Clinical Application of Thiopurine Pharmacogenomics in Pediatrics | Bentham Science
Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Clinical Application of Thiopurine Pharmacogenomics in Pediatrics

Author(s): Sonja Pavlovic*, Nikola Kotur, Biljana Stankovic, Vladimir Gasic, Marianna Lucafo, Giuliana Decorti and Branka Zukic

Volume 21, Issue 1, 2020

Page: [53 - 62] Pages: 10

DOI: 10.2174/1389200221666200303113456

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Thiopurine drugs are used for the treatment of pediatric diseases. Inter-individual differences in the metabolism of these drugs greatly influence the risk of thiopurine induced toxicity and therapy failure. These differences are the consequence of genomic, epigenomic and transcriptomic variability among patients. Pharmacogenomics aims to individualize therapy according to the specific genetic signature of a patient. Treatment protocols based on thiopurine drugs have already been improved by applying pharmacogenomics in pediatric clinical practice.

Objective: The aim of this review was to summarize the application of thiopurine pharmacogenomics in pediatric patients suffering from acute leukemias, different types of autoimmune and inflammatory diseases, as well as in posttransplant care.

Methods: We searched PubMed/Medline database to identify thiopurine pharmacogenomic markers clinically relevant in pediatric diseases.

Results: TPMT and NUDT15 pharmacogenomic testing is done in pediatric care, contributing to the reduction of thiopurine induced toxicity. Data on numerous novel potential pharmacogenomic markers relevant for optimization of thiopurine treatment are still controversial (ITPA, ABCC4, NT5C2, PRPS1, GSTM1, FTO gene variants). Majority of evidences regarding thiopurine pharmacogenomics in pediatrics have been acquired by studying acute lymphoblastic leukemia and inflammatory bowel disease. For other pediatric diseases, namely acute myeloid leukemia, non-Hodgkin lymphoma, juvenile idiopathic arthritis, atopic dermatitis, juvenile autoimmune hepatitis and renal allograft transplantation, data are still scarce.

Conclusion: Thiopurine pharmacogenomics has shown to be one of the best examples of successful application of pharmacogenomics in pediatrics.

Keywords: Thiopurine drugs, pharmacogenomics, pediatrics, acute lymphoblastic leukemia, inflammatory bowel diseases, personalized medicine.

Graphical Abstract
[1]
Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet, 2019, 394(10197), 521-532.
[http://dx.doi.org/10.1016/S0140-6736(19)31276-0] [PMID: 31395440]
[2]
Pui, C.H.; Mullighan, C.G.; Evans, W.E.; Relling, M.V. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood, 2012, 120(6), 1165-1174.
[http://dx.doi.org/10.1182/blood-2012-05-378943] [PMID: 22730540]
[3]
Krynetski, E.Y.; Tai, H.L.; Yates, C.R.; Fessing, M.Y.; Loennechen, T.; Schuetz, J.D.; Relling, M.V.; Evans, W.E. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics, 1996, 6(4), 279-290.
[http://dx.doi.org/10.1097/00008571-199608000-00001] [PMID: 8873214]
[4]
Coulthard, S.A.; Hall, A.G. Recent advances in the pharmacogenomics of thiopurine methyltransferase. Pharmacogenomics J., 2001, 1(4), 254-261.
[http://dx.doi.org/10.1038/sj.tpj.6500066] [PMID: 11908768]
[5]
Coulthard, S.; Hogarth, L. The thiopurines: an update. Invest. New Drugs, 2005, 23(6), 523-532.
[http://dx.doi.org/10.1007/s10637-005-4020-8] [PMID: 16267626]
[6]
Swann, P.F.; Waters, T.R.; Moulton, D.C.; Xu, Y.Z.; Zheng, Q.; Edwards, M.; Mace, R. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science, 1996, 273(5278), 1109-1111.
[http://dx.doi.org/10.1126/science.273.5278.1109] [PMID: 8688098]
[7]
Park, Y.; Kim, H.; Choi, J.Y.; Yun, S.; Min, B.J.; Seo, M.E.; Im, H.J.; Kang, H.J.; Kim, J.H. Star allele-based haplotyping versus gene-wise variant burden scoring for predicting 6-mercaptopurine intolerance in pediatric acute lymphoblastic leukemia patients. Front. Pharmacol., 2019, 10, 654.
[http://dx.doi.org/10.3389/fphar.2019.00654] [PMID: 31244663]
[8]
Milosevic, G.; Kotur, N.; Krstovski, N.; Lazic, J.; Zukic, B.; Stankovic, B.; Janic, D.; Katsila, T.; Patrinos, G.P.; Pavlovic, S.; Dokmanovic, L. Variants in TPMT, ITPA, ABCC4 and ABCB1 genes as predictors of 6-mercaptopurine induced toxicity in children with acute lymphoblastic leukemia. J. Med. Biochem., 2018, 37(3), 320-327.
[http://dx.doi.org/10.1515/jomb-2017-0060] [PMID: 30598629]
[9]
Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; Caudle, K.E.; Kato, M.; Yeoh, A.E.J.; Schmiegelow, K.; Yang, J.J. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on tpmt and nudt15 genotypes: 2018 update. Clin. Pharmacol. Ther., 2019, 105(5), 1095-1105.
[http://dx.doi.org/10.1002/cpt.1304] [PMID: 30447069]
[10]
Chouchana, L.; Narjoz, C.; Roche, D.; Golmard, J.L.; Pineau, B.; Chatellier, G.; Beaune, P.; Loriot, M.A. Interindividual variability in TPMT enzyme activity: 10 years of experience with thiopurine pharmacogenetics and therapeutic drug monitoring. Pharmacogenomics, 2014, 15(6), 745-757.
[http://dx.doi.org/10.2217/pgs.14.32] [PMID: 24897283]
[11]
Zukic, B.; Radmilovic, M.; Stojiljkovic, M.; Tosic, N.; Pourfarzad, F.; Dokmanovic, L.; Janic, D.; Colovic, N.; Philipsen, S.; Patrinos, G.P.; Pavlovic, S. Functional analysis of the role of the TPMT gene promoter VNTR polymorphism in TPMT gene transcription. Pharmacogenomics, 2010, 11(4), 547-557.
[http://dx.doi.org/10.2217/pgs.10.7] [PMID: 20350137]
[12]
Kotur, N.; Dokmanovic, L.; Janic, D.; Stankovic, B.; Krstovski, N.; Tosic, N.; Katsila, T.; Patrinos, G.P.; Zukic, B.; Pavlovic, S. TPMT gene expression is increased during maintenance therapy in childhood acute lymphoblastic leukemia patients in a TPMT gene promoter variable number of tandem repeat-dependent manner. Pharmacogenomics, 2015, 16(15), 1701-1712.
[http://dx.doi.org/10.2217/pgs.15.109] [PMID: 26411491]
[13]
Al-Mahayri, Z.N.; Patrinos, G.P.; Ali, B.R. Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations. Pharmacogenomics, 2017, 18(7), 687-699.
[http://dx.doi.org/10.2217/pgs-2017-0005] [PMID: 28468529]
[14]
Pavlovic, S.; Kotur, N.; Stankovic, B.; Zukic, B.; Gasic, V.; Dokmanovic, L. Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: paving the way to personalized treatment. Genes (Basel), 2019, 10(3)E191
[http://dx.doi.org/10.3390/genes10030191] [PMID: 30832275]
[15]
Halpern, S.A. American Pediatrics: The Social Dynamic of Professionalism; University of California Press: Berkeley, California, USA, 1988.
[16]
Neyro, V.; Jacqz-Aigrain, E.; Adam de Beaumais, T. Pharmacogenetics and application in pediatrics. Therapie, 2018, 73(2), 157-163.
[http://dx.doi.org/10.1016/j.therap.2017.11.010] [PMID: 29530313]
[17]
Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N. Engl. J. Med., 2003, 349(12), 1157-1167.
[http://dx.doi.org/10.1056/NEJMra035092] [PMID: 13679531]
[18]
Suchy, F.J.; Balistreri, W.F.; Heubi, J.E.; Searcy, J.E.; Levin, R.S. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology, 1981, 80(5 pt 1), 1037-1041.
[http://dx.doi.org/10.1016/0016-5085(81)90078-0] [PMID: 7202962]
[19]
Hines, R.N. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol. Ther., 2008, 118(2), 250-267.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.005] [PMID: 18406467]
[20]
Robillard, J.E.; Guillery, E.N.; Petershack, J.A. Renal function during fetal life. Pediatric Nephrology, 4th ed; Lippincott Williams & Wilkins: Baltimore, Maryland, USA, 1999.
[21]
Need, A.C.; Goldstein, D.B. Next generation disparities in human genomics: concerns and remedies. Trends Genet., 2009, 25(11), 489-494.
[http://dx.doi.org/10.1016/j.tig.2009.09.012] [PMID: 19836853]
[22]
Lennard, L.; Van Loon, J.A.; Lilleyman, J.S.; Weinshilboum, R.M. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin. Pharmacol. Ther., 1987, 41(1), 18-25.
[http://dx.doi.org/10.1038/clpt.1987.4] [PMID: 3467886]
[23]
Yang, J.J.; Landier, W.; Yang, W.; Liu, C.; Hageman, L.; Cheng, C.; Pei, D.; Chen, Y.; Crews, K.R.; Kornegay, N.; Wong, F.L.; Evans, W.E.; Pui, C.H.; Bhatia, S.; Relling, M.V. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol., 2015, 33(11), 1235-1242.
[http://dx.doi.org/10.1200/JCO.2014.59.4671] [PMID: 25624441]
[24]
Zhou, H.; Li, L.; Yang, P.; Yang, L.; Zheng, J.E.; Zhou, Y.; Han, Y. Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants? BMC Cancer, 2018, 18(1), 516.
[http://dx.doi.org/10.1186/s12885-018-4398-2] [PMID: 29720126]
[25]
Schaeffeler, E.; Jaeger, S.U.; Klumpp, V.; Yang, J.J.; Igel, S.; Hinze, L.; Stanulla, M.; Schwab, M. Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet. Med., 2019, 21(9), 2145-2150.
[http://dx.doi.org/10.1038/s41436-019-0448-7] [PMID: 30728528]
[26]
Nguyen, C.M.; Mendes, M.A.; Ma, J.D. Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr., 2011, 3, RRN1236
[http://dx.doi.org/10.1371/currents.RRN1236] [PMID: 21593964]
[27]
Buaboonnam, J.; Sripatanatadasakul, P.; Treesucon, A.; Glomglao, W.; Siraprapapat, P.; Narkbunnam, N.; Vathana, N.; Takpradit, C.; Phuakpet, K.; Pongtanakul, B.; Tongsai, S.; Sinlapamongkolkul, P.; Sanpakit, K. Effect of NUDT15 on incidence of neutropenia in children with acute lymphoblastic leukemia. Pediatr. Int. (Roma), 2019, 61(8), 754-758.
[http://dx.doi.org/10.1111/ped.13905] [PMID: 31166660]
[28]
Stocco, G.; Cheok, M.H.; Crews, K.R.; Dervieux, T.; French, D.; Pei, D.; Yang, W.; Cheng, C.; Pui, C.H.; Relling, M.V.; Evans, W.E. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther., 2009, 85(2), 164-172.
[http://dx.doi.org/10.1038/clpt.2008.154] [PMID: 18685564]
[29]
Moradveisi, B.; Muwakkit, S.; Zamani, F.; Ghaderi, E.; Mohammadi, E.; Zgheib, N.K. ITPA, TPMT, and NUDT15 genetic polymorphisms predict 6-mercaptopurine toxicity in Middle Eastern children with acute lymphoblastic leukemia. Front. Pharmacol., 2019, 10, 916.
[http://dx.doi.org/10.3389/fphar.2019.00916] [PMID: 31507415]
[30]
Tanaka, Y.; Nakadate, H.; Kondoh, K.; Nakamura, K.; Koh, K.; Manabe, A. Interaction between NUDT15 and ABCC4 variants enhances intolerability of 6-mercaptopurine in Japanese patients with childhood acute lymphoblastic leukemia. Pharmacogenomics J., 2018, 18(2), 275-280.
[http://dx.doi.org/10.1038/tpj.2017.12] [PMID: 28418010]
[31]
Franca, R.; Stocco, G.; Favretto, D.; Giurici, N.; Del Rizzo, I.; Locatelli, F.; Vinti, L.; Biondi, A.; Colombini, A.; Fagioli, F.; Barisone, E.; Pelin, M.; Martellossi, S.; Ventura, A.; Decorti, G.; Rabusin, M. PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients. Pharmacogenomics J., 2019. Epub Ahead of Print
[http://dx.doi.org/10.1038/s41397-019-0130-0] [PMID: 31792371]
[32]
Choi, R.; Sohn, I.; Kim, M.J.; Woo, H.I.; Lee, J.W.; Ma, Y.; Yi, E.S.; Koo, H.H.; Lee, S.Y. Pathway genes and metabolites in thiopurine therapy in Korean children with acute lymphoblastic leukaemia. Br. J. Clin. Pharmacol., 2019, 85(7), 1585-1597.
[http://dx.doi.org/10.1111/bcp.13943] [PMID: 30927276]
[33]
Ebbesen, M.S.; Nygaard, U.; Rosthøj, S.; Sørensen, D.; Nersting, J.; Vettenranta, K.; Wesenberg, F.; Kristinsson, J.; Harila-Saari, A.; Schmiegelow, K. Hepatotoxicity during maintenance therapy and prognosis in children with acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol., 2017, 39(3), 161-166.
[http://dx.doi.org/10.1097/MPH.0000000000000733] [PMID: 28060115]
[34]
Nygaard, U.; Toft, N.; Schmiegelow, K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin. Pharmacol. Ther., 2004, 75(4), 274-281.
[http://dx.doi.org/10.1016/j.clpt.2003.12.001] [PMID: 15060506]
[35]
Adam de Beaumais, T.; Fakhoury, M.; Medard, Y.; Azougagh, S.; Zhang, D.; Yakouben, K.; Jacqz-Aigrain, E. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br. J. Clin. Pharmacol., 2011, 71(4), 575-584.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03867.x] [PMID: 21395650]
[36]
Kansagra, A.; Dahiya, S.; Litzow, M. Continuing challenges and current issues in acute lymphoblastic leukemia. Leuk. Lymphoma, 2018, 59(3), 526-541.
[http://dx.doi.org/10.1080/10428194.2017.1335397] [PMID: 28604239]
[37]
Nielsen, S.N.; Grell, K.; Nersting, J.; Abrahamsson, J.; Lund, B.; Kanerva, J.; Jónsson, Ó.G.; Vaitkeviciene, G.; Pruunsild, K.; Hjalgrim, L.L.; Schmiegelow, K. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a phase 3 trial. Lancet Oncol., 2017, 18(4), 515-524.
[http://dx.doi.org/10.1016/S1470-2045(17)30154-7] [PMID: 28258828]
[38]
Evensen, N.A.; Madhusoodhan, P.P.; Meyer, J.; Saliba, J.; Chowdhury, A.; Araten, D.J.; Nersting, J.; Bhatla, T.; Vincent, T.L.; Teachey, D.; Hunger, S.P.; Yang, J.; Schmiegelow, K.; Carroll, W.L. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica, 2018, 103(5), 830-839.
[http://dx.doi.org/10.3324/haematol.2017.176362] [PMID: 29449434]
[39]
Relling, M.V.; Hancock, M.L.; Boyett, J.M.; Pui, C.H.; Evans, W.E. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood, 1999, 93(9), 2817-2823.
[http://dx.doi.org/10.1182/blood.V93.9.2817] [PMID: 10216075]
[40]
Smid, A.; Karas-Kuzelicki, N.; Milek, M.; Jazbec, J.; Mlinaric-Rascan, I. Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. PLoS One, 2014, 9(10)e109551
[http://dx.doi.org/10.1371/journal.pone.0109551] [PMID: 25303517]
[41]
Dieck, C.L.; Ferrando, A. Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood, 2019, 133(21), 2263-2268.
[http://dx.doi.org/10.1182/blood-2019-01-852392] [PMID: 30910786]
[42]
Ma, X.; Edmonson, M.; Yergeau, D.; Muzny, D.M.; Hampton, O.A.; Rusch, M.; Song, G.; Easton, J.; Harvey, R.C.; Wheeler, D.A.; Ma, J.; Doddapaneni, H.; Vadodaria, B.; Wu, G.; Nagahawatte, P.; Carroll, W.L.; Chen, I.M.; Gastier-Foster, J.M.; Relling, M.V.; Smith, M.A.; Devidas, M.; Guidry Auvil, J.M.; Downing, J.R.; Loh, M.L.; Willman, C.L.; Gerhard, D.S.; Mullighan, C.G.; Hunger, S.P.; Zhang, J. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun., 2015, 6, 6604.
[http://dx.doi.org/10.1038/ncomms7604] [PMID: 25790293]
[43]
Li, B.; Li, H.; Bai, Y.; Kirschner-Schwabe, R.; Yang, J.J.; Chen, Y.; Lu, G.; Tzoneva, G.; Ma, X.; Wu, T.; Li, W.; Lu, H.; Ding, L.; Liang, H.; Huang, X.; Yang, M.; Jin, L.; Kang, H.; Chen, S.; Du, A.; Shen, S.; Ding, J.; Chen, H.; Chen, J.; von Stackelberg, A.; Gu, L.; Zhang, J.; Ferrando, A.; Tang, J.; Wang, S.; Zhou, B.B. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med., 2015, 21(6), 563-571.
[http://dx.doi.org/10.1038/nm.3840] [PMID: 25962120]
[44]
Schmiegelow, K.; Levinsen, M.F.; Attarbaschi, A.; Baruchel, A.; Devidas, M.; Escherich, G.; Gibson, B.; Heydrich, C.; Horibe, K.; Ishida, Y.; Liang, D.C.; Locatelli, F.; Michel, G.; Pieters, R.; Piette, C.; Pui, C.H.; Raimondi, S.; Silverman, L.; Stanulla, M.; Stark, B.; Winick, N.; Valsecchi, M.G. Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J. Clin. Oncol., 2013, 31(19), 2469-2476.
[http://dx.doi.org/10.1200/JCO.2012.47.0500] [PMID: 23690411]
[45]
Schmiegelow, K.; Al-Modhwahi, I.; Andersen, M.K.; Behrendtz, M.; Forestier, E.; Hasle, H.; Heyman, M.; Kristinsson, J.; Nersting, J.; Nygaard, R.; Svendsen, A.L.; Vettenranta, K.; Weinshilboum, R. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood, 2009, 113(24), 6077-6084.
[http://dx.doi.org/10.1182/blood-2008-11-187880] [PMID: 19224761]
[46]
Schmiegelow, K.; Müller, K.; Mogensen, S.S.; Mogensen, P.R.; Wolthers, B.O.; Stoltze, U.K.; Tuckuviene, R.; Frandsen, T. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000 Res., 2017, 6, 444.
[http://dx.doi.org/10.12688/f1000research.10768.1] [PMID: 28413626]
[47]
Sýkora, J.; Pomahačová, R.; Kreslová, M.; Cvalínová, D.; Štych, P.; Schwarz, J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol., 2018, 24(25), 2741-2763.
[http://dx.doi.org/10.3748/wjg.v24.i25.2741] [PMID: 29991879]
[48]
Guariso, G.; Gasparetto, M. Treating children with inflammatory bowel disease: Current and new perspectives. World J. Gastroenterol., 2017, 23(30), 5469-5485.
[http://dx.doi.org/10.3748/wjg.v23.i30.5469] [PMID: 28852307]
[49]
Markowitz, J.; Grancher, K.; Kohn, N.; Lesser, M.; Daum, F. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn’s disease. Gastroenterology, 2000, 119(4), 895-902.
[http://dx.doi.org/10.1053/gast.2000.18144] [PMID: 11040176]
[50]
Chatu, S.; Subramanian, V.; Saxena, S.; Pollok, R.C. The role of thiopurines in reducing the need for surgical resection in Crohn’s disease: a systematic review and meta-analysis. Am. J. Gastroenterol., 2014, 109(1), 23-34.
[http://dx.doi.org/10.1038/ajg.2013.402] [PMID: 24322839]
[51]
Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J.; Buderus, S.; Martín-de-Carpi, J.; De Ridder, L.; Fagerberg, U.L.; Hugot, J.P.; Kierkus, J.; Kolacek, S.; Koletzko, S.; Lionetti, P.; Miele, E.; Navas López, V.M.; Paerregaard, A.; Russell, R.K.; Serban, D.E.; Shaoul, R.; Van Rheenen, P.; Veereman, G.; Weiss, B.; Wilson, D.; Dignass, A.; Eliakim, A.; Winter, H.; Turner, D. European Society of Pediatric Gastroenterology, Hepatology and Nutrition. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohn’s Colitis, 2014, 8, 1179-1207.
[http://dx.doi.org/10.1016/j.crohns.2014.04.005]
[52]
Moon, W.; Loftus, E.V., Jr Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther., 2016, 43(8), 863-883.
[http://dx.doi.org/10.1111/apt.13559] [PMID: 26876431]
[53]
Warner, B.; Johnston, E.; Arenas-Hernandez, M.; Marinaki, A.; Irving, P.; Sanderson, J. A practical guide to thiopurine prescribing and monitoring in IBD. Frontline Gastroenterol., 2018, 9(1), 10-15.
[http://dx.doi.org/10.1136/flgastro-2016-100738] [PMID: 29484155]
[54]
Joosse, M.E.; Aardoom, M.A.; Kemos, P.; Turner, D.; Wilson, D.C.; Koletzko, S.; Martin-de-Carpi, J.; Fagerberg, U.L.; Spray, C.; Tzivinikos, C.; Sladek, M.; Shaoul, R.; Roma-Giannikou, E.; Bronsky, J.; Serban, D.E.; Ruemmele, F.M.; Garnier-Lengline, H.; Veres, G.; Hojsak, I.; Kolho, K.L.; Davies, I.H.; Aloi, M.; Lionetti, P.; Hussey, S.; Veereman, G.; Braegger, C.P.; Trindade, E.; Wewer, A.V.; Hauer, A.C.; de Vries, A.C.H.; Sigall Boneh, R.; Sarbagili Shabat, C.; Levine, A.; de Ridder, L. Malignancy and mortality in paediatric-onset inflammatory bowel disease: a 3-year prospective, multinational study from the paediatric IBD Porto group of ESPGHAN. Aliment. Pharmacol. Ther., 2018, 48(5), 523-537.
[http://dx.doi.org/10.1111/apt.14893] [PMID: 29984520]
[55]
Jojic, N.; Urosevic, J.; Bojic, B.; Pavlovic, S. Determination of thiopurine methyltransferase genotype in the patients with inflammatory bowel disease before and during azathioprine therapy. Archives of Gastroenterohepatology, 2003, 22, 5-9.
[56]
Yang, S.K.; Hong, M.; Baek, J.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.J.; Park, S.H.; Park, S.K.; Yang, D.H.; Dubinsky, M.; Lee, I.; McGovern, D.P.; Liu, J.; Song, K. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet., 2014, 46(9), 1017-1020.
[http://dx.doi.org/10.1038/ng.3060] [PMID: 25108385]
[57]
Liu, Y.; Meng, Y.; Wang, L.; Liu, Z.; Li, J.; Dong, W. Associations between the NUDT15 R139C polymorphism and susceptibility to thiopurine-induced leukopenia in Asians: a meta-analysis. OncoTargets Ther., 2018, 11, 8309-8317.
[http://dx.doi.org/10.2147/OTT.S177007] [PMID: 30538500]
[58]
Citterio-Quentin, A.; Moulsma, M.; Gustin, M.P.; Lachaux, A.; Boulieu, R. ITPA activity in children treated by azathioprine: relationship to the occurrence of adverse drug reactions and inflammatory response. Basic Clin. Pharmacol. Toxicol., 2018, 122(6), 588-595.
[http://dx.doi.org/10.1111/bcpt.12958] [PMID: 29327413]
[59]
Stocco, G.; Cuzzoni, E.; De Iudicibus, S.; Franca, R.; Favretto, D.; Malusà, N.; Londero, M.; Cont, G.; Bartoli, F.; Martelossi, S.; Ventura, A.; Decorti, G. Deletion of glutathione-s-transferase m1 reduces azathioprine metabolite concentrations in young patients with inflammatory bowel disease. J. Clin. Gastroenterol., 2014, 48(1), 43-51.
[http://dx.doi.org/10.1097/MCG.0b013e31828b2866] [PMID: 23787247]
[60]
Lucafò, M.; Stocco, G.; Martelossi, S.; Favretto, D.; Franca, R.; Malusà, N.; Lora, A.; Bramuzzo, M.; Naviglio, S.; Cecchin, E.; Toffoli, G.; Ventura, A.; Decorti, G. Azathioprine biotransformation in young patients with inflammatory bowel disease: contribution of glutathione-s transferase m1 and a1 variants. Genes (Basel), 2019, 10(4)E277
[http://dx.doi.org/10.3390/genes10040277] [PMID: 30987408]
[61]
Kim, H.S.; Cheon, J.H.; Jung, E.S.; Park, J.; Aum, S.; Park, S.J.; Eun, S.; Lee, J.; Rüther, U.; Yeo, G.S.H.; Ma, M.; Park, K.S.; Naito, T.; Kakuta, Y.; Lee, J.H.; Kim, W.H.; Lee, M.G. A coding variant in FTO confers susceptibility to thiopurine-induced leukopenia in East Asian patients with IBD. Gut, 2017, 66(11), 1926-1935.
[http://dx.doi.org/10.1136/gutjnl-2016-311921] [PMID: 27558924]
[62]
Heap, G.A.; Weedon, M.N.; Bewshea, C.M.; Singh, A.; Chen, M.; Satchwell, J.B.; Vivian, J.P.; So, K.; Dubois, P.C.; Andrews, J.M.; Annese, V.; Bampton, P.; Barnardo, M.; Bell, S.; Cole, A.; Connor, S.J.; Creed, T.; Cummings, F.R.; D’Amato, M.; Daneshmend, T.K.; Fedorak, R.N.; Florin, T.H.; Gaya, D.R.; Greig, E.; Halfvarson, J.; Hart, A.; Irving, P.M.; Jones, G.; Karban, A.; Lawrance, I.C.; Lee, J.C.; Lees, C.; Lev-Tzion, R.; Lindsay, J.O.; Mansfield, J.; Mawdsley, J.; Mazhar, Z.; Parkes, M.; Parnell, K.; Orchard, T.R.; Radford-Smith, G.; Russell, R.K.; Reffitt, D.; Satsangi, J.; Silverberg, M.S.; Sturniolo, G.C.; Tremelling, M.; Tsianos, E.V.; van Heel, D.A.; Walsh, A.; Watermeyer, G.; Weersma, R.K.; Zeissig, S.; Rossjohn, J.; Holden, A.L.; Ahmad, T. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat. Genet., 2014, 46(10), 1131-1134.
[http://dx.doi.org/10.1038/ng.3093] [PMID: 25217962]
[63]
Wilson, A.; Jansen, L.E.; Rose, R.V.; Gregor, J.C.; Ponich, T.; Chande, N.; Khanna, R.; Yan, B.; Jairath, V.; Khanna, N.; Sey, M.; Beaton, M.; McIntosh, K.; Teft, W.A.; Kim, R.B. HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther., 2018, 47(5), 615-620.
[http://dx.doi.org/10.1111/apt.14483] [PMID: 29270995]
[64]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[65]
Creutzig, U.; van den Heuvel-Eibrink, M.M.; Gibson, B.; Dworzak, M.N.; Adachi, S.; de Bont, E.; Harbott, J.; Hasle, H.; Johnston, D.; Kinoshita, A.; Lehrnbecher, T.; Leverger, G.; Mejstrikova, E.; Meshinchi, S.; Pession, A.; Raimondi, S.C.; Sung, L.; Stary, J.; Zwaan, C.M.; Kaspers, G.J.; Reinhardt, D. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood, 2012, 120(16), 3187-3205.
[http://dx.doi.org/10.1182/blood-2012-03-362608] [PMID: 22879540]
[66]
Abrahamsson, J.; Forestier, E.; Heldrup, J.; Jahnukainen, K.; Jónsson, O.G.; Lausen, B.; Palle, J.; Zeller, B.; Hasle, H. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J. Clin. Oncol., 2011, 29(3), 310-315.
[http://dx.doi.org/10.1200/JCO.2010.30.6829] [PMID: 21149663]
[67]
Shi, L.H.; Ma, P.; Liu, J.S.; Li, Y.; Wang, Y.F.; Guo, M.F.; Liu, W. Current views of chromosomal abnormalities in pediatric acute myeloid leukemia (AML). Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4)(Suppl.), 25-30.
[PMID: 29165769]
[68]
Stieglitz, E.; Loh, M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol., 2013, 4(4), 270-290.
[http://dx.doi.org/10.1177/2040620713498161] [PMID: 23926459]
[69]
Godley, L.A. Inherited predisposition to acute myeloid leukemia. Semin. Hematol., 2014, 51(4), 306-321.
[http://dx.doi.org/10.1053/j.seminhematol.2014.08.001] [PMID: 25311743]
[70]
Pedersen-Bjergaard, J.; Andersen, M.T.; Andersen, M.K. Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2007, 1(1), 392-397.
[http://dx.doi.org/10.1182/asheducation-2007.1.392] [PMID: 18024656]
[71]
Hijiya, N.; Ness, K.K.; Ribeiro, R.C.; Hudson, M.M. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer, 2009, 115(1), 23-35.
[http://dx.doi.org/10.1002/cncr.23988] [PMID: 19072983]
[72]
Sobiak, J.; Skalska-Sadowska, J.; Chrzanowska, M.; Resztak, M.; Kołtan, S.; Wysocki, M.; Wachowiak, J. Thiopurine methyltransferase activity in children with acute myeloid leukemia. Oncol. Lett., 2018, 16(4), 4699-4706.
[http://dx.doi.org/10.3892/ol.2018.9191] [PMID: 30214603]
[73]
Chiu, B.C.; Hou, N. Epidemiology and etiology of non-hodgkin lymphoma. Cancer Treat. Res., 2015, 165, 1-25.
[http://dx.doi.org/10.1007/978-3-319-13150-4_1] [PMID: 25655604]
[74]
Sandlund, J.T.; Downing, J.R.; Crist, W.M. Non-Hodgkin’s lymphoma in childhood. N. Engl. J. Med., 1996, 334(19), 1238-1248.
[http://dx.doi.org/10.1056/NEJM199605093341906] [PMID: 8606720]
[75]
Allen, C.E.; Kelly, K.M.; Bollard, C.M. Pediatric lymphomas and histiocytic disorders of childhood. Pediatr. Clin. North Am., 2015, 62(1), 139-165.
[http://dx.doi.org/10.1016/j.pcl.2014.09.010] [PMID: 25435117]
[76]
van der Werff Ten Bosch, J.; Suciu, S.; Thyss, A.; Bertrand, Y.; Norton, L.; Mazingue, F.; Uyttebroeck, A.; Lutz, P.; Robert, A.; Boutard, P.; Ferster, A.; Plouvier, E.; Maes, P.; Munzer, M.; Plantaz, D.; Dresse, M.F.; Philippet, P.; Sirvent, N.; Waterkeyn, C.; Vilmer, E.; Philippe, N.; Otten, J. Value of intravenous 6-mercaptopurine during continuation treatment in childhood acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: final results of a randomized phase III trial (58881) of the EORTC CLG. Leukemia, 2005, 19(5), 721-726.
[http://dx.doi.org/10.1038/sj.leu.2403689] [PMID: 15744348]
[77]
U.S. National Library of Medicine/Clinical Trials/Study of 6- Thioguanine in Combination With 6-Mercaptopurine During Maintenance Therapy of Childhood Lymphoma. https://clinicaltrials.gov/ct2/show/NCT02141100
[78]
Alexander, S.; Kraveka, J.M.; Weitzman, S.; Lowe, E.; Smith, L.; Lynch, J.C.; Chang, M.; Kinney, M.C.; Perkins, S.L.; Laver, J.; Gross, T.G.; Weinstein, H. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children’s oncology group. Pediatr. Blood Cancer, 2014, 61(12), 2236-2242.
[http://dx.doi.org/10.1002/pbc.25187] [PMID: 25156886]
[79]
Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; Suarez-Almazor, M.E.; Woo, P. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol., 2004, 31(2), 390-392.
[PMID: 14760812]
[80]
Singh-Grewal, D.; Schneider, R.; Bayer, N.; Feldman, B.M. Predictors of disease course and remission in systemic juvenile idiopathic arthritis: significance of early clinical and laboratory features. Arthritis Rheum., 2006, 54(5), 1595-1601.
[http://dx.doi.org/10.1002/art.21774] [PMID: 16645998]
[81]
Moncrieffe, H.; Prahalad, S.; Thompson, S.D. Genetics of JIA: New tools bring new approaches. Curr. Opin. Rheumatol., 2014, 26, 579-584.
[http://dx.doi.org/10.1097/BOR.0000000000000094] [PMID: 25010442]
[82]
Gohar, F.; Kessel, C.; Lavric, M.; Holzinger, D.; Foell, D. Review of biomarkers in systemic juvenile idiopathic arthritis: helpful tools or just playing tricks? Arthritis Res. Ther., 2016, 18, 163.
[http://dx.doi.org/10.1186/s13075-016-1069-z] [PMID: 27411444]
[83]
Heiligenhaus, A.; Niewerth, M.; Ganser, G.; Heinz, C.; Minden, K. Prevalence and complications of uveitis in juvenile idiopathic arthritis in a population-based nation-wide study in Germany: suggested modification of the current screening guidelines. Rheumatology (Oxford), 2007, 46(6), 1015-1019.
[http://dx.doi.org/10.1093/rheumatology/kem053] [PMID: 17403710]
[84]
Kotaniemi, K.; Savolainen, A.; Karma, A.; Aho, K. Recent advances in uveitis of juvenile idiopathic arthritis. Surv. Ophthalmol., 2003, 48(5), 489-502.
[http://dx.doi.org/10.1016/S0039-6257(03)00084-5] [PMID: 14499817]
[85]
Ringold, S.; Angeles-Han, S.T.; Beukelman, T.; Lovell, D.; Cuello, C.A.; Becker, M.L.; Colbert, R.A.; Feldman, B.M.; Ferguson, P.J.; Gewanter, H.; Guzman, J.; Horonjeff, J.; Nigrovic, P.A.; Ombrello, M.J.; Passo, M.H.; Stoll, M.L.; Rabinovich, C.E.; Schneider, R.; Halyabar, O.; Hays, K.; Shah, A.A.; Sullivan, N.; Szymanski, A.M.; Turgunbaev, M.; Turner, A.; Reston, J. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the treatment of juvenile idiopathic arthritis: therapeutic approaches for non-systemic polyarthritis, sacroiliitis, and enthesitis. Arthritis Rheumatol., 2019, 71(6), 846-863.
[http://dx.doi.org/10.1002/art.40884] [PMID: 31021537]
[86]
Goebel, J.C.; Roesel, M.; Heinz, C.; Michels, H.; Ganser, G.; Heiligenhaus, A. Azathioprine as a treatment option for uveitis in patients with juvenile idiopathic arthritis. Br. J. Ophthalmol., 2011, 95(2), 209-213.
[http://dx.doi.org/10.1136/bjo.2009.173542] [PMID: 20584711]
[87]
Stoll, M.L.; Cron, R.Q. Treatment of juvenile idiopathic arthritis: a revolution in care. Pediatr. Rheumatol. Online J., 2014, 12, 13.
[http://dx.doi.org/10.1186/1546-0096-12-13] [PMID: 24782683]
[88]
Seidman, E.G.; Furst, D.E. Pharmacogenetics for the individualization of treatment of rheumatic disorders using azathioprine. J. Rheumatol., 2002, 29(12), 2484-2487.
[PMID: 12465139]
[89]
Wollenberg, A.; Oranje, A.; Deleuran, M.; Simon, D.; Szalai, Z.; Kunz, B.; Svensson, A.; Barbarot, S.; von Kobyletzki, L.; Taieb, A.; de Bruin-Weller, M.; Werfel, T.; Trzeciak, M.; Vestergard, C.; Ring, J.; Darsow, U. ETFAD/EADV Eczema task force 2015 position paper on diagnosis and treatment of atopic dermatitis in adult and paediatric patients. J. Eur. Acad. Dermatol. Venereol., 2016, 30(5), 729-747.
[http://dx.doi.org/10.1111/jdv.13599] [PMID: 27004560]
[90]
Friedmann, P.S. The pathogenesis of atopic eczema. Hosp. Med., 2002, 63(11), 653-656.
[http://dx.doi.org/10.12968/hosp.2002.63.11.1909] [PMID: 12474608]
[91]
Pyun, B.Y. Natural history and risk factors of atopic dermatitis in children. Allergy Asthma Immunol. Res., 2015, 7(2), 101-105.
[http://dx.doi.org/10.4168/aair.2015.7.2.101] [PMID: 25729616]
[92]
Arkwright, P.D.; Motala, C.; Subramanian, H.; Spergel, J.; Schneider, L.C.; Wollenberg, A. Management of difficult-to-treat atopic dermatitis. J. Allergy Clin. Immunol. Pract., 2013, 1(2), 142-151.
[http://dx.doi.org/10.1016/j.jaip.2012.09.002] [PMID: 24565453]
[93]
Peyrin-Biroulet, L.; Khosrotehrani, K.; Carrat, F.; Bouvier, A.M.; Chevaux, J.B.; Simon, T.; Carbonnel, F.; Colombel, J.F.; Dupas, J.L.; Godeberge, P.; Hugot, J.P.; Lémann, M.; Nahon, S.; Sabaté, J.M.; Tucat, G.; Beaugerie, L. Increased risk for nonmelanoma skin cancers in patients who receive thiopurines for inflammatory bowel disease. Gastroenterology,, 2011, 141(5), 1621-28..e1, 5.
[http://dx.doi.org/10.1053/j.gastro.2011.06.050] [PMID: 21708105]
[94]
Khan, N.; Abbas, A.M.; Lichtenstein, G.R.; Loftus, E.V., Jr; Bazzano, L.A. Risk of lymphoma in patients with ulcerative colitis treated with thiopurines: a nationwide retrospective cohort study. Gastroenterology, 2013, 145(5), 1007-1015.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.07.035] [PMID: 23891975]
[95]
Caufield, M.; Tom, W.L.; Tom, M.D. Oral azathioprine for recalcitrant pediatric atopic dermatitis: clinical response and thiopurine monitoring. J. Am. Acad. Dermatol., 2013, 68(1), 29-35.
[http://dx.doi.org/10.1016/j.jaad.2012.07.001] [PMID: 22892285]
[96]
Fuggle, N.R.; Bragoli, W.; Mahto, A.; Glover, M.; Martinez, A.E.; Kinsler, V.A. The adverse effect profile of oral azathioprine in pediatric atopic dermatitis, and recommendations for monitoring. J. Am. Acad. Dermatol., 2015, 72(1), 108-114.
[http://dx.doi.org/10.1016/j.jaad.2014.08.048] [PMID: 25440430]
[97]
Garritsen, F.M.; van den Heuvel, J.M.; Bruijnzeel-Koomen, C.A.F.M.; Maitland-van der Zee, A.H.; van den Broek, M.P.H.; de Bruin-Weller, M.S. Use of oral immunosuppressive drugs in the treatment of atopic dermatitis in the Netherlands. J. Eur. Acad. Dermatol. Venereol., 2018, 32(8), 1336-1342.
[http://dx.doi.org/10.1111/jdv.14896] [PMID: 29485224]
[98]
Citterio-Quentin, A.; Moulsma, M.; Gustin, M.P.; Boulieu, R. ITPA activity in adults and children treated with or without azathioprine: relationship between TPMT activity, thiopurine metabolites, and co-medications. Ther. Drug Monit., 2017, 39(5), 483-491.
[http://dx.doi.org/10.1097/FTD.0000000000000430] [PMID: 28650902]
[99]
Meggitt, S.J.; Gray, J.C.; Reynolds, N.J. Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double-blind, randomised controlled trial. Lancet, 2006, 367(9513), 839-846.
[http://dx.doi.org/10.1016/S0140-6736(06)68340-2] [PMID: 16530578]
[100]
Krawitt, E.L. Autoimmune hepatitis. N. Engl. J. Med., 2006, 354(1), 54-66.
[http://dx.doi.org/10.1056/NEJMra050408] [PMID: 16394302]
[101]
Mieli-Vergani, G.; Vergani, D.; Baumann, U.; Czubkowski, P.; Debray, D.; Dezsofi, A.; Fischler, B.; Gupte, G.; Hierro, L.; Indolfi, G.; Jahnel, J.; Smets, F.; Verkade, H.J.; Hadžić, N. Diagnosis and management of pediatric autoimmune liver disease: ESPGHAN hepatology committee position statement. J. Pediatr. Gastroenterol. Nutr., 2018, 66(2), 345-360.
[http://dx.doi.org/10.1097/MPG.0000000000001801] [PMID: 29356770]
[102]
de Boer, Y.S.; Liberal, R.; Vergani, D.; Mieli-Vergani, G. Real-world management of juvenile autoimmune liver disease. United European Gastroenterol. J., 2018, 6(7), 1032-1038.
[http://dx.doi.org/10.1177/2050640618768922] [PMID: 30228891]
[103]
Strassburg, C.P.; Manns, M.P. Therapy of autoimmune hepatitis. Best Pract. Res. Clin. Gastroenterol., 2011, 25(6), 673-687.
[http://dx.doi.org/10.1016/j.bpg.2011.08.003] [PMID: 22117634]
[104]
Rumbo, C.; Emerick, K.M.; Emre, S.; Shneider, B.L. Azathioprine metabolite measurements in the treatment of autoimmune hepatitis in pediatric patients: a preliminary report. J. Pediatr. Gastroenterol. Nutr., 2002, 35(3), 391-398.
[http://dx.doi.org/10.1097/00005176-200209000-00032] [PMID: 12352536]
[105]
Bolia, R.; Rajanayagam, J.; Hardikar, W. Lower 6-MMP/6-TG ratio may be a therapeutic target in pediatric autoimmune hepatitis. J. Pediatr. Gastroenterol. Nutr., 2018, 67(6), 695-700.
[http://dx.doi.org/10.1097/MPG.0000000000002146] [PMID: 30234756]
[106]
Dhaliwal, H.; McFarlane, E.; Gleeson, D.; Lennard, L. PTU-108 azathioprine pharmacogenetics in autoimmune hepatitis. Gut, 2013, 62, A90.1-A90.
[107]
Fan, X.; Yin, D.; Men, R.; Xu, H.; Yang, L. NUDT15 polymorphism confer increased susceptibility to thiopurine-induced leukopenia in patients with autoimmune hepatitis and related cirrhosis. Front. Pharmacol., 2019, 10, 346.
[http://dx.doi.org/10.3389/fphar.2019.00346] [PMID: 31024313]
[108]
Liu, Y.P.; Xu, H.Q.; Li, M.; Yang, X.; Yu, S.; Fu, W.L.; Huang, Q. association between thiopurine s-methyltransferase polymorphisms and azathioprine-induced adverse drug reactions in patients with autoimmune diseases: a meta-analysis. PLoS One, 2015, 10(12)e0144234
[http://dx.doi.org/10.1371/journal.pone.0144234] [PMID: 26633017]
[109]
Gulati, A.; Sarwal, M.M. Pediatric renal transplantation: an overview and update. Curr. Opin. Pediatr., 2010, 22(2), 189-196.
[http://dx.doi.org/10.1097/MOP.0b013e32833683fd] [PMID: 20125027]
[110]
Nankivell, B.J.; Kuypers, D.R. Diagnosis and prevention of chronic kidney allograft loss. Lancet, 2011, 378(9800), 1428-1437.
[http://dx.doi.org/10.1016/S0140-6736(11)60699-5] [PMID: 22000139]
[111]
Thervet, E.; Anglicheau, D.; Toledano, N.; Houllier, A.M.; Noel, L.H.; Kreis, H.; Beaune, P.; Legendre, C. Long-term results of TPMT activity monitoring in azathioprine-treated renal allograft recipients. J. Am. Soc. Nephrol., 2001, 12(1), 170-176.
[PMID: 11134264]
[112]
Dervieux, T.; Médard, Y.; Baudouin, V.; Maisin, A.; Zhang, D.; Broly, F.; Loirat, C.; Jacqz-Aigrain, E. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. Br. J. Clin. Pharmacol., 1999, 48(6), 793-800.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00087.x] [PMID: 10594482]
[113]
U. S. Food and Drug Administration/Table of Pharmacogenomic Biomarkers in Drug Labeling. Available at:. https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
[114]
Haga, S.B. Pharmacogenomic Testing in pediatrics: navigating the ethical, social, and legal challenges. Pharm. Genomics Pers. Med., 2019, 12, 273-285.
[http://dx.doi.org/10.2147/PGPM.S179172] [PMID: 31686893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy