Fabrication, Optimization and Characterization of Paclitaxel and Spirulina Loaded Nanoparticles for Enhanced Oral Bioavailability | Bentham Science
Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Fabrication, Optimization and Characterization of Paclitaxel and Spirulina Loaded Nanoparticles for Enhanced Oral Bioavailability

Author(s): Keerthi G.S. Nair, Yamuna Ravikumar, Sathesh Kumar Sukumaran and Ramaiyan Velmurugan*

Volume 16, Issue 5, 2020

Page: [723 - 733] Pages: 11

DOI: 10.2174/1573413716666200203115101

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Paclitaxel and spirulina when administered as nanoparticles, are potentially useful.

Methods: Nanoformualtions of Paclitaxel and Spirulina for gastric cancer were formulated and optimized with Central composite rotatable design (CCRD) using Response surface methodology (RSM).

Results: The significant findings were the optimal formulation of polymer concentration 48 mg, surfactant concentration 45% and stirring time of 60 min gave rise to the EE of (98.12 ± 1.3)%, DL of (15.61 ± 1.9)%, mean diameter of (198 ± 4.7) nm. The release of paclitaxel and spirulina from the nanoparticle matrix at pH 6.2 was almost 45% and 80% in 5 h and 120 h, respectively. The oral bioavailability for the paclitaxel spirulina nanoparticles developed is 24.0% at 10 mg/kg paclitaxel dose, which is 10 times of that for oral pure paclitaxel. The results suggest that RSM-CCRD could efficiently be applied for the modeling of nanoparticles. The paclitaxel and spirulina release rate in the tumor cells may be higher than in normal cells. Paclitaxel spirulina nanoparticle formulation may have higher bioavailability and longer sustainable therapeutic time as compared with pure paclitaxel.

Conclusion: Paclitaxel-Spirulina co-loaded nanoparticles could be effectively useful in gastric cancer as chemotherapeutic formulation.

Keywords: Paclitaxel, spirulina, nanoparticle, optimization, oral bioavailability, gastric cancer.

Graphical Abstract
[1]
Mastropaolo, D.; Camerman, A.; Luo, Y.; Brayer, G.D.; Camerman, N. Crystal and molecular structure of paclitaxel (taxol). Proc. Natl. Acad. Sci. USA, 1995, 92(15), 6920-6924.
[http://dx.doi.org/10.1073/pnas.92.15.6920] [PMID: 7624344]
[2]
Kim, S.C.; Kim, D.W.; Shim, Y.H.; Bang, J.S.; Oh, H.S.; Wan Kim, S.; Seo, M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release, 2001, 72(1-3), 191-202.
[http://dx.doi.org/10.1016/S0168-3659(01)00275-9] [PMID: 11389998]
[3]
Dumontet, C.; Sikic, B.I. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J. Clin. Oncol., 1999, 17(3), 1061-1070.
[http://dx.doi.org/10.1200/JCO.1999.17.3.1061] [PMID: 10071301]
[4]
Stearns, M.E.; Wang, M. Taxol blocks processes essential for prostate tumor cell (PC-3 ML) invasion and metastases. Cancer Res., 1992, 52(13), 3776-3781.
[PMID: 1352184]
[5]
He, L.; Wang, G.L.; Zhang, Q. An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile. Int. J. Pharm., 2003, 250(1), 45-50.
[http://dx.doi.org/10.1016/S0378-5173(02)00478-7] [PMID: 12480272]
[6]
Couvreur, P.; Tulkens, P.; Roland, M.; Trouet, A.; Speiser, P. Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett., 1977, 84(2), 323-326.
[http://dx.doi.org/10.1016/0014-5793(77)80717-5] [PMID: 598513]
[7]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[8]
Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release, 2003, 86(1), 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[9]
Brannon-Peppas, L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm., 1995, 1, 1-9.
[http://dx.doi.org/10.1016/0378-5173(94)00324-X]
[10]
Maincent, P.; Le Verge, R.; Sado, P.; Couvreur, P.; Devissaguet, J.P. Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J. Pharm. Sci., 1986, 75(10), 955-958.
[http://dx.doi.org/10.1002/jps.2600751009] [PMID: 3795026]
[11]
Couvreur, P.; Kante, B.; Lenaerts, V.; Scailteur, V.; Roland, M.; Speiser, P. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J. Pharm. Sci., 1980, 69(2), 199-202.
[http://dx.doi.org/10.1002/jps.2600690222] [PMID: 7359324]
[12]
Rolland, A. Clinical pharmacokinetics of doxorubicin in hepatoma patients after a single intravenous injection of free or nanoparticle-bound anthracycline. Int. J. Pharm., 1989, 2, 113-121.
[http://dx.doi.org/10.1016/0378-5173(89)90330-X]
[13]
Sharma, D.; Chelvi, T.P.; Kaur, J.; Chakravorty, K.; De, T.K.; Maitra, A.; Ralhan, R. Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Oncol. Res., 1996, 8(7-8), 281-286.
[PMID: 8938791]
[14]
Leroux, J.C.; Doelker, E.; Gurny, R. The use of drug-loaded nanoparticles in cancer chemotherapy. In: Benita, S. (ed.), Microencapsulation Methods and Industrial Applications, Marcel Dekker: New York, 1996, 535-575.
[15]
Monsky, W.L.; Fukumura, D.; Gohongi, T.; Ancukiewcz, M.; Weich, H.A.; Torchilin, V.P.; Yuan, F.; Jain, R.K. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res., 1999, 59(16), 4129-4135.
[PMID: 10463618]
[16]
Beck, P.; Kreuter, J.; Reszka, R.; Fichtner, I. Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumour models. J. Microencapsul., 1993, 10(1), 101-114.
[http://dx.doi.org/10.3109/02652049309015316] [PMID: 8445503]
[17]
Simeonova, M.; Ilarionova, M.; Ivanova, T.; Konstantinov, C.; Todorov, D. Nanoparticles as drugs carriers for vinblastine. acute toxicity of vinblastine in a free form and associated to polybutylcyanoacrylate nanoparticles. Acta Physiol. Pharmacol. Bulg., 1993, 4, 43-49.
[18]
Oliver, A. Taxol: finite supply and increasing demand. Montana Pharmacist, 1993, 17, 17-18.
[19]
Bennis, S.; Chapey, C.; Couvreur, P.; Robert, J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur. J. Cancer, 1994, 30A(1), 89-93.
[http://dx.doi.org/10.1016/S0959-8049(05)80025-5] [PMID: 8142172]
[20]
Rowinsky, E.K.; Donehower, R.C. Paclitaxel (taxol). N. Engl. J. Med., 1995, 332(15), 1004-1014.
[http://dx.doi.org/10.1056/NEJM199504133321507] [PMID: 7885406]
[21]
Shao, J.; Zheng, D.; Jiang, Z.; Xu, H.; Hu, Y.; Li, X.; Lu, X. Curcumin delivery by methoxy polyethylene glycol-poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(4), 267-274.
[http://dx.doi.org/10.1093/abbs/gmr011] [PMID: 21349881]
[22]
Jain, S.; Mittal, A.; Jain, A.K.; Mahajan, R.R.; Singh, D. Cyclosporin loaded PLGA nanoparticle: Preparation, optimization, in-vitro characterization and stability studies. Curr. Nanosci., 2010, 6, 422-431.
[http://dx.doi.org/10.2174/157341310791658937]
[23]
Manoochehri, S.; Darvishi, B.; Kamalinia, G.; Amini, M.; Fallah, M.; Ostad, S.N.; Atyabi, F.; Dinarvand, R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru, 2013, 21(1), 58.
[http://dx.doi.org/10.1186/2008-2231-21-58] [PMID: 23866721]
[24]
Velmurugan, R.; Selvamuthukumar, S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl. Nanosci., 2016, 6, 159-173.
[http://dx.doi.org/10.1007/s13204-015-0434-6]
[25]
Pillai, R.R.; Somayaji, S.N.; Rabinovich, M.; Hudson, M.C.; Gonsalves, K.E. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed. Mater., 2008, 3(3), 034114.
[http://dx.doi.org/10.1088/1748-6041/3/3/034114] [PMID: 18708713]
[26]
Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol. Pharm., 2005, 2(5), 357-366.
[http://dx.doi.org/10.1021/mp0500420] [PMID: 16196488]
[27]
Liang, F.; Yang, W. Cucurbit[n]urils in drug delivery and biomedical systems. Curr. Nanosci., 2019, 4, 326-327.
[http://dx.doi.org/10.2174/157341371504190301101927]
[28]
Dunuweera, S.P.; Rajapakse, R.M.S.I.; Rajapakshe, R.B.S.D.; Wijekoon, S.H.D.P.; Thilakarathna, M.G.G.S.N.; Rajapakse, R.M.G. Review on targeted drug delivery carriers used in nanobiomedical applications. Curr. Nanosci., 2019, 4, 382-397.
[http://dx.doi.org/10.2174/1573413714666181106114247]
[29]
Nair, K.G.S.; Ramaiyan, V.; Sukumaran, S.K. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology, 2018, 26(3), 675-684.
[http://dx.doi.org/10.1007/s10787-018-0468-y] [PMID: 29582240]
[30]
Jiang, Y.; Guan, C.; Liu, X.; Wang, Y.; Zuo, H.; Xia, T.; Xu, P.; Ouyang, J. Doxorubicin-loaded CuS nanoparticles conjugated with GFLG: A novel drug delivery system for lymphoma treatment. Nano, 2019, 14, 1950013.
[http://dx.doi.org/10.1142/S1793292019500139]
[31]
Tong, X.; Hu, R.; Li, X.; Zhao, Q. Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores. Chin. Phys. B, 2018, 27, 118705.
[http://dx.doi.org/10.1088/1674-1056/27/11/118705]
[32]
Kumar, S.; Ali, J.; Baboota, S. Design Expert(®) supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology, 2016, 27(43), 435101.
[http://dx.doi.org/10.1088/0957-4484/27/43/435101] [PMID: 27655136]
[33]
Noraizaan, A.N.; Wong, T.W. Physicochemical effects of lactose microcarrier on inhalation performance of rifampicin in polymeric nanoparticles. Powder Technol., 2017, 310, 272-281.
[http://dx.doi.org/10.1016/j.powtec.2017.01.035]
[34]
Hsieh, C-Y.; Lu, K.K.S. Growth of polyglycidol in porous TiO2 nanoparticle networks via initiated chemical vapor deposition: Probing polymer confinement under high nanoparticle loading. Adv. Mater. Interfaces, 2015, 2, 1500341.
[http://dx.doi.org/10.1002/admi.201500341]
[35]
Niyom, Y.; Phakkeeree, T.; Flood, A.; Crespy, D. Synergy between polymer crystallinity and nanoparticles size for payloads release. J. Colloid Interface Sci., 2019, 550, 139-146.
[http://dx.doi.org/10.1016/j.jcis.2019.04.085]
[36]
Hu, X.; Chai, Z.; Lu, L.; Ruan, H.; Wang, R.; Zhan, C.; Xie, C.; Pan, J.; Liu, M.; Wang, H.; Lu, W. Bortezomib dendrimer prodrug-based nanoparticle system. Adv. Funct. Mater., 2019, 29, 1807941.
[http://dx.doi.org/10.1002/adfm.201807941]
[37]
Kesharwani, P.; Choudhury, H.; Meher, J.G.; Pandey, M.; Gorian, B. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog. Mater. Sci., 2019, 103, 484-508.
[http://dx.doi.org/10.1016/j.pmatsci.2019.03.003]
[38]
Jia, Z.; Lin, K.; Wu, G.; Xing, H.; Wu, H. Recent progresses of high-temperature microwave-absorbing materials. Nano, 2018, 13, 1830005.
[http://dx.doi.org/10.1142/S1793292018300050]
[39]
Jia, Z-R.; Gao, Z-G.; Lan, D.; Cheng, Y-H.; Wu, G-L.; Wu, H-J. Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B, 2018, 27, 117806.
[http://dx.doi.org/10.1088/1674-1056/27/11/117806]
[40]
Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ Ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 7677-7690.
[http://dx.doi.org/10.1039/C5TC01716E]
[41]
Lan, D.; Qin, M.; Yang, R.; Chen, S.; Wu, H.; Fan, Y.; Fu, Q.; Zhang, F. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci., 2019, 533, 481-491.
[http://dx.doi.org/10.1016/j.jcis.2018.08.108] [PMID: 30176539]
[42]
Jia, Z.; Lan, D.; Lin, K.; Qin, M.; Kou, K.; Wu, G.; Basavaiah, K. Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron., 2018, 29, 17122-17136.
[http://dx.doi.org/10.1007/s10854-018-9909-z]
[43]
Botsa, S.M.; Dharmasoth, R.; Keloth, B. A Facile synthesis of Cu2O and CuO nanoparticles via sonochemical assisted method. Curr. Nanosci., 2019, 15, 209-213.
[http://dx.doi.org/10.2174/1573413714666180530085447]
[44]
Ouyang, W.; Teng, F.; He, H-J.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater., 2019, 29, 1807672.
[http://dx.doi.org/10.1002/adfm.201807672]
[45]
Zheng, L.; Hu, W.; Shu, X.; Zheng, H.; Fang, X. Ultrafine CoPx nanoparticles anchored on nitrogen doped reduced graphene oxides for superior hydrogenation in alkaline media. Adv. Mater. Interfaces, 2018, 9, 1800515.
[http://dx.doi.org/10.1002/admi.201800515]
[46]
Abdullah, M.M.; Akhtar, M.S.; Al-Abbas, S.M. Facile growth and promising applications of cobalt oxide (Co3O4) nanoparticles as chemi-sensor and dielectric material. Curr. Nanosci., 2018, 14, 343-351.
[http://dx.doi.org/10.2174/1573413714666180226140732]
[47]
Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci., 2011, 56, 175-287.
[http://dx.doi.org/10.1016/j.pmatsci.2010.10.001]
[48]
Ghazali, N.A.B.; Mani, M.P.; Jaganathan, S.K. Green-synthesized zinc oxide nanoparticles decorated nanofibrous polyurethane mesh loaded with virgin coconut oil for tissue engineering application. Curr. Nanosci., 2018, 14, 280-289.
[http://dx.doi.org/10.2174/1573413714666180115122732]
[49]
Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ- Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol., 2015, 269, 443-451.
[http://dx.doi.org/10.1016/j.powtec.2014.09.045]
[50]
Wu, H.; Qu, S.; Lin, K.; Qing, Y.; Wang, L.; Fan, Y.; Fu, Q.; Zhang, F. Enhanced low-frequency microwave absorbing property of SCFs@TiO composite. Powder Technol., 2018, 333, 153-159.
[http://dx.doi.org/10.1016/j.powtec.2018.04.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy