Zhang, Y.F.; Ni, M.; Choyke, P.L.; Ho, M.; Kobayashi, H. Near-infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget, 2016, 7(17), 23361-23369.
[http://dx.doi.org/10.18632/oncotarget.8025] [PMID: 26981775]
[330]
Sandland, J.; Boyle, R.W. Photosensitizer antibody-drug conjugates: Past, present, and future. Bioconjug. Chem., 2019, 30(4), 975-993.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00055] [PMID: 30768894]
[331]
Hayley, P.; Stamati, I.; Yahioglu, G.; Butt, M.A.; Deonarain, M. Antibody-Directed Phototherapy (ADP). Antibodies (Basel), 2013, 2, 270-305.
[http://dx.doi.org/10.3390/antib2020270]
[332]
Amoury, M.; Bauerschlag, D.; Zeppernick, F.; von Felbert, V.; Berges, N.; Di Fiore, S.; Mintert, I.; Bleilevens, A.; Maass, N.; Bräutigam, K.; Meinhold-Heerlein, I.; Stickeler, E.; Barth, S.; Fischer, R.; Hussain, A.F. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand. Oncotarget, 2016, 7(34), 54925-54936.
[http://dx.doi.org/10.18632/oncotarget.10705] [PMID: 27448975]
[333]
Gong, H.; Kovar, J.L.; Baker, B.; Zhang, A.; Cheung, L.; Draney, D.R.; Corrêa, I.R., Jr; Xu, M.Q.; Olive, D.M. Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag. PLoS One, 2012, 7(3)e34003
[http://dx.doi.org/10.1371/journal.pone.0034003]] [PMID: 22479502]
[334]
Hussain, A.F.; Kampmeier, F.; von Felbert, V.; Merk, H.F.; Tur, M.K.; Barth, S. SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells. Bioconjug. Chem., 2011, 22(12), 2487-2495.
[http://dx.doi.org/10.1021/bc200304k] [PMID: 21995499]
[335]
Kolberg, K.; Puettmann, C.; Pardo, A.; Fitting, J.; Barth, S. SNAP-tag technology: A general introduction. Curr. Pharm. Des., 2013, 19(30), 5406-5413.
[http://dx.doi.org/10.2174/13816128113199990514] [PMID: 23431982]
[336]
Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol., 2003, 21(1), 86-89.
[http://dx.doi.org/10.1038/nbt765] [PMID: 12469133]
[337]
Kampmeier, F.; Ribbert, M.; Nachreiner, T.; Dembski, S.; Beaufils, F.; Brecht, A.; Barth, S. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug. Chem., 2009, 20(5), 1010-1015.
[http://dx.doi.org/10.1021/bc9000257] [PMID: 19388673]
[338]
Beerli, R.R.; Hell, T.; Merkel, A.S.; Grawunder, U. Sortase enzyme-mediated generation of site-specifically conjugated antibody-drug conjugates with high in vitro and in vivo potency. PLoS One, 2015, 10(7)e0131177
[http://dx.doi.org/10.1371/journal.pone.0131177]] [PMID: 26132162]
[339]
Bakhtiar, R. Antibody-drug conjugates. Biotechnol. Lett., 2016, 38(10), 1655-1664.
[http://dx.doi.org/10.1007/s10529-016-2160-x] [PMID: 27334710]
[340]
Kessler, C.; Pardo, A.; Tur, M.K.; Gattenlöhner, S.; Fischer, R.; Kolberg, K.; Barth, S. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer. J. Cancer Res. Clin. Oncol., 2017, 143(10), 2025-2038.
[http://dx.doi.org/10.1007/s00432-017-2472-9] [PMID: 28667390]
[341]
Ogata, F.; Nagaya, T.; Nakamura, Y.; Sato, K.; Okuyama, S.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near-infrared photoimmunotherapy: a comparison of light dosing schedules. Oncotarget, 2017, 8(21), 35069-35075.
[http://dx.doi.org/10.18632/oncotarget.17047] [PMID: 28456784]
[342]
Watanabe, R.; Hanaoka, H.; Sato, K.; Nagaya, T.; Harada, T.; Mitsunaga, M.; Kim, I.; Paik, C.H.; Wu, A.M.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy targeting prostate-specific membrane antigen: Are antibody fragments as effective as antibodies? J. Nucl. Med., 2015, 56(1), 140-144.
[http://dx.doi.org/10.2967/jnumed.114.149526] [PMID: 25500827]
[343]
Hanaoka, H.; Nakajima, T.; Sato, K.; Watanabe, R.; Phung, Y.; Gao, W.; Harada, T.; Kim, I.; Paik, C.H.; Choyke, P.L.; Ho, M.; Kobayashi, H. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine (Lond.), 2015, 10(7), 1139-1147.
[http://dx.doi.org/10.2217/nnm.14.194] [PMID: 25929570]
[344]
Burley, T.A.; Mączyńska, J.; Shah, A.; Szopa, W.; Harrington, K.J.; Boult, J.K.R.; Mrozek-Wilczkiewicz, A.; Vinci, M.; Bamber, J.C.; Kaspera, W.; Kramer-Marek, G. Near-infrared photoimmunotherapy targeting EGFR-Shedding new light on glioblastoma treatment. Int. J. Cancer, 2018, 142(11), 2363-2374.
[http://dx.doi.org/10.1002/ijc.31246] [PMID: 29313975]
[345]
Nagaya, T.; Friedman, J.; Maruoka, Y.; Ogata, F.; Okuyama, S.; Clavijo, P.E.; Choyke, P.L.; Allen, C.; Kobayashi, H. Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors. Cancer Immunol. Res., 2019, 7(3), 401-413.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0546] [PMID: 30683733]
[346]
Li, Y.; Li, Z.; Wang, X.; Liu, F.; Cheng, Y.; Zhang, B.; Shi, D. In vivo cancer targeting and imaging-guided surgery with near-infrared-emitting quantum dot bioconjugates. Theranostics, 2012, 2(8), 769-776.
[http://dx.doi.org/10.7150/thno.4690] [PMID: 22916076]
[347]
Harlaar, N.J.; Kelder, W.; Sarantopoulos, A.; Bart, J.; Themelis, G.; van Dam, G.M.; Ntziachristos, V. Real-time Near-Infrared Fluorescence (NIRF) intra-operative imaging in ovarian cancer using an α(v)β(3-)integrin targeted agent. Gynecol. Oncol., 2013, 128(3), 590-595.
[http://dx.doi.org/10.1016/j.ygyno.2012.12.011] [PMID: 23262209]
[348]
Renton, S.C.; Gazet, J-C.; Ford, H.T.; Corbishley, C.; Sutcliffe, R. The importance of the resection margin in conservative surgery for breast cancer. Eur. J. Surg. Oncol., 1996, 22(1), 17-22.
[http://dx.doi.org/10.1016/S0748-7983(96)91253-6] [PMID: 8846860]
[349]
Schiller, D.E.; Le, L.W.; Cho, B.C.J.; Youngson, B.J.; McCready, D.R. Factors associated with negative margins of lumpectomy specimen: Potential use in selecting patients for intraoperative radiotherapy. Ann. Surg. Oncol., 2008, 15(3), 833-842.
[http://dx.doi.org/10.1245/s10434-007-9711-2] [PMID: 18163174]
[350]
Jiang, S.; Gnanasammandhan, M.K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface, 2010, 7(42), 3-18.
[http://dx.doi.org/10.1098/rsif.2009.0243] [PMID: 19759055]
[351]
Hadjipavlou, A.G.; Kambin, P.; Lander, P.H.; Crow, W.N.; Simmons, J.W. Imaging guided minimally invasive surgery for low back pain sciatica and spinal infection. J. Interv. Radiol., 1994, 14, 1-22.
[352]
van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.; Bart, J.; Low, P.S.; Ntziachristos, V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med., 2011, 17(10), 1315-1319.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[353]
Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.H.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol., 2013, 10(9), 507-518.
[http://dx.doi.org/10.1038/nrclinonc.2013.123] [PMID: 23881033]
[354]
Zheng, J.; Muhanna, N.; De Souza, R.; Wada, H.; Chan, H.; Akens, M.K.; Anayama, T.; Yasufuku, K.; Serra, S.; Irish, J.; Allen, C.; Jaffray, D. A multimodal nano agent for image-guided cancer surgery. Biomaterials, 2015, 67, 160-168.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.010] [PMID: 26218742]
[355]
Tsuchimochi, M.; Yamaguchi, H.; Hayama, K.; Okada, Y.; Kawase, T.; Suzuki, T.; Tsubokawa, N.; Wada, N.; Ochiai, A.; Fujii, S.; Fujii, H. Imaging of metastatic cancer cells in sentinel lymph nodes using affibody probes and possibility of a theranostic approach. Int. J. Mol. Sci., 2019, 20(2), 1-17.
[http://dx.doi.org/10.3390/ijms20020427] [PMID: 30669481]
[356]
Moore, L.S.; de Boer, E.; Warram, J.M.; Tucker, M.D.; Carroll, W.R.; Korb, M.L.; Brandwein-Gensler, M.S.; van Dam, G.M.; Rosenthal, E.L. Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models. Cancer Med., 2016, 5(7), 1526-1534.
[http://dx.doi.org/10.1002/cam4.752] [PMID: 27167827]
[357]
Yap, K.K.; Neuhaus, S.J. Making cancer visible--Dyes in surgical oncology. Surg. Oncol., 2016, 25(1), 30-36.
[http://dx.doi.org/10.1016/j.suronc.2015.12.004] [PMID: 26979638]
[358]
Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol., 2003, 7(5), 626-634.
[http://dx.doi.org/10.1016/j.cbpa.2003.08.007] [PMID: 14580568]
[359]
Zheng, X.; Xing, D.; Zhou, F.; Wu, B.; Chen, W.R. Indocyanine green-containing nanostructure as near-infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol. Pharm., 2011, 8(2), 447-456.
[http://dx.doi.org/10.1021/mp100301t] [PMID: 21197955]
[360]
Folli, S.; Wagnières, G.; Pèlegrin, A.; Calmes, J.M.; Braichotte, D.; Buchegger, F.; Chalandon, Y.; Hardman, N.; Heusser, C.; Givel, J.C. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl. Acad. Sci. USA, 1992, 89(17), 7973-7977.
[http://dx.doi.org/10.1073/pnas.89.17.7973] [PMID: 1518823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy