p-Cymene Modulate Oxidative Stress and Inflammation in Murine Macrophages: Potential Implication in Atherosclerosis | Bentham Science
Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

General Research Article

p-Cymene Modulate Oxidative Stress and Inflammation in Murine Macrophages: Potential Implication in Atherosclerosis

Author(s): Tong Wu, Zahra Mazhar, Dhuha Alsayrafi and Mahdi Garelnabi*

Volume 18, Issue 2, 2020

Page: [151 - 157] Pages: 7

DOI: 10.2174/1871525717666191118112310

Open Access Journals Promotions 2
Abstract

Background: p-Cymene (p-CYM) is a common chemical used in air fresheners.

Objective: The study was designed to investigate the molecular effect of p-CYM on macrophages.

Materials and Methods: Macrophages (RAW 264.7) were treated with p-CYM (50 uM/L, 150 uM/L and 250 uM/L) for 6 hours, and 24 hours). Gene involved in inflammation, such as the Tumor Necrosis Factor-alpha (TNF-α), and the Monocyte Chemoattractant Protein-1 (MCP-1) and other genes known for their antioxidant activity such as the Paraoxonase 1 (PON-1) were analyzed.

Results: Cells treated with p-CYM have shown 30% up-regulation of MCP-1 after 24 hour of exposure; and also a differential up-regulation of TNF-α. However, treatment with p-CYM has resulted in a considerable (37%) dose-dependent downregulation of PON-1 after 24 hours of exposure. PON-1 is known for its antioxidant properties protecting High-Density Lipoproteins (HDL) from oxidation.

Conclusion: Our findings demonstrate that exposure to p-CYM over time promotes oxidative stress by downregulating antioxidants genes as shown in PON-1 and also stimulates inflammation, a key process during the initiation and progression of atherosclerosis.

Keywords: Atherosclerosis, inflammation, oxidative stress, p-Cymene, macrophages, High-Density Lipoproteins (HDL).

Graphical Abstract
[1]
Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Arnao, V.; Pinto, A.; Licata, G. Atherosclerosis as an inflammatory disease. Curr. Pharm. Des., 2012, 18(28), 4266-4288.
[http://dx.doi.org/10.2174/138161212802481237] [PMID: 22390643]
[2]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[3]
Bae, Y.S.; Lee, J.H.; Choi, S.H. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2. Circ. Res., 2009, 104(2), 210-218.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.181040] [PMID: 19096031]
[4]
Ross, R. Atherosclerosis-An inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[5]
Künzli, N. Air pollution and atherosclerosis: New evidence to support air quality policies. PLoS Med., 2013, 10(4), e1001432
[http://dx.doi.org/10.1371/journal.pmed.1001432] [PMID: 23637577]
[6]
Garelnabi, M. Emerging evidences from the contribution of the traditional and new risk factors to the atherosclerosis pathogenesis. J. Med. Sci., 2010, 10, 153-161.
[http://dx.doi.org/10.3923/jms.2010.153.161]
[7]
Suwa, T.; Hogg, J.C.; Quinlan, K.B.; Ohgami, A.; Vincent, R.; van Eeden, S.F. Particulate air pollution induces progression of atherosclerosis. J. Am. Coll. Cardiol., 2002, 39(6), 935-942.
[http://dx.doi.org/10.1016/S0735-1097(02)01715-1] [PMID: 11897432]
[8]
Araujo, J.A.; Barajas, B.; Kleinman, M.; Wang, X.; Bennett, B.J.; Gong, K.W.; Navab, M.; Harkema, J.; Sioutas, C.; Lusis, A.J.; Nel, A.E. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res., 2008, 102(5), 589-596.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.164970] [PMID: 18202315]
[9]
European Molecular Biology Liaboratory. p-Cymene.. http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:28768 [accessed December 20, 2015].
[10]
Agulló, L.; Romero-Silva, M.J.; Domenech, M.; Seeger, M. p-Cymene promotes its catabolism through the p-Cymene and the p-Cumate pathways, activates a stress response and reduces the biofilm formation in Burkholderia xenovorans LB400. PLoS One, 2017, 12(1), e0169544
[http://dx.doi.org/10.1371/journal.pone.0169544] [PMID: 28072820]
[11]
Xie, G.; Chen, N.; Soromou, L.W.; Liu, F.; Xiong, Y.; Wu, Q.; Li, H.; Feng, H.; Liu, G. p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules, 2012, 17(7), 8159-8173.
[12]
Silva, M.; Ribeiro, F.P.; Medeiros, M.A.; Sampaio, P.A.; Silva, Y.; Silva, M.T.; Quintans, J.S.; Quintans-Júnior, L.J.; Ribeiro, L.A. The vasorelaxant effect of p-cymene in rat aorta involves potassium channels. Scient. World J.,, 2015, 2015, 458080
[13]
Quintans, J.D.S.S.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; de Souza Araújo, A.A.; Quintans-Júnior, L.J. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine, 2013, 20(5), 436-440.
[http://dx.doi.org/10.1016/j.phymed.2012.12.009] [PMID: 23357360]
[14]
Xie, G.; Chen, N.; Soromou, L.W.; Liu, F.; Xiong, Y.; Wu, Q.; Li, H.; Feng, H.; Liu, G. p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules, 2012, 17(7), 8159-8173.
[http://dx.doi.org/10.3390/molecules17078159] [PMID: 22772811]
[15]
Santana, M.F.; Quintans-Júnior, L.J.; Cavalcanti, S.C.; Oliveira, M.G.; Guimarães, A.G.; Cunha, E.S.; Melo, M.S.; Santos, M.R.; Araújo, A.A.; Bonjardim, L.R. p-Cymene reduces orofacial nociceptive response in mice. Rev. Brasil. Farmacogn., 2011, 21(6), 1138-1143.
[16]
Silva, M.T.M.; Ribeiro, F.P.R.A.; Medeiros, M.A.M.B.; Sampaio, P.A.; Silva, Y.M.; Silva, M.T.; Quintans, J.S.; Quintans-Júnior, L.J.; Ribeiro, L.A. The vasorelaxant effect of p-cymene in rat aorta involves potassium channels. Scient. World J. , 2015., 2015458080
[http://dx.doi.org/10.1155/2015/458080] [PMID: 25667938]
[17]
Zhong, W.; Chi, G.; Jiang, L.; Soromou, L.W.; Chen, N.; Huo, M.; Guo, W.; Deng, X.; Feng, H. p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-κB activation. Inflammation, 2013, 36(3), 529-537.
[http://dx.doi.org/10.1007/s10753-012-9574-y] [PMID: 23207717]
[18]
de Barros, J.C.; da Conceição, M.L.; Neto, N.J.; da Costa, A.C.; de Souza, E.L. Combination of Origanum vulgare L. essential oil and lactic acid to inhibit Staphylococcus aureus in meat broth and meat model. Braz. J. Microbiol., 2012, 43(3), 1120-1127.
[http://dx.doi.org/10.1590/S1517-83822012000300039] [PMID: 24031936]
[19]
Eaton, R.W. p-Cymene catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol., 1997, 179(10), 3171-3180.
[http://dx.doi.org/10.1128/JB.179.10.3171-3180.1997] [PMID: 9150211]
[20]
Wang, F.; Li, C.; Liu, W.; Jin, Y.; Guo, L. Effects of subchronic exposure to low-dose volatile organic compounds on lung inflammation in mice. Environ. Toxicol., 2014, 29(9), 1089-1097.
[http://dx.doi.org/10.1002/tox.21844] [PMID: 23418084]
[21]
Hausen, M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Sci. Dir., , 1999, (10), 68-77.
[23]
Niemi, J.P.; DeFrancesco-Lisowitz, A.; Cregg, J.M.; Howarth, M.; Zigmond, R.E. Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent mechanism. Exp. Neurol., 2016, 275(1), 25-37.
[24]
Klueh, U.; Czajkowski, C.; Ludzinska, I.; Qiao, Y.; Frailey, J.; Kreutzer, D.L. Impact of CCL2 and CCR2 chemokine/receptor deficiencies on macrophage recruitment and continuous glucose monitoring in vivo. Biosens. Bioelectron., 2016, 86, 262-269.
[http://dx.doi.org/10.1016/j.bios.2016.06.026] [PMID: 27376197]
[25]
Papada, E.; Kaliora, A.C. Antioxidant and anti-inflammatory properties of Mastiha: A review of preclinical and clinical studies. Antioxidants, 2019, 8(7), 208.
[http://dx.doi.org/10.3390/antiox8070208] [PMID: 31284520]
[26]
Zhang, Y.; Yang, X.; Bian, F.; Wu, P.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zheng, T.; Wu, D.; Zhang, Y.; Li, Y.; Jin, S. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: Crosstalk between NF-κB and PPAR-γ. J. Mol. Cell. Cardiol., 2014, 72, 85-94.
[http://dx.doi.org/10.1016/j.yjmcc.2014.02.012] [PMID: 24594319]
[27]
Caruso, G.; Fresta, C.G.; Fidilio, A.; O’Donnell, F.; Musso, N.; Lazzarino, G.; Grasso, M.; Amorini, A.M.; Tascedda, F.; Bucolo, C.; Drago, F.; Tavazzi, B.; Lazzarino, G.; Lunte, S.M. Decreases PMA-induced oxidative stress and inflammation in murine macrophages. Antioxidants (Basel), 2019, 8(8)
[28]
Biscetti, F.; Ferraro, P.M.; Hiatt, W.R.; Angelini, F.; Nardella, E.; Cecchini, A.L.; Santoliquido, A.; Pitocco, D.; Landolfi, R.; Flex, A. Inflammatory cytokines associated with failure of Lower-Extremity Endovascular Revascularization (LER): A prospective study of a population with diabetes. Diabetes Care, 2019, 42(10), 1939-1945.
[http://dx.doi.org/10.2337/dc19-0408] [PMID: 31371431]
[29]
Ma, X.; Jiang, Z.; Wang, Z.; Zhang, Z. Administration of metformin alleviates atherosclerosis by promoting H2S production via regulating CSE expression. J. Cell. Physiol., 2019.
[PMID: 31338841]
[30]
Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and anti-inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases. N. Am. J. Med. Sci., 2012, 4(11), 523-532.
[http://dx.doi.org/10.4103/1947-2714.103310] [PMID: 23181222]
[31]
Aharoni, S.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis , 2013, 228(2), 353-361.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.03.005] [PMID: 23582715]

© 2024 Bentham Science Publishers | Privacy Policy