Design and Synthesis of an Aniline Derivative with Biological Activity on Heart Failure | Bentham Science
Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Design and Synthesis of an Aniline Derivative with Biological Activity on Heart Failure

Author(s): Garcimarero-Espino E. Alejandra, Figueroa-Valverde Lauro*, Rosas-Nexticapa Marcela*, Lopez-Ramos Maria, Diaz Cedillo Francisco, Mateu-Armand Virginia and Ortiz-Ake Yazmin

Volume 24, Issue 2, 2021

Published on: 09 July, 2020

Page: [220 - 232] Pages: 13

DOI: 10.2174/1386207323666200709163008

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Several compounds have been synthesized as a therapeutic alternative for heart failure; however, its preparation requires special conditions.

Objective: The aim of this study, was to synthesize some aniline derivatives (4-9) from 3- ethynylaniline to evaluate their biological activity against heart failure.

Methods: The synthesis of aniline derivatives involved a series of reactions such as etherification, addition, and cyclization. The structure of all compounds obtained was confirmed by spectroscopic and spectrometric methods. In addition, to evaluate the biological activity of compounds, an ischemia/reperfusion injury model was used.

Results: The results showed that compound 8 decreases heart failure, which translates into a decrease in the infarction area compared to compounds 4-7 and 9.

Conclusion: This study reports a facile method for the preparation of aniline derivatives. This method offers some advantages such as; a simple procedure, low cost, and easy work up. In addition, compound 8 showed an interesting biological activity against heart failure. This phenomenon is particularly interesting because the biological activity induced by this compound could involve a molecular mechanism that is different from other drugs used for the treatment of heart failure.

Keywords: Synthesis, aniline, derivatives, etherification, heart failure, biological activity.

[1]
Lawson, C.A.; Zaccardi, F.; Squire, I.; Okhai, H.; Davies, M.; Huang, W.; Mamas, M.; Lam, C.S.P.; Khunti, K.; Kadam, U.T. Risk factors for heart failure: 20-year population-based trends by sex, socioeconomic status, and ethnicity. Circ Heart Fail, 2020, 13(2)e006472
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006472] [PMID: 32059630]
[2]
Yu, Y.; Gupta, A.; Wu, C.; Masoudi, F.A.; Du, X.; Zhang, J.; Krumholz, H.M.; Li, J. China PEACE Collaborative Group. Characteristics, management, and outcomes of patients hospitalized for heart failure in China: The China PEACE retrospective heart failure study. J. Am. Heart Assoc., 2019, 8(17)e012884
[http://dx.doi.org/10.1161/JAHA.119.012884] [PMID: 31431117]
[3]
Kim, T.H.; Yang, P.S.; Uhm, J.S.; Kim, J.Y.; Pak, H.N.; Lee, M.H.; Joung, B.; Lip, G.Y.H. CHA2DS2-VASc score (congestive heart failure, hypertension, age≥ 75 [doubled], diabetes mellitus, prior stroke or transient ischemic attack [doubled], vascular disease, age 65–74, female) for stroke in Asian patients with atrial fibrillation: a Korean nationwide sample cohort study. Stroke, 2017, 48(6), 1524-1530.
[http://dx.doi.org/10.1161/STROKEAHA.117.016926] [PMID: 28455320]
[4]
Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E. PIONEER-HF Investigators Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med., 2019, 380(6), 539-548.
[http://dx.doi.org/10.1056/NEJMoa1812851] [PMID: 30415601]
[5]
Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the risk of heart failure. N. Engl. J. Med., 2002, 347(5), 305-313.
[http://dx.doi.org/10.1056/NEJMoa020245] [PMID: 12151467]
[6]
Dunlay, S.M.; Givertz, M.M.; Aguilar, D.; Allen, L.A.; Chan, M.; Desai, A.S.; Deswal, A.; Dickson, V.V.; Kosiborod, M.N.; Lekavich, C.L.; McCoy, R.G.; Mentz, R.J.; Piña, I.L. American heart association heart failure and transplantation committee of the council on clinical cardiology; council on cardiovascular and stroke nursing; and the heart failure society of america. Type 2 diabetes mellitus and heart failure: A scientific statement from the american heart association and the heart failure society of america: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation, 2019, 140(7), e294-e324.
[http://dx.doi.org/10.1161/CIR.0000000000000691] [PMID: 31167558]
[7]
Morrow, D.A.; Velazquez, E.J.; DeVore, A.D.; Desai, A.S.; Duffy, C.I.; Ambrosy, A.P.; Gurmu, Y.; McCague, K.; Rocha, R.; Braunwald, E. Clinical outcomes in patients with acute decompensated heart failure randomly assigned to sacubitril/valsartan or enalapril in the PIONEER-HF Trial. Circulation, 2019, 139(19), 2285-2288.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.039331] [PMID: 30955360]
[8]
Emerman, C.L. Safety and efficacy of nesiritide for the treatment of decompensated heart failure. Rev. Cardiovasc. Med., 2002, 3(Suppl. 4), S28-S34.
[PMID: 12439428]
[9]
The Captopril-Digoxin Multicenter Research Group Comparative effects of therapy with captopril and digoxin in patients with mild to moderate heart failure. JAMA, 1988, 259(4), 539-544.
[http://dx.doi.org/10.1001/jama.1988.03720040031022] [PMID: 2447297]
[10]
Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; Gordeev, I.; Harty, B.; Heitner, J.F.; Kenwood, C.T.; Lewis, E.F.; O’Meara, E.; Probstfield, J.L.; Shaburishvili, T.; Shah, S.J.; Solomon, S.D.; Sweitzer, N.K.; Yang, S.; McKinlay, S.M. TOPCAT Investigators Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med., 2014, 370(15), 1383-1392.
[http://dx.doi.org/10.1056/NEJMoa1313731] [PMID: 24716680]
[11]
Bayram, M.; De Luca, L.; Massie, M.B.; Gheorghiade, M. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am. J. Cardiol., 2005, 96(6A), 47G-58G.
[http://dx.doi.org/10.1016/j.amjcard.2005.07.021] [PMID: 16181823]
[12]
Kates, R.E.; Leier, C.V. Dobutamine pharmacokinetics in severe heart failure. Clin. Pharmacol. Ther., 1978, 24(5), 537-541.
[http://dx.doi.org/10.1002/cpt1978245537] [PMID: 699477]
[13]
Zairis, M.; Apostolatos, C.; Anastassiadis, F.; Kouris, N.; Grassos, H.; Sifaki, M. Comparison of the effect of levosimendan, or dobutamin or placebo in chronic low output decompensated heart failure. CAlcium sensitizer or Inotrope or NOne in low output heart failure (CASINO) study. Eur. J. Heart Fail., 2004, 3, 66-66.
[14]
Kostis, J.B.; Shelton, B.; Gosselin, G.; Goulet, C.; Hood, W.B., Jr; Kohn, R.M.; Kubo, S.H.; Schron, E.; Weiss, M.B.; Willis, P.W., III; Young, J.B.; Probstfield, J. SOLVD Investigators Adverse effects of enalapril in the Studies of Left Ventricular Dysfunction (SOLVD). Am. Heart J., 1996, 131(2), 350-355.
[http://dx.doi.org/10.1016/S0002-8703(96)90365-8] [PMID: 8579032]
[15]
Cuffe, M.S.; Califf, R.M.; Adams, K.F., Jr; Benza, R.; Bourge, R.; Colucci, W.S.; Massie, B.M.; O’Connor, C.M.; Pina, I.; Quigg, R.; Silver, M.A.; Gheorghiade, M. Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Investigators. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA,, 2002, 287(12), 1541-1547.
[http://dx.doi.org/10.1001/jama.287.12.1541] [PMID: 11911756]
[16]
Greenblatt, D.J.; Koch-Weser, J. Adverse reactions to spironolactone: a report from the Boston Collaborative Drug Surveillance Program. JAMA, 1973, 225(1), 40-43.
[http://dx.doi.org/10.1001/jama.1973.03220280028007] [PMID: 4740303]
[17]
Voets, M.; Antes, I.; Scherer, C.; Müller-Vieira, U.; Biemel, K.; Barassin, C.; Marchais-Oberwinkler, S.; Hartmann, R.W. Heteroaryl-substituted naphthalenes and structurally modified derivatives: selective inhibitors of CYP11B2 for the treatment of congestive heart failure and myocardial fibrosis. J. Med. Chem., 2005, 48(21), 6632-6642.
[http://dx.doi.org/10.1021/jm0503704] [PMID: 16220979]
[18]
Tang, H.; Zhu, Y.; Teumelsan, N.; Walsh, S.; Shahripour, A.; Priest, B.; Thomas-Fowlkes, B. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity. Med. Chem. Lett., 2016, 7, 697-701.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00122]
[19]
Corey, E.; Link, J. A catalytic enantioselective synthesis of denopamine, a useful drug for congestive heart failure. J. Org. Chem., 1991, 56, 442-444.
[http://dx.doi.org/10.1021/jo00001a084]
[20]
Ravinder, M.; Mahendar, B.; Mattapally, S.; Hamsini, K.V.; Reddy, T.N.; Rohit, C.; Srinivas, K.; Banerjee, S.K.; Rao, V.J. Synthesis and evaluation of novel 2-pyridone derivatives as inhibitors of phosphodiesterase3 (PDE3): a target for heart failure and platelet aggregation. Bioorg. Med. Chem. Lett., 2012, 22(18), 6010-6015.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.019] [PMID: 22897945]
[21]
Figueroa, L.; Díaz, F.; López, M.; García, E.; Pool, E. Design and synthesis of an estradiol derivative and evaluation of its inotropic activity in isolated rat heart. Afr. J. Pharm. Pharmacol., 2011, 5, 1703-1712.
[22]
Figueroa-Valverde, L.; Díaz-Cedillo, F.; Rosas-Nexticapa, M.; Mateu, V; Garcia-Cervera, E.; López-Ramos, M. Activation of estrogen receptor-α protects the in vivo rabbit heart from ischemia-reperfusion injury Biointer.Biointer. Res. Appl. Chem.,, 2018, 3543-3551.
[23]
Booth, E.A.; Obeid, N.R.; Lucchesi, B.R. Activation of estrogen receptor-α protects the in vivo rabbit heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(5), H2039-H2047.
[http://dx.doi.org/10.1152/ajpheart.00479.2005] [PMID: 15994857]
[24]
Hocht, C.; Opezzo, J.; Gorzalczany, S. Una aproximación cinética y dinámica de metildopa en ratas con coartación aórtica mediante microdiálisis. Rev. Argent. Cardiol., 1999, 67, 769-773.
[25]
Nishimoto, Y.; Kang, K.; Yasuda, M. Regio- and Stereoselective Anti-Carbozincation of Alkynyl Ethers Using ZnBr2 toward (Z)-β-Zincated Enol Ether Synthesis. Org. Lett., 2017, 19(14), 3927-3930.
[http://dx.doi.org/10.1021/acs.orglett.7b01847] [PMID: 28700238]
[26]
Chen, X.; Xiao, X.; Sun, H.; Li, Y.; Cao, H.; Zhang, X.; Lian, Z. Transition-metal-catalyzed transformation of sulfonates via S–O bond cleavagE: Synthesis of Alkyl Aryl Ether and Diaryl Ether. Org.anic Lett., 2019, 21(22), 8879-8883.
[27]
Kuriyama, M.; Matsuo, S.; Shinozawa, M.; Onomura, O. Ether-imidazolium carbenes for Suzuki-Miyaura cross-coupling of heteroaryl chlorides with aryl/heteroarylboron reagents. Org. Lett., 2013, 15(11), 2716-2719.
[http://dx.doi.org/10.1021/ol4010189] [PMID: 23713985]
[28]
Nakajima, M.; Orito, Y.; Ishizuka, T.; Hashimoto, S. Enantioselective aldol reaction of trimethoxysilyl enol ether catalyzed by lithium binaphtholate. Org. Lett., 2004, 6(21), 3763-3765.
[http://dx.doi.org/10.1021/ol048485+] [PMID: 15469343]
[29]
Fu, Z.; Ono, Y. Selective N-monomethylation of aniline with dimethyl carbonate over Y-zeolites. Catal. Lett., 1993, 18, 59-63.
[http://dx.doi.org/10.1007/BF00769498]
[30]
Sreekumar, K.; Raja, T.; Kiran, B.; Sugunan, S.; Rao, B. Selective N-monomethylation of aniline over Zn1− xNixFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1) type systems. Appl. Catal., 1999, 182, 327-336.
[http://dx.doi.org/10.1016/S0926-860X(99)00031-9]
[31]
Chen, J.; Wu, J.; Tu, T. Sustainable and selective monomethylation of anilines by methanol with solid molecular NHC-Ir catalysts. ACS Sustain. Chem.& Eng., 2017, 5, 11744-11751.
[http://dx.doi.org/10.1021/acssuschemeng.7b03246]
[32]
Wang, H.; Huang, Y.; Dai, X.; Shi, F. N-Monomethylation of amines using paraformaldehyde and H2. Chem. Commun. (Camb.), 2017, 53(40), 5542-5545.
[http://dx.doi.org/10.1039/C7CC02314F] [PMID: 28470246]
[33]
Ogata, O.; Nara, H.; Fujiwhara, M.; Matsumura, K.; Kayaki, Y. N-monomethylation of aromatic amines with methanol via PNHP-pincer Ru catalysts. Org. Lett., 2018, 20(13), 3866-3870.
[http://dx.doi.org/10.1021/acs.orglett.8b01449] [PMID: 29939027]
[34]
Motokura, K.; Nakayama, K.; Miyaji, A.; Baba, T. “Ligand‐Consuming” Formation of rhodium‐hydride species from [Rh (OH)(cod)] 2 without any additional hydride sources for catalytic olefin isomerizations and cyclobutene synthesis. ChemCatChem, 2011, 3, 1419-1421.
[http://dx.doi.org/10.1002/cctc.201100185]
[35]
Xu, H.; Zhang, W.; Shu, D.; Werness, J.B.; Tang, W. Synthesis of cyclobutenes by highly selective transition-metal-catalyzed ring expansion of cyclopropanes. Angew. Chem. Int. Ed. Engl., 2008, 47(46), 8933-8936.
[http://dx.doi.org/10.1002/anie.200803910] [PMID: 18850597]
[36]
Huang, D.J.; Rayabarapu, D.K.; Li, L.P.; Sambaiah, T.; Cheng, C.H. Nickel-catalyzed. Chemistry, 2000, 6(20), 3706-3713.
[http://dx.doi.org/10.1002/1521-3765(20001016)6:20<3706:AID-CHEM3706>3.0.CO;2-P] [PMID: 11073240]
[37]
Chao, K.C.; Rayabarapu, D.K.; Wang, C.C.; Cheng, C.H. Cross [2 + 2] cycloaddition of bicyclic alkenes with alkynes mediated by cobalt complexes: a facile synthesis of cyclobutene derivatives. J. Org. Chem., 2001, 66(26), 8804-8810.
[http://dx.doi.org/10.1021/jo010609y] [PMID: 11749610]
[38]
Kosobokov, M.; Cui, B.; Balia, A.; Matsuzaki, K.; Tokunaga, E.; Saito, N.; Shibata, N. Importance of a Fluorine Substituent for the Preparation of meta- and para-Pentafluoro-λ(6) -sulfanyl-Substituted Pyridines. Angew. Chem. Int. Ed. Engl., 2016, 55(36), 10781-10785.
[http://dx.doi.org/10.1002/anie.201605008] [PMID: 27485809]
[39]
Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. radical cyclization in heterocycle synthesis. Part 10: A Concise Synthesis of (−)-Kainic Acid via Sulfanyl Radical Addition–Cyclization–Elimination Reaction. Tetrahedron, 2000, 56, 6199-6207.
[http://dx.doi.org/10.1016/S0040-4020(00)00579-2]
[40]
Saidalimu, I.; Liang, Y.; Niina, K.; Tanagawa, K.; Saito, N.; Shibata, N. Synthesis of aryl and heteroaryl tetrafluoro-λ 6-sulfanyl chlorides from diaryl disulfides using trichloroi socyanuric acid and potassium fluoride. Org. Chem. Front., 2019, 6, 1157-1161.
[http://dx.doi.org/10.1039/C9QO00191C]
[41]
Das, P.; Niina, K.; Hiromura, T.; Tokunaga, E.; Saito, N.; Shibata, N. An eccentric rod-like linear connection of two heterocycles: synthesis of pyridine trans-tetrafluoro-λ6-sulfanyl triazoles. Chem. Sci. (Camb.), 2018, 9(22), 4931-4936.
[http://dx.doi.org/10.1039/C8SC01216D] [PMID: 29938019]
[42]
Zeng, X.; Ilies, L.; Nakamura, E. Iron-catalyzed regio- and stereoselective chlorosulfonylation of terminal alkynes with aromatic sulfonyl chlorides. Org. Lett., 2012, 14(3), 954-956.
[http://dx.doi.org/10.1021/ol203446t] [PMID: 22272915]
[43]
Reddy, D.; Vogel, P. Palladium‐catalyzed desulfitative sonogashira–hagihara cross‐couplings of arenesulfonyl chlorides and terminal alkynes. Adv. Synth. Catal., 2004, 346, 1793-1797.
[http://dx.doi.org/10.1002/adsc.200404146]
[44]
Figueroa, L.; Hau, L.; García, E.; López, M.; Díaz, F.; Pool, E.; Rosas, M.; Herrera, S.; Mateu, V. cahuich, regina.; ehuan, saidy. evaluation of inotropic activity of fluorobenzene derivative using an isolated rat heart model. Adv. Pharmacol. Pharm., 2018, 6, 1-11.
[http://dx.doi.org/10.13189/app.2018.060101]
[45]
Achhammer, I.; Häcker, W.; Glocke, M. Efficacy and safety of torasemide in patients with chronic heart failure. Arzneimittelforschung, 1988, 38(1A), 184-187.
[PMID: 3285832]
[46]
Chapman, J.G.; Magee, W.P.; Stukenbrok, H.A.; Beckius, G.E.; Milici, A.J.; Tracey, W.R. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl] isatin reduces myocardial ischemic injury. Eur. J. Pharmacol., 2002, 456(1-3), 59-68.
[http://dx.doi.org/10.1016/S0014-2999(02)02484-6] [PMID: 12450570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy