Computational Evaluation and In Vitro Validation of New Epidermal Growth Factor Receptor Inhibitors | Bentham Science
Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Computational Evaluation and In Vitro Validation of New Epidermal Growth Factor Receptor Inhibitors

Author(s): Sergi Gómez-Ganau, Josefa Castillo, Andrés Cervantes, Jesus Vicente de Julián-Ortiz and Rafael Gozalbes*

Volume 20, Issue 18, 2020

Page: [1628 - 1639] Pages: 12

DOI: 10.2174/1568026620666200603122726

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma.

Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines.

Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib.

Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.

Keywords: Drug design, EGFR, Docking, Virtual screening, Receptor tyrosine kinases, Propidium iodide.

Graphical Abstract
[1]
Leahy, D.J. Structure and function of the epidermal growth factor (EGF/ErbB) family of receptors. Adv. Protein Chem., 2004, 68, 1-27.
[http://dx.doi.org/10.1016/S0065-3233(04)68001-6] [PMID: 15500857]
[2]
Choowongkomon, K.; Sawatdichaikul, O.; Songtawee, N.; Limtrakul, J. Receptor-based virtual screening of EGFR kinase inhibitors from the NCI diversity database. Molecules, 2010, 15(6), 4041-4054.
[http://dx.doi.org/10.3390/molecules15064041] [PMID: 20657425]
[3]
Citri, A.; Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 505-516.
[http://dx.doi.org/10.1038/nrm1962] [PMID: 16829981]
[4]
Yarden, Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer, 2001, 37(Suppl. 4), S3-S8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[5]
Danielsen, A.J.; Maihle, N.J. The EGF/ErbB receptor family and apoptosis. Growth Factors, 2002, 20(1), 1-15.
[http://dx.doi.org/10.1080/08977190290022185] [PMID: 11999214]
[6]
Maihle, N.J.; Baron, A.T.; Barrette, B.A.; Boardman, C.H.; Christensen, T.A.; Cora, E.M.; Faupel-Badger, J.M.; Greenwood, T.; Juneja, S.C.; Lafky, J.M.; Lee, H.; Reiter, J.L.; Podratz, K.C. EGF/ErbB receptor family in ovarian cancer. In: Cancer Treat. Res; , 2002; 107, pp. 247-258.
[http://dx.doi.org/10.1007/978-1-4757-3587-1_11] [PMID: 11775453]
[7]
Köse, M. GPCRs and EGFR - Cross-talk of membrane receptors in cancer. Bioorg. Med. Chem. Lett., 2017, 27(16), 3611-3620.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.002] [PMID: 28705643]
[8]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[9]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[10]
Nicholson, R.I.; Gee, J.M.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(Suppl. 4), S9-S15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[11]
Real, F.X.; Rettig, W.J.; Chesa, P.G.; Melamed, M.R.; Old, L.J.; Mendelsohn, J. Expression of epidermal growth factor receptor in human cultured cells and tissues: relationship to cell lineage and stage of differentiation. Cancer Res., 1986, 46(9), 4726-4731.
[PMID: 3015394]
[12]
Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem., 1990, 265(14), 7709-7712.
[PMID: 2186024]
[13]
Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J.H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama, S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002, 110(6), 775-787.
[http://dx.doi.org/10.1016/S0092-8674(02)00963-7] [PMID: 12297050]
[14]
Shirai, K.; O’Brien, P.E. Molecular targets in squamous cell carcinoma of the head and neck. Curr. Treat. Options Oncol., 2007, 8(3), 239-251.
[http://dx.doi.org/10.1007/s11864-007-0030-4] [PMID: 17962911]
[15]
Carpenter, C.D.; Ingraham, H.A.; Cochet, C.; Walton, G.M.; Lazar, C.S.; Sowadski, J.M.; Rosenfeld, M.G.; Gill, G.N. Structural analysis of the transmembrane domain of the epidermal growth factor receptor. J. Biol. Chem., 1991, 266(9), 5750-5755.
[PMID: 2005111]
[16]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5)E52
[PMID: 28513565]
[17]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[18]
Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: recent advances. F1000 Res., 2016, 5, 2270.
[http://dx.doi.org/10.12688/f1000research.9025.1] [PMID: 27635238]
[19]
Jorissen, R.N.; Walker, F.; Pouliot, N.; Garrett, T.P.; Ward, C.W.; Burgess, A.W. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res., 2003, 284(1), 31-53.
[http://dx.doi.org/10.1016/S0014-4827(02)00098-8] [PMID: 12648464]
[20]
Nijkamp, M.M.; Span, P.N.; Terhaard, C.H.; Doornaert, P.A.; Langendijk, J.A.; van den Ende, P.L.; de Jong, M.; van der Kogel, A.J.; Bussink, J.; Kaanders, J.H. Epidermal growth factor receptor expression in laryngeal cancer predicts the effect of hypoxia modification as an additive to accelerated radiotherapy in a randomised controlled trial. Eur. J. Cancer, 2013, 49(15), 3202-3209.
[http://dx.doi.org/10.1016/j.ejca.2013.06.024] [PMID: 23867129]
[21]
Lima Lopes, G.; de Queiroz Vattimo, E.F.; de Castro Junior, G. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer. J. Bras. Pneumol., 2015, 41(4), 365-375.
[http://dx.doi.org/10.1590/S1806-37132015000004531] [PMID: 26398757]
[22]
Minuti, G.; D’Incecco, A.; Cappuzzo, F. Current and emerging options in the management of EGFR mutation-positive non-small-cell lung cancer: considerations in the elderly. Drugs Aging, 2015, 32(11), 907-916.
[http://dx.doi.org/10.1007/s40266-015-0305-6] [PMID: 26446154]
[23]
Machiels, J.P.; Schmitz, S. Epidermal growth factor receptor inhibition in squamous cell carcinoma of the head and neck. Hematol. Oncol. Clin. North Am., 2015, 29(6), 1011-1032.
[http://dx.doi.org/10.1016/j.hoc.2015.07.007] [PMID: 26568545]
[24]
Nakano, T.; Yamamoto, H.; Nakashima, T.; Nishijima, T.; Satoh, M.; Hatanaka, Y.; Shiratsuchi, H.; Yasumatsu, R.; Toh, S.; Komune, S.; Oda, Y. Molecular subclassification determined by human papillomavirus and epidermal growth factor receptor status is associated with the prognosis of oropharyngeal squamous cell carcinoma. Hum. Pathol., 2016, 50, 51-61.
[http://dx.doi.org/10.1016/j.humpath.2015.11.001] [PMID: 26997438]
[25]
Pollock, N.I.; Wang, L.; Wallweber, G.; Gooding, W.E.; Huang, W.; Chenna, A.; Winslow, J.; Sen, M.; DeGrave, K.A.; Li, H.; Zeng, Y.; Grandis, J.R. Increased expression of HER2, HER3, and HER2:HER3 heterodimers in HPV-positive HNSCC using a novel proximity-based assay: implications for targeted therapies. Clin. Cancer Res., 2015, 21(20), 4597-4606.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3338] [PMID: 26138066]
[26]
Bahrami, A.; Hesari, A.; Khazaei, M.; Hassanian, S.M.; Ferns, G.A.; Avan, A. The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. J. Cell. Physiol., 2018, 233(3), 2162-2169.
[http://dx.doi.org/10.1002/jcp.25952] [PMID: 28407239]
[27]
Harari, P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer, 2004, 11(4), 689-708.
[http://dx.doi.org/10.1677/erc.1.00600] [PMID: 15613446]
[28]
Singh, D.; Attri, B.K.; Gill, R.K.; Bariwal, J. Review on EGFR Inhibitors: Critical Updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917] [PMID: 26996617]
[29]
Concu, R.; Cordeiro, M.N.D.S. Cetuximab and the head and neck squamous cell cancer. Curr. Top. Med. Chem., 2018, 18(3), 192-198.
[http://dx.doi.org/10.2174/1568026618666180112162412] [PMID: 29332581]
[30]
Concu, R.; Cordeiro, M.N.D.S. Looking for new inhibitors for the epidermal growth factor receptor. Curr. Top. Med. Chem., 2018, 18(3), 219-232.
[http://dx.doi.org/10.2174/1568026618666180329123023] [PMID: 29595111]
[31]
Schettino, C.; Bareschino, M.A.; Ricci, V.; Ciardiello, F. Erlotinib: an EGF receptor tyrosine kinase inhibitor in non-small-cell lung cancer treatment. Expert Rev. Respir. Med., 2008, 2(2), 167-178.
[http://dx.doi.org/10.1586/17476348.2.2.167] [PMID: 20477246]
[32]
Yano, S.; Yamaguchi, M.; Dong, R.P. EGFR tyrosine kinase inhibitor “gefitinib (Iressa)” for cancer therapy. Nippon Yakurigaku Zasshi, 2003, 122(6), 491-497.
[http://dx.doi.org/10.1254/fpj.122.491] [PMID: 14639003]
[33]
Shigematsu, H.; Gazdar, A.F. Mutations of EGFR in lung cancers and their implications for targeted therapy. Discov. Med., 2004, 4(24), 444-447.
[PMID: 20704946]
[34]
Misale, S.; Arena, S.; Lamba, S.; Siravegna, G.; Lallo, A.; Hobor, S.; Russo, M.; Buscarino, M.; Lazzari, L.; Sartore-Bianchi, A.; Bencardino, K.; Amatu, A.; Lauricella, C.; Valtorta, E.; Siena, S.; Di Nicolantonio, F.; Bardelli, A. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl. Med., 2014, 6(224)224ra26
[http://dx.doi.org/10.1126/scitranslmed.3007947] [PMID: 24553387]
[35]
Lin, L.; Bivona, T.G. Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemother. Res. Pract., 2012, 2012817297
[http://dx.doi.org/10.1155/2012/817297] [PMID: 22970367]
[36]
Ramírez, D. Computational methods applied to rational drug design. Open Med. Chem. J., 2016, 10, 7-20.
[http://dx.doi.org/10.2174/1874104501610010007] [PMID: 27708723]
[37]
de Julián Ortiz, J.V.; Gozalbes, R.; Besalú, E. Discriminating drug-like compounds by partition trees with quantum similarity indices and graph invariants. Curr. Pharm. Des., 2016, 22(34), 5179-5195.
[http://dx.doi.org/10.2174/1381612822666160601100218] [PMID: 27262334]
[38]
Gozalbes, R.; de Julián-Ortiz, J.V. Applications of chemo-informatics in predictive toxicology for regulatory purposes, especially in the context of the EU REACH legislation. IJQSPR, 2018, 3, 1-24.
[http://dx.doi.org/10.4018/IJQSPR.2018010101]
[39]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[40]
Sharma, P.L.; Nurpeisov, V.; Hernandez-Santiago, B.; Beltran, T.; Schinazi, R.F. Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Curr. Top. Med. Chem., 2004, 4(9), 895-919.
[http://dx.doi.org/10.2174/1568026043388484] [PMID: 15134548]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy