Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives | Bentham Science
Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives

Author(s): Houda N. Washah, Elliasu Y. Salifu, Opeyemi Soremekun, Ahmed A. Elrashedy, Geraldene Munsamy, Fisayo A. Olotu and Mahmoud E.S. Soliman*

Volume 23, Issue 8, 2020

Page: [687 - 698] Pages: 12

DOI: 10.2174/1386207323666200427113734

Price: $65

Open Access Journals Promotions 2
Abstract

For the past few decades, the mechanisms of immune responses to cancer have been exploited extensively and significant attention has been given into utilizing the therapeutic potential of the immune system. Cancer immunotherapy has been established as a promising innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help transform the treatment paradigm of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the application of immunotherapy. Herein, we gave an insightful overview of the types of immunotherapy techniques used currently, their mechanisms of action, and discussed some bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides some future perspectives in the use of bioinformatics tools for immunotherapy.

Keywords: Cancer immunotherapy, immune system, monoclonal antibody, bioinformatics, immunotherapeutic targets, therapeutic strategies.

[1]
Registry, P.C. Global Cancer Observatory; Malaysia Cancer Statistics, 2019.
[2]
Facts, G.C. Global Cancer Facts & Figures. Cancer, 2007.
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[4]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017 ] [PMID: 28187290]
[5]
Rius, M.; Lyko, F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene, 2012, 31(39), 4257-4265.
[http://dx.doi.org/10.1038/onc.2011.601 ] [PMID: 22179827]
[6]
Barton, M.K. Daily aspirin may reduce mortality from prostate cancer with risk of high recurrence. CA Cancer J. Clin., 2015, 65(2), 83-84.
[http://dx.doi.org/10.3322/caac.21263 ] [PMID: 25640813]
[7]
Borghaei, H.; Smith, M.R.; Campbell, K.S. Immunotherapy of cancer. Eur. J. Pharmacol., 2009, 625(1-3), 41-54.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.067 ] [PMID: 19837059]
[8]
Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.L. 2011: the immune hallmarks of cancer. Cancer Immunol. Immunother., 2011, 60(3), 319-326.
[http://dx.doi.org/10.1007/s00262-010-0968-0 ] [PMID: 21267721]
[9]
Makkouk, A.; Weiner, G.J. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res., 2015, 75(1), 5-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2538 ] [PMID: 25524899]
[10]
Thommen, D.S. The first shall (Be) last: Understanding durable T cell responses in immunotherapy. Immunity, 2019, 50(1), 6-8.
[http://dx.doi.org/10.1016/j.immuni.2018.12.029 ] [PMID: 30650381]
[11]
Speiser, D.E.; Flatz, L. Cancer immunotherapy drives implementation science in oncology. Hum. Vaccin. Immunother., 2014, 10(11), 3107-3110.
[http://dx.doi.org/10.4161/21645515.2014.983000 ] [PMID: 25625923]
[12]
Yang, Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871 ] [PMID: 26325031]
[13]
Tovoli, F.; Casadei-Gardini, A.; Benevento, F.; Piscaglia, F. Immunotherapy for hepatocellular carcinoma: A review of potential new drugs based on ongoing clinical studies as of 2019. Dig. Liver Dis., 2019, 51(8), 1067-1073.
[http://dx.doi.org/10.1016/j.dld.2019.05.006 ] [PMID: 31208929]
[14]
Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H.; Heinemann, V.; Subklewe, M.; Boeck, S.; Werner, J.; von Bergwelt-Baildon, M. Advances in cancer immunotherapy 2019 - latest trends. J. Exp. Clin. Cancer Res., 2019, 38(1), 268.
[http://dx.doi.org/10.1186/s13046-019-1266-0 ] [PMID: 31217020]
[15]
Nisbet, I. Cancer immunotherapy comes of age (Finally!). Australas. Biotechnol., 2016, 26(2), 38-40.
[16]
Binder, R.J. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol., 2014, 193(12), 5765-5771.
[http://dx.doi.org/10.4049/jimmunol.1401417]
[17]
Voena, C.; Chiarle, R. Advances in cancer immunology and cancer immunotherapy. Discov. Med., 2016, 21(114), 125-133.
[PMID: 27011048]
[18]
Miller, J.F.A.P.; Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell, 2015, 27(4), 439-449.
[http://dx.doi.org/10.1016/j.ccell.2015.03.007 ] [PMID: 25858803]
[19]
Woo, S-R.; Corrales, L.; Gajewski, T.F. Innate immune recognition of cancer. Annu. Rev. Immunol., 2015, 33(1), 445-474.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112043 ] [PMID: 25622193]
[20]
Trinchieri, G.; Perussia, B. Immune interferon: a pleiotropic lymphokine with multiple effects. Immunol. Today, 1985, 6(4), 131-136.
[http://dx.doi.org/10.1016/0167-5699(85)90080-5 ] [PMID: 25289500]
[21]
Farrar, M.A.; Schreiber, R.D. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol., 1993, 11, 571-611.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.003035 ] [PMID: 8476573]
[22]
Bevan, M.J. Helping the CD8(+) T-cell response. Nat. Rev. Immunol., 2004, 4(8), 595-602.
[http://dx.doi.org/10.1038/nri1413 ] [PMID: 15286726]
[23]
Ribatti, D. The concept of immune surveillance against tumors. The first theories. Oncotarget, 2017, 8(4), 7175-7180.
[http://dx.doi.org/10.18632/oncotarget.12739 ] [PMID: 27764780]
[24]
Coley, W.B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus).Proc. Royal Soc. Med; , 1910, 3 (Surg Sect), pp. 1-48.
[25]
Johnson, D.B.; Sullivan, R.J.; Menzies, A.M. Immune checkpoint inhibitors in challenging populations. Cancer, 2017, 123(11), 1904-1911.
[http://dx.doi.org/10.1002/cncr.30642 ] [PMID: 28241095]
[26]
Ito, A.; Kondo, S.; Tada, K.; Kitano, S. Clinical development of immune checkpoint inhibitors. BioMed Res. Int., 2015, 2015, 605478.
[http://dx.doi.org/10.1155/2015/605478 ] [PMID: 26161407]
[27]
Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The next immune-checkpoint inhibitors: Pd-1/pd-l1 blockade in melanoma. Clin. Ther., 2015, 37(4), 764-782.
[http://dx.doi.org/10.1016/j.clinthera.2015.02.018 ] [PMID: 25823918]
[28]
Spain, L.; Diem, S.; Larkin, J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev., 2016, 44, 51-60.
[http://dx.doi.org/10.1016/j.ctrv.2016.02.001 ] [PMID: 26874776]
[29]
Ceeraz, S.; Nowak, E.C.; Burns, C.M.; Noelle, R.J. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease. Arthritis Res. Ther., 2014, 16(5), 469.
[http://dx.doi.org/10.1186/s13075-014-0469-1 ] [PMID: 25606596]
[30]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239 ] [PMID: 22437870]
[31]
Yuan, J.; Hegde, P.S.; Clynes, R.; Foukas, P.G.; Harari, A.; Kleen, T.O.; Kvistborg, P.; Maccalli, C.; Maecker, H.T.; Page, D.B.; Robins, H.; Song, W.; Stack, E.C.; Wang, E.; Whiteside, T.L.; Zhao, Y.; Zwierzina, H.; Butterfield, L.H.; Fox, B.A. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J. Immunother. Cancer, 2016, 4, 3.
[http://dx.doi.org/10.1186/s40425-016-0107-3 ] [PMID: 26788324]
[32]
Sathyanarayanan, V.; Neelapu, S.S. Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol. Oncol., 2015, 9(10), 2043-2053.
[http://dx.doi.org/10.1016/j.molonc.2015.10.009 ] [PMID: 26548534]
[33]
Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci., 2007, 104(9), 3360-3365.
[http://dx.doi.org/10.1073/pnas.0611533104 ] [PMID: 17360651]
[34]
Okazaki, T.; Honjo, T. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol., 2007, 19(7), 813-824.
[http://dx.doi.org/10.1093/intimm/dxm057 ] [PMID: 17606980]
[35]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271 ] [PMID: 24714771]
[36]
Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. KEYNOTE-006 investigators. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532.
[http://dx.doi.org/10.1056/NEJMoa1503093 ] [PMID: 25891173]
[37]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030 ] [PMID: 26027431]
[38]
Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; Rabinowits, G.; Thai, A.A.; Dunn, L.A.; Hughes, B.G.M.; Khushalani, N.I.; Modi, B.; Schadendorf, D.; Gao, B.; Seebach, F.; Li, S.; Li, J.; Mathias, M.; Booth, J.; Mohan, K.; Stankevich, E.; Babiker, H.M.; Brana, I.; Gil-Martin, M.; Homsi, J.; Johnson, M.L.; Moreno, V.; Niu, J.; Owonikoko, T.K.; Papadopoulos, K.P.; Yancopoulos, G.D.; Lowy, I.; Fury, M.G. PD-1 Blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med., 2018, 379(4), 341-351.
[http://dx.doi.org/10.1056/NEJMoa1805131 ] [PMID: 29863979]
[39]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A. POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0 ] [PMID: 26970723]
[40]
Tsang, K-Y.; Boyerinas, B.; Jochems, C.; Fantini, M.; Heery, C.R.; Madan, R.A.; Gulley, J.L.; Schlom, J. Antibody dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody, avelumab (MSB0010718C), on human tumor cells. J. Clin. Oncol., 2019, 33(15), 3038-3038.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.3038]
[41]
Approved. (2010). Chemical & Engineering News. Available at:
[http://dx.doi.org/10.1021/cen-v040n029.obc]
[42]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med., 2016, 14, 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5 ] [PMID: 27151159]
[43]
Voena, C.; Di Giacomo, F.; Panizza, E.; D’Amico, L.; Boccalatte, F.E.; Pellegrino, E.; Todaro, M.; Recupero, D.; Tabbò, F.; Ambrogio, C.; Martinengo, C.; Bonello, L.; Pulito, R.; Hamm, J.; Chiarle, R.; Cheng, M.; Ruggeri, B.; Medico, E.; Inghirami, G. The EGFR family members sustain the neoplastic phenotype of ALK+ lung adenocarcinoma via EGR1. Oncogenesis, 2013, 2(4), e43.
[http://dx.doi.org/10.1038/oncsis.2013.7 ] [PMID: 23567620]
[44]
Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol., 2017, 18(12), e731-e741.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1 ] [PMID: 29208439]
[45]
FDA approves new treatment for a type of late-stage skin cancer. U.S. Food and Drug Administration (FDA), 2011.
[46]
Pollack, A. Approval for Drug That Treats Melanoma. The New York Times, 2011.
[47]
Redman, J.M.; Gibney, G.T.; Atkins, M.B. Advances in immunotherapy for melanoma. BMC Med., 2016, 14, 20.
[http://dx.doi.org/10.1186/s12916-016-0571-0 ] [PMID: 26850630]
[48]
Rizvi, N.A.; Loo, D.; Baughman, J.E.; Yun, S.; Chen, F.; Moore, P.A.; Bonvini, E.; Vasselli, J.R.; Wigginton, J.M.; Cohen, R.B.; Aggarwal, C.; Tolcher, A.W. A phase 1 study of enoblituzumab in combination with pembrolizumab in patients with advanced B7-H3-expressing cancers. J. Clin. Oncol., 2016, 34(15)
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.TPS3104.]]
[49]
Shenderov, E.; Demarzo, A.; Boudadi, K.; Allaf, M.; Wang, H.; Chapman, C.; Bivalacqua, C.P.T.; O’Neal, T.S.; Harb, R.; Abdallah, R.; Drake, C.G.; Pardoll, D.M.; Antonarakis, E.S. Phase II neoadjuvant and immunologic study of B7-H3 targeting with enoblituzumab in localized intermediate- and high-risk prostate cancer. J. Clin. Oncol., 2018, 36(15)
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS5099.]]
[50]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466 ] [PMID: 20525992]
[51]
Ribas, A.; Kefford, R.; Marshall, M.A.; Punt, C.J.A.; Haanen, J.B.; Marmol, M.; Garbe, C.; Gogas, H.; Schachter, J.; Linette, G.; Lorigan, P.; Kendra, K.L.; Maio, M.; Trefzer, U.; Smylie, M.; McArthur, G.A.; Dreno, B.; Nathan, P.D.; Mackiewicz, J.; Kirkwood, J.M.; Gomez-Navarro, J.; Huang, B.; Pavlov, D.; Hauschild, A. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol., 2013, 31(5), 616-622.
[http://dx.doi.org/10.1200/JCO.2012.44.6112 ] [PMID: 23295794]
[52]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated Melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030 ] [PMID: 26027431]
[53]
Duffy, A.G.; Makarova-Rusher, O.V.; Pratt, D.; Kleiner, D.E.; Fioravanti, S.; Walker, M.; Carey, S.; Figg, W.D.; Steinberg, S.M.; Anderson, V.; Levy, E.; Krishnasamy, V.; Wood, B.J.; Jones, J.; Citrin, D.E.; Greten, T.F. A pilot study of AMP-224, a PD-L2 Fc fusion protein, in combination with stereotactic body radiation therapy (SBRT) in patients with metastatic colorectal cancer. J. Clin. Oncol., 2016, 34(4), 560-560.
[http://dx.doi.org/10.1200/jco.2016.34.4_suppl.560]
[54]
Armand, P.; Nagler, A.; Weller, E.A.; Devine, S.M.; Avigan, D.E.; Chen, Y.B.; Kaminski, M.S.; Holland, H.K.; Winter, J.N.; Mason, J.R.; Fay, J.W.; Rizzieri, D.A.; Hosing, C.M.; Ball, E.D.; Uberti, J.P.; Lazarus, H.M.; Mapara, M.Y.; Gregory, S.A.; Timmerman, J.M.; Andorsky, D.; Or, R.; Waller, E.K.; Rotem-Yehudar, R.; Gordon, L.I. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol., 2013, 31(33), 4199-4206.
[http://dx.doi.org/10.1200/JCO.2012.48.3685 ] [PMID: 24127452]
[55]
Santini, F.C.; Rudin, C.M. Atezolizumab for the treatment of non small cell lung cancer. Expert Rev. Clin. Pharmacol., 2017, 10(9), 935-945.
[http://dx.doi.org/10.1080/17512433.2017.1356717 ] [PMID: 28714780]
[56]
Boyerinas, B.; Jochems, C.; Fantini, M.; Heery, C.R.; Gulley, J.L.; Tsang, K.Y.; Schlom, J. Antibody-dependent cellular cytotoxicity activity of a Novel Anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res., 2015, 3(10), 1148-1157.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0059 ] [PMID: 26014098]
[57]
Gay, C.L.; Bosch, R.J.; Ritz, J.; Hataye, J.M.; Aga, E.; Tressler, R.L.; Mason, S.W.; Hwang, C.K.; Grasela, D.M.; Ray, N.; Cyktor, J.C.; Coffin, J.M.; Acosta, E.P.; Koup, R.A.; Mellors, J.W.; Eron, J.J. AIDS Clinical Trials 5326 Study Team. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J. Infect. Dis., 2017, 215(11), 1725-1733.
[http://dx.doi.org/10.1093/infdis/jix191 ] [PMID: 28431010]
[58]
Brignone, C.; Escudier, B.; Grygar, C.; Marcu, M.; Triebel, F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res., 2009, 15(19), 6225-6231.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0068 ] [PMID: 19755389]
[59]
Lipson, E.; Gopal, A.; Neelapu, S.S.; Armand, P.; Spurgeon, S.; Leonard, J.P.; Hodi, F.S.; Sanborn, R.E.; Melero, I.; Gajewski, T.F.; Maurer, M.; Perna, S.; Gutierrez, A.A.; Clynes, R.; Mitra, P.; Suryawanshi, S.; Gladstone, D.; Callahan, M.K. Initial experience administering BMS-986016, a monoclonal antibody that targets lymphocyte activation gene (LAG)-3, alone and in combination with nivolumab to patients with hematologic and solid malignancies. J. Immunother. Cancer, 2016, 4(1), 232.
[60]
Riethmüller, G.; Schneider-Gädicke, E.; Johnson, J.P. Monoclonal antibodies in cancer therapy. Curr. Opin. Immunol., 1993, 5(5), 732-739.
[http://dx.doi.org/10.1016/0952-7915(93)90129-G ] [PMID: 8240735]
[61]
Henricks, L.M.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev., 2015, 41(10), 859-867.
[http://dx.doi.org/10.1016/j.ctrv.2015.10.008 ] [PMID: 26547132]
[62]
Shore, N.D. Advances in the understanding of cancer immunotherapy. BJU Int., 2015, 116(3), 321-329.
[http://dx.doi.org/10.1111/bju.12692 ] [PMID: 24612369]
[63]
Maleki, L.A.; Baradaran, B.; Majidi, J.; Mohammadian, M.; Shahneh, F.Z. Future prospects of monoclonal antibodies as magic bullets in immunotherapy. Hum. Antibodies, 2013, 22(1-2), 9-13.
[http://dx.doi.org/10.3233/HAB-130266 ] [PMID: 24284304]
[64]
Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; Ferrucci, P.F.; Smylie, M.; Hill, A.; Hogg, D.; Marquez-Rodas, I.; Jiang, J.; Rizzo, J.; Larkin, J.; Wolchok, J.D. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol., 2018, 19(11), 1480-1492.
[http://dx.doi.org/10.1016/S1470-2045(18)30700-9 ] [PMID: 30361170]
[65]
Beljanski, V. Cetuximab. In: xPharm: The Comprehensive Pharmacology Reference, Elsevier Inc.: 2007,, pp. 1-4.
[http://dx.doi.org/10.1016/B978-008055232-3.63727-4]
[66]
Beljanski, V. Bevacizumab. In: xPharm: The Comprehensive Pharmacology Reference, Elsevier Inc.: 2007,, pp. 1-6.
[http://dx.doi.org/10.1016/B978-008055232-3.63725-0]
[67]
Findlay, V.J.; Scholar, E. Trastuzumab. In: xPharm: The Comprehensive Pharmacology Reference, Elsevier Inc.: 2007,, pp. 1-5.
[http://dx.doi.org/10.1016/B978-008055232-3.63738-9]
[68]
List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools) | FDA.
[69]
Naran, K.; Nundalall, T.; Chetty, S.; Barth, S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front. Microbiol., 2018, 9(December), 3158.
[http://dx.doi.org/10.3389/fmicb.2018.03158 ] [PMID: 30622524]
[70]
Ye, Z.; Qian, Q.; Jin, H.; Qian, Q. Cancer vaccine: learning lessons from immune checkpoint inhibitors. J. Cancer, 2018, 9(2), 263-268.
[http://dx.doi.org/10.7150/jca.20059 ] [PMID: 29344272]
[71]
Hurley, L.P.; Bridges, C.B.; Harpaz, R.; Allison, M.A.; O’ Leary, S.T.; Crane, L.A.; Brtnikova, M.; Stokley, S.; Beaty, B.L.; Jimenez-Zambrano, A.; Kempe, A. Physician attitudes toward adult vaccines and other preventive practices, United States, 2012. Public Health Rep., 2016, 131(2), 320-330.
[http://dx.doi.org/10.1177/003335491613100216 ] [PMID: 26957667]
[72]
Wong, K.K.; Li, W.A.; Mooney, D.J.; Dranoff, G. Advances in therapeutic cancer vaccines. Adv. Immunol., 2016, 130, 191-249.
[http://dx.doi.org/10.1016/bs.ai.2015.12.001] [PMID: 26923002]
[73]
Higano, C.S.; Small, E.J.; Schellhammer, P.; Yasothan, U.; Gubernick, S.; Kirkpatrick, P.; Kantoff, P.W. Sipuleucel-T. Nat. Rev. Drug Discov., 2010, 9, 513-514.
[http://dx.doi.org/10.1038/nrd3220]
[74]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294 ] [PMID: 20818862]
[75]
Perica, K.; Varela, J.C.; Oelke, M.; Schneck, J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J., 2015, 6(1), e0004.
[http://dx.doi.org/10.5041/RMMJ.10179 ] [PMID: 25717386]
[76]
June, C.H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest., 2007, 117(6), 1466-1476.
[http://dx.doi.org/10.1172/JCI32446 ] [PMID: 17549249]
[77]
June, C.H. Principles of adoptive T cell cancer therapy. J. Clin. Invest., 2007, 117(5), 1204-1212.
[http://dx.doi.org/10.1172/JCI31446 ] [PMID: 17476350]
[78]
Restifo, N.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol., 2012, 12(4), 269-281.
[http://dx.doi.org/10.1038/nri3191 ] [PMID: 22437939]
[79]
Stanton, S.E.; Disis, M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer, 2016, 4, 59.
[http://dx.doi.org/10.1186/s40425-016-0165-6 ] [PMID: 27777769]
[80]
Vilgelm, A.E.; Johnson, D.B.; Richmond, A. Combinatorial approach to cancer immunotherapy: strength in numbers. J. Leukoc. Biol., 2016, 100(2), 275-290.
[http://dx.doi.org/10.1189/jlb.5RI0116-013RR ] [PMID: 27256570]
[81]
Pilones, K.A.; Vanpouille-Box, C.; Demaria, S. Combination of radiotherapy and immune checkpoint inhibitors. Semin. Radiat. Oncol., 2015, 25(1), 28-33.
[http://dx.doi.org/10.1016/j.semradonc.2014.07.004 ] [PMID: 25481263]
[82]
Weichselbaum, R.R.; Liang, H.; Deng, L.; Fu, Y.X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol., 2017, 14(6), 365-379.
[http://dx.doi.org/10.1038/nrclinonc.2016.211 ] [PMID: 28094262]
[83]
Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J. Natl. Cancer Inst., 2013, 105(4), 256-265.
[http://dx.doi.org/10.1093/jnci/djs629 ] [PMID: 23291374]
[84]
Dunn, J.; Rao, S. Epigenetics and immunotherapy: The current state of play. Mol. Immunol., 2017, 87, 227-239.
[http://dx.doi.org/10.1016/j.molimm.2017.04.012 ] [PMID: 28511092]
[85]
Charoentong, P.; Angelova, M.; Efremova, M.; Gallasch, R.; Hackl, H.; Galon, J.; Trajanoski, Z. Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol. Immunother., 2012, 61(11), 1885-1903.
[http://dx.doi.org/10.1007/s00262-012-1354-x ] [PMID: 22986455]
[86]
Sioud, M.; Hansen, M.; Dybwad, A. Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int. J. Mol. Med., 2000, 6(2), 123-128.
[http://dx.doi.org/10.3892/ijmm.6.2.123 ] [PMID: 10891554]
[87]
Hanash, S. Disease proteomics. Nature, 2003, 422(6928), 226-232.
[http://dx.doi.org/10.1038/nature01514 ] [PMID: 12634796]
[88]
Olsen, L.R.; Campos, B.; Barnkob, M.S.; Winther, O.; Brusic, V.; Andersen, M.H. Bioinformatics for cancer immunotherapy target discovery. Cancer Immunol. Immunother., 2014, 63(12), 1235-1249.
[http://dx.doi.org/10.1007/s00262-014-1627-7 ] [PMID: 25344903]
[89]
Lam, H.Y.K.; Pan, C.; Clark, M.J.; Lacroute, P.; Chen, R.; Haraksingh, R.; O’Huallachain, M.; Gerstein, M.B.; Kidd, J.M.; Bustamante, C.D.; Snyder, M. Detecting and annotating genetic variations using the HugeSeq pipeline. Nat. Biotechnol., 2012, 30(3), 226-229.
[http://dx.doi.org/10.1038/nbt.2134 ] [PMID: 22398614]
[90]
Sailani, M.R. Jahanbani, F. Nasiri, J.; Behnam, N.; Salehi, M.; Sedghi, M.; Hoseinzadeh, M.; Takahashi, S.; Zia, A.; Gruber, J.; Lynch, J.L.; Lam, D.; lmann, J.W.; Amirkiai, S.; Pang, B.; Rego, S.; Mazroui, S.; Bernstein, J.A.; Snyder, M.P. Association of AHSG with alopecia and mental retardation (APMR) syndrome. Hum. Genet., 2017, 136(3), 287-296.
[91]
Narang, V.; Decraene, J.; Wong, S.Y.; Aiswarya, B.S.; Wasem, A.R.; Leong, S.R.; Gouaillard, A. Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol. Res., 2012, 53(1-3), 251-265.
[http://dx.doi.org/10.1007/s12026-012-8305-7 ] [PMID: 22528121]
[92]
Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Dalla Favera, R.; Califano, A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 2006, 7(Suppl. 1), S7.
[http://dx.doi.org/10.1186/1471-2105-7-S1-S7 ] [PMID: 16723010]
[93]
Wang, K.; Saito, M.; Bisikirska, B.C.; Alvarez, M.J.; Lim, W.K.; Rajbhandari, P.; Shen, Q.; Nemenman, I.; Basso, K.; Margolin, A.A.; Klein, U.; Dalla-Favera, R.; Califano, A. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol., 2009, 27(9), 829-839.
[http://dx.doi.org/10.1038/nbt.1563 ] [PMID: 19741643]
[94]
Montes, R.A.C.; Coello, G.; González-aguilera, K.L.; Marsch-martínez, N.; de Folter, S.; Alvarez-buylla, E.R. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol., 2014, 14
[http://dx.doi.org/10.1186/1471-2229-14-97.]]
[95]
Bashashati, A.; Haffari, G.; Ding, J.; Ha, G.; Lui, K.; Rosner, J.; Huntsman, D.G.; Caldas, C.; Aparicio, S.A.; Shah, S.P. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol., 2012, 13(12), R124.
[http://dx.doi.org/10.1186/gb-2012-13-12-r124 ] [PMID: 23383675]
[96]
Akavia, U.; Litvin, O.; Kim, J.; Mozes, E.; Kotliar, D.; Tzur, Y. Abstract B70: Conexic: A Bayesian framework to detect drivers and their function uncovers an endosomal signature in melanoma. First AACR International Conference on Frontiers in Basic Cancer Research, Boston, MA2009.
[http://dx.doi.org/10.1158/0008-5472.fbcr09-b70]
[97]
Zhang, T.; Zhang, D. Integrating omics data and protein interaction networks to prioritize driver genes in cancer. Oncotarget, 2017, 8(35), 58050-58060.
[http://dx.doi.org/10.18632/oncotarget.19481 ] [PMID: 28938536]
[98]
Kishore, A.; Petrek, M. Next-generation sequencing based HLA typing: Deciphering immunogenetic aspects of sarcoidosis. Front. Genet., 2018, 9(October), 503.
[http://dx.doi.org/10.3389/fgene.2018.00503 ] [PMID: 30410504]
[99]
Xie, C.; Xuan, Z.; Wong, M.; Piper, J.; Long, T.; Kirkness, E.F. Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. PNAS, 2017, 114(30), 8059-8064.
[http://dx.doi.org/10.1073/pnas.1707945114]
[100]
Gandhi, M.J.; Ferriola, D.; Huang, Y.; Duke, J.L.; Monos, D. Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: metrics of relevance and considerations for its successful implementation. Arch. Pathol. Lab. Med., 2017, 141(6), 806-812.
[http://dx.doi.org/10.5858/arpa.2016-0537-RA ] [PMID: 28234015]
[101]
Open access book available at: https://www.intechopen.com/books
[102]
Kim, D.; Paggi, J.; Salzberg, S.L. HISAT-genotype: Next generation genomic analysis platform on a personal computer. bioRxiv, 2018.
[http://dx.doi.org/10.1101/266197,(pre-print)]
[103]
Kawaguchi, S.; Matsuda, F.; Higasa, K.; Shimizu, M.; Yamada, R. HLA-HD: An accurate HLA typing algorithm for next-generation sequencing data. Human. Mutation., 2017, 38(7), 788-797.
[http://dx.doi.org/10.1002/humu.23230]
[104]
Ka, S.; Lee, S.; Hong, J.; Cho, Y.; Sung, J.; Kim, H.; Kim, H. HLAscan : genotyping of the HLA region using next-generation sequencing data. BMC Bioinformatics, 2017, 18, 1-11.
[http://dx.doi.org/10.1186/s12859-017-1671-3]
[105]
Robinson, J.; Halliwell, J.A.; Hayhurst, J.D.; Flicek, P.; Parham, P.; Marsh, S.G.E. The IPD and IMGT/HLA database : allele variant databases. Nucleic Acids Res., 43(D1)2015, , 423-431.
[http://dx.doi.org/10.1093/nar/gku1161]
[106]
Mack, S.J.; Cano, P.; Hollenbach, J.A.; He, J.; Hurley, C.K.; Middleton, D.; Moraes, M.E.; Pereira, S.E.; Kempenich, J.H.; Reed, E.F.; Setterholm, M.; Smith, A.G.; Tilanus, M.G.; Torres, M.; Varney, M.D.; Voorter, C.E.M.; Fischer, G.F.; Fleischhauer, K.; Goodridge, D.; Klitz, W.; Little, A-M.; Maiers, M.; Marsh, S.G.E.; Müller, C.R.; Noreen, H.; Rozemuller, E.H.; Sanchez-Mazas, A.; Senitzer, D.; Trachtenberg, E.; Fernandez-Vina, M. Common and well‐documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens, 2014, 81(4), 194-203.
[http://dx.doi.org/10.1111/tan.12093.Common]
[107]
Liu, C.; Yang, X.; Duffy, B.; Mohanakumar, T.; Mitra, R.D.; Zody, M.C.; Pfeifer, J.D. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res., 2013, 41(14), 1-8.
[http://dx.doi.org/10.1093/nar/gkt481]
[108]
Shukla, S.A.; Rooney, M.S.; Rajasagi, M.; Tiao, G.; Dixon, P.M.; Lawrence, M.S.; Stevens, J.; Lane, W.J.; Dellagatta, J.L.; Steelman, S.; Sougnez, C.; Cibulskis, K.; Kiezun, A.; Hacohen, N.; Brusic, V.; Wu, C.J.; Getz, G. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol., 2015, 33(11), 1152-1158.
[http://dx.doi.org/10.1038/nbt.3344]
[109]
Schubert, B.; Mohr, C.; Sturm, M.; Feldhahn, M.; Kohlbacher, O. Sequence analysis OptiType : precision HLA typing from next-generation sequencing data. Bioinformatics, 2014, 30(23), 3310-3316.
[http://dx.doi.org/10.1093/bioinformatics/btu548]
[110]
Jespersen, M.C.; Mahajan, S.; Peters, B.; Nielsen, M.; Marcatili, P. Antibody specific B-cell epitope predictions: leveraging information from antibody-antigen protein complexes. Front. Immunol., 2019, 10(February), 298.
[http://dx.doi.org/10.3389/fimmu.2019.00298 ] [PMID: 30863406]
[111]
Delisi, C.; Berzofskyt, J.A.Y.A. T-cell antigenic sites tend to be amphipathic structures. Proc. Natl. Acad. Sci. USA, 1985, 82(20), 7048-7052.
[http://dx.doi.org/10.1073/pnas.82.20.7048]]
[112]
Shirai, H.; Prades, C.; Vita, R.; Marcatili, P.; Popovic, B.; Xu, J.; Overington, J.P.; Hirayama, K.; Soga, S.; Tsunoyama, K.; Clark, D.; Lefranc, M.P.; Ikeda, K. Antibody informatics for drug discovery. Biochim. Biophys. Acta, 2015, 1844, 2002-2015.
[http://dx.doi.org/10.1016/j.bbapap.2014.07.006 ] [PMID: 25110827]
[113]
Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: improving sequence-based B-cell. Nucleic Acids Res., 2017, 45(W1), W24-W29.
[http://dx.doi.org/10.1093/nar/gkx346]
[114]
Guedes, R.L.M.; Rodrigues, C.M.F.; Coatnoan, N.; Cosson, A.; Cadioli, F.A.; Garcia, H.A.; Gerber, A.L.; Machado, R.Z.; Minoprio, P.M.C.; Teixeira, M.M.G.; de Vasconcelos, A.T.R. A comparative in silico linear B-cell epitope prediction and characterization for South American and African Trypanosoma vivax strains. Genomics, 2019, 111(3), 407-417.
[http://dx.doi.org/10.1016/j.ygeno.2018.02.017 ] [PMID: 29499243]
[115]
Andersen, P.H.; Nielsen, M.; Lund, O.L.E. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci., 2006, 15(11), 2558-2567.
[http://dx.doi.org/10.1110/ps.062405906 ] [PMID: 17001032]
[116]
Ansari, H.R.; Raghava, G.P.S. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res., 2010, 6(1), 6.
[http://dx.doi.org/10.1186/1745-7580-6-6 ] [PMID: 20961417]
[117]
Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078]]
[118]
Shey, R.A.; Ghogomu, S.M.; Esoh, K.K.; Nebangwa, N.D.; Shintouo, C.M.; Nongley, N.F.; Asa, B.F.; Ngale, F.N.; Vanhamme, L.; Souopgui, J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep., 2019, 9(1), 4409.
[http://dx.doi.org/10.1038/s41598-019-40833-x ] [PMID: 30867498]
[119]
Abbas, A.R.; Wolslegel, K.; Seshasayee, D.; Modrusan, Z.; Clark, H.F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One, 2009, 4(7), e6098.
[http://dx.doi.org/10.1371/journal.pone.0006098 ] [PMID: 19568420]
[120]
Abbas, A.R.; Baldwin, D.; Ma, Y.; Ouyang, W.; Gurney, A.; Martin, F. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun., 2005, 6(4), 319-331.
[http://dx.doi.org/10.1038/sj.gene.6364173]
[121]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2016, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337 ] [PMID: 25822800]
[122]
Li, B.; Severson, E.; Pignon, J.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; Signoretti, S.; Liu, J.S.; Liu, X.S. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol., 2016, 17(1), 1-16.
[http://dx.doi.org/10.1186/s13059-016-1028-7 ] [PMID: 27549193]
[123]
Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5 ] [PMID: 27765066]
[124]
Heng, T.S.P.; Painter, M.W.; Immunological, T.; Project, G. The Immunological Genome Project : networks of gene expression in immune cells. Nat. Immunol., 2008, 9(10), 1091-1094.
[125]
Hammerbacher, J.; Snyder, A. Informatics for cancer immunotherapy. Ann. Oncol.,, 2017, 28(suppl_12), xii56-xii73.
[http://dx.doi.org/10.1093/annonc/mdx682] [PMID: 29253114]
[126]
Schoenfeld, J.D. We are all connected: Modeling the tumor- immune ecosystem. Trends Cancer, 2013, 16, 7-9.
[http://dx.doi.org/10.1016/j.trecan.2018.08.006 ] [PMID: 30292347]
[127]
Onofrio, A. Metamodeling tumor – immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model., 2008, 47, 614-637.
[http://dx.doi.org/10.1016/j.mcm.2007.02.032]
[128]
Adekiya, T.A.; Aruleba, R.T.; Khanyile, S.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Structural analysis and epitope prediction of MHC class-1-chain related protein-A for cancer vaccine development. Vaccines (Basel), 2017, 6(1), 1.
[http://dx.doi.org/10.3390/vaccines6010001 ] [PMID: 29295563]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy