Coumarin-based Scaffold as α-glucosidase Inhibitory Activity: Implication for the Development of Potent Antidiabetic Agents | Bentham Science
Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Coumarin-based Scaffold as α-glucosidase Inhibitory Activity: Implication for the Development of Potent Antidiabetic Agents

Author(s): Tadesse Bekele Tafesse, Mohammed Hussen Bule, Mehdi Khoobi, Mohammad Ali Faramarzi, Mohammad Abdollahi and Mohsen Amini*

Volume 20, Issue 2, 2020

Page: [134 - 151] Pages: 18

DOI: 10.2174/1389557519666190925162536

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Delaying the absorption of glucose through α-glucosidase enzyme inhibition is one of the therapeutic approaches in the management of Type 2 diabetes, which can reduce the incidence of postprandial hyperglycemia. The existence of chronic postprandial hyperglycemia impaired the endogenous antioxidant defense by inducing oxidative stress-induced pancreatic β-cell destruction through uncontrolled generation of free radicals such as ROS, which in turn, leads to various macrovascular and microvascular complications. The currently available α -glucosidase inhibitors, for instance, acarbose, have some side effects such as hypoglycemia at higher doses, liver problems, meteorism, diarrhea, and lactic acidosis. Therefore, there is an urgent need to discover and develop potential α-glucosidase inhibitors.

Objective: Based on suchmotifs, researchers are intrigued to search for the best scaffold that displays various biological activities. Among them, coumarin scaffold has attracted great attention. The compound and its derivatives can be isolated from various natural products and/or synthesized for the development of novel α-glucosidase inhibitors.

Results: This study focused on coumarin and its derivatives as well as on their application as potent antidiabetic agents and has also concentrated on the structure-activity relationship.

Conclusion: This review describes the applications of coumarin-containing derivatives as α - glucosidase inhibitors based on published reports which will be useful for innovative approaches in the search for novel coumarin-based antidiabetic drugs with less toxicity and more potency.

Keywords: Coumarin derivatives, α-glucosidase, type 2 diabetes, natural products, antidiabetic drugs, SAR.

Graphical Abstract
[1]
Barceló, A.; Rajpathak, S. Incidence and prevalence of diabetes mellitus in the Americas. Rev. Panam. Salud Publica, 2001, 10(5), 300-308[Pan American journal of public health]..
[http://dx.doi.org/10.1590/S1020-49892001001100002] [PMID: 11774801]
[2]
Shojaii, A.; Dabaghian, F.H.; Goushegir, A.; Fard, M.A. Antidiabetic plants of Iran. Acta Med. Iran., 2011, 49(10), 637-642.
[PMID: 22071637]
[3]
Tafesse, T.B.; Hymete, A.; Mekonnen, Y.; Tadesse, M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complement. Altern. Med., 2017, 17(1), 243.
[4]
Rao, U.S. Phytochemical Screening, Univ. J. Pharm. Res., 2018, 3(5), 38-45.
[5]
Maki, K.C.; Carson, M.L.; Miller, M.P.; Turowski, M.; Bell, M.; Wilder, D.M.; Reeves, M.S. High-viscosity hydroxypropylmethylcellulose blunts postprandial glucose and insulin responses. Diabetes Care, 2007, 30(5), 1039-1043.
[http://dx.doi.org/10.2337/dc06-2344] [PMID: 17259476]
[6]
Ibrahim, M.A.; Koorbanally, N.A.; Islam, M.S. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Acta Pharm., 2014, 64(3), 311-324.
[http://dx.doi.org/10.2478/acph-2014-0025] [PMID: 25296677]
[7]
Rouzbehan, S.; Moein, S.; Homaei, A.; Moein, M.R. Kinetics of α-glucosidase inhibition by different fractions of three species of Labiatae extracts: A new diabetes treatment model. Pharm. Biol., 2017, 55(1), 1483-1488.
[http://dx.doi.org/10.1080/13880209.2017.1306569] [PMID: 28367665]
[8]
Mccue, P.; Kwon, Y.I.; Shetty, K. Anti‐amylase, anti‐glucosidase and anti‐angiotensin I converting enzyme potential of selected foods. J. Food Biochem., 2005, 29, 278-294.
[http://dx.doi.org/10.1111/j.1745-4514.2005.00020.x]
[9]
Rubin, R.; Strayer, D.S. Rubin E. Rubin’s Pathology: Clinicopathologic Foundations of Medicine, 6th ed; Lippincott Williams & Wilkins: Philadelphia, 2012.
[10]
Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 2008, 69(16), 2820-2825.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.007] [PMID: 18951591]
[11]
Bischoff, H. Pharmacology of alpha-glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(3)(Suppl. 3), 3-10.
[PMID: 8001624]
[12]
Bruni, C.B.; Sica, V.; Auricchio, F.; Covelli, I. Further kinetic and structural characterization of the lysosomal α-D-glucoside glucohydrolase from cattle liver. Biochim. Biophys. Acta, 1970, 212(3), 470-477.
[http://dx.doi.org/10.1016/0005-2744(70)90253-6] [PMID: 5466143]
[13]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[14]
Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness, 2014, 3, 136-174.
[http://dx.doi.org/10.1016/j.fshw.2014.11.003]
[15]
Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed; Intercept Ltd: Hampshire, UK, 1999.
[16]
Perkin, W.H. On the artificial production of coumarin and formation of its homologues. J. Chem. Soc., 1868, 21, 53-63.
[http://dx.doi.org/10.1039/JS8682100053]
[17]
Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 29-46.
[http://dx.doi.org/10.2174/1568011053352550] [PMID: 15720259]
[18]
Domínguez-Mendoza, E.A.; Cornejo-Garrido, J.; Burgueño-Tapia, E.; Ordaz-Pichardo, C. Antidiabetic effect, antioxidant activity, and toxicity of 3′,4′-Di-O-acetyl-cis-khellactone in Streptozotocin-induced diabetic rats. Bioorg. Med. Chem. Lett., 2016, 26(16), 4086-4091.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.071] [PMID: 27397496]
[19]
Kenchappa, R.; Bodke, Y.D.; Chandrashekar, A.; Sindhe, M.A.; Peethambar, S.K. Synthesis of coumarin derivatives containing pyrazole and indenone rings as potent antioxidant and antihyperglycemic agents. Arab. J. Chem., 2017, 10, S3895-S3906.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.029]
[20]
Kumar, A.; Maurya, R.A.; Sharma, S.; Ahmad, P.; Singh, A.B.; Bhatia, G.; Srivastava, A.K. Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(22), 6447-6451.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[21]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.026] [PMID: 23665798]
[22]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6504-6507.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
[23]
Sashidhara, K.V.; Rosaiah, J.N.; Kumar, A.; Bhatia, G.; Khanna, A.K. Synthesis of novel benzocoumarin derivatives as lipid lowering agents. Bioorg. Med. Chem. Lett., 2010, 20(10), 3065-3069.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.103] [PMID: 20399654]
[24]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[25]
Basanagouda, M.; Jambagi, V.B.; Barigidad, N.N.; Laxmeshwar, S.S.; Devaru, V. Narayanachar, Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem., 2014, 74, 225-233.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.061] [PMID: 24463645]
[26]
Kurt, B.Z.; Kandas, N.O.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.001]
[27]
Garazd, Y.; Garazd, M.; Lesyk, R. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharm. J., 2017, 25(2), 214-223.
[http://dx.doi.org/10.1016/j.jsps.2016.05.005] [PMID: 28344471]
[28]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[29]
Witaicenis, A.; Seito, L.N.; da Silveira Chagas, A.; de Almeida, L.D., Jr; Luchini, A.C.; Rodrigues-Orsi, P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 2014, 21(3), 240-246.
[http://dx.doi.org/10.1016/j.phymed.2013.09.001] [PMID: 24176844]
[30]
Murat Bilgin, H.; Atmaca, M.; Deniz Obay, B.; Ozekinci, S.; Taşdemir, E.; Ketani, A. Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats. Exp. Toxicol. Pathol., 2011, 63(4), 325-330.
[http://dx.doi.org/10.1016/j.etp.2010.02.006] [PMID: 20207117]
[31]
Kirkiacharian, S.; Thuy, D.T.; Sicsic, S.; Bakhchinian, R.; Kurkjian, R.; Tonnaire, T. Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Farmaco, 2002, 57(9), 703-708.
[http://dx.doi.org/10.1016/S0014-827X(02)01264-8] [PMID: 12385519]
[32]
Ma, T.; Liu, L.; Xue, H.; Li, L.; Han, C.; Wang, L.; Chen, Z.; Liu, G. Chemical library and structure-activity relationships of 11-demethyl-12-oxo calanolide A analogues as anti-HIV-1 agents. J. Med. Chem., 2008, 51(5), 1432-1446.
[http://dx.doi.org/10.1021/jm701405p] [PMID: 18284187]
[33]
Kawate, T.; Iwase, N.; Shimizu, M.; Stanley, S.A.; Wellington, S.; Kazyanskaya, E.; Hung, D.T. Synthesis and structure-activity relationships of phenyl-substituted coumarins with anti-tubercular activity that target FadD32. Bioorg. Med. Chem. Lett., 2013, 23(22), 6052-6059.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.035] [PMID: 24103299]
[34]
de Souza, S.M.; Delle Monache, F.; Smânia, A., Jr Antibacterial activity of coumarins. Z. Natforsch. C J. Biosci., 2005, 60(9-10), 693-700.
[http://dx.doi.org/10.1515/znc-2005-9-1006] [PMID: 16320610]
[35]
Srinivasan, S.; Sarada, D.V. Antifungal activity of phenyl derivative of pyranocoumarin from Psoralea corylifolia L. seeds by inhibition of acetylation activity of trichothecene 3-O-acetyltransferase (Tri101). BioMed. Res. Int., 2012, 2012.
[36]
Kamali, F.; Pirmohamed, M. The future prospects of pharmacogenetics in oral anticoagulation therapy. Br. J. Clin. Pharmacol., 2006, 61(6), 746-751.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02679.x] [PMID: 16722840]
[37]
Barnard, D.L.; Xu, Ze.; Stowell, V.D.; Yuan, H.; Smee, D.F.; Samy, R.; Sidwell, R.W.; Nielsen, M.K.; Sun, L.; Cao, H.; Li, A.; Quint, C.; Deignan, J.; Crabb, J.; Flavin, M.T. Coumarins and pyranocoumarins, potential novel pharmacophores for inhibition of measles virus replication. Antivir. Chem. Chemother., 2002, 13(1), 39-59.
[http://dx.doi.org/10.1177/095632020201300104] [PMID: 12180648]
[38]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[39]
Lei, L.; Xue, Y.B.; Liu, Z.; Peng, S.S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.P.; Luo, Z.W.; Yao, G.M.; Zhang, J.W.; Zhang, G.; Song, H.P.; Zhang, Y.H. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5, 13544.
[http://dx.doi.org/10.1038/srep13544] [PMID: 26315062]
[40]
Sashidhara, K.V.; Kumar, A.; Chatterjee, M.; Rao, K.B.; Singh, S.; Verma, A.K.; Palit, G. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg. Med. Chem. Lett., 2011, 21(7), 1937-1941.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.040] [PMID: 21377878]
[41]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, Applications and Mode of Action; John Wiley & Sons: Chichester, 1997.
[42]
Williams, J.L.; Specht, D.P.; Farid, S. Ketocoumarins as photosensitizers and photoinitiators. Polym. Eng. Sci., 1983, 23(18), 1022-1024.
[http://dx.doi.org/10.1002/pen.760231809]
[43]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[44]
Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.H.; Sun, C.M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13(23), 2795-2818.
[http://dx.doi.org/10.2174/092986706778521968] [PMID: 17073630]
[45]
Heide, L. The aminocoumarins: Biosynthesis and biology. Nat. Prod. Rep., 2009, 26(10), 1241-1250.
[http://dx.doi.org/10.1039/b808333a] [PMID: 19779639]
[46]
Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: current status and, Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: Current status and future challenges. Pharmacogenomics J., 2007, 7(2), 99-111.
[http://dx.doi.org/10.1038/sj.tpj.6500417] [PMID: 16983400]
[47]
Yang, Y.; Hamaguchi, K. Hydrolysis of 4-methylumbelliferyl N-acetyl-chitotrioside catalyzed by hen and turkey lysozymes. pH dependence of the kinetics constants. J. Biochem., 1980, 87(4), 1003-1014.
[PMID: 7390976]
[48]
Pojer, F.; Wemakor, E.; Kammerer, B.; Chen, H.; Walsh, C.T.; Li, S.M.; Heide, L. CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2316-2321.
[http://dx.doi.org/10.1073/pnas.0337708100] [PMID: 12618544]
[49]
Ibrar, A.; Shehzadi, S.A.; Saeed, F.; Khan, I. Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorg. Med. Chem., 2018, 26(13), 3731-3762.
[http://dx.doi.org/10.1016/j.bmc.2018.05.042] [PMID: 30017112]
[50]
Reddy, C.S.; Kim, S.C.; Hur, M.; Kim, Y.B.; Park, C.G.; Lee, W.M.; Jang, J.K.; Koo, S.C. Natural korean medicine Dang-Gui: biosynthesis, effective extraction and formulations of major active pyranocoumarins, their molecular action mechanism in cancer, and other biological activities. Molecules, 2017, 22(12), 1-16.
[http://dx.doi.org/10.3390/molecules22122170] [PMID: 29215592]
[51]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[52]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 2434-2450.
[http://dx.doi.org/10.1016/j.bmc.2013.02.017] [PMID: 23517722]
[53]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[54]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[55]
Hu, Y.Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J.W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.004] [PMID: 28494250]
[56]
Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and synthetic coumarins with effects on inflammation. Molecules, 2016, 21(10), 1-13.
[http://dx.doi.org/10.3390/molecules21101322] [PMID: 27706093]
[57]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[58]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M. Mohammadi khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. Design, synthesis, in vitro α-Glucosidase inhibition, molecular modeling, and kinetic study of novel coumarin fused pyridine derivatives as potent antidiabetic agents. New J. Chem., 2018, 42, 17268-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[59]
Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; Al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: Synthesis and biological evaluation as potent α-glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.009] [PMID: 28521172]
[60]
Chaudhry, F.; Naureen, S.; Choudhry, S.; Huma, R.; Ashraf, M.; Al-Rashida, M.; Jahan, B.; Hyder Khan, M.; Iqbal, F.; Ali Munawar, M.; Ain Khan, M. Evaluation of α-glucosidase inhibiting potentials with docking calculations of synthesized arylidene-pyrazolones. Bioorg. Chem., 2018, 77, 507-514.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.002] [PMID: 29454828]
[61]
Gabr, M.T. Antioxidant, α-glucosidase inhibitory and in vitro antitumor activities of coumarin-benzothiazole hybrids. Heterocycl. Commun., 2018, 24(5), 1-5.
[http://dx.doi.org/10.1515/hc-2018-0101]
[62]
Gao, X.; Huang, S.; Dong, P.; Wang, C.; Hou, J.; Huo, X.; Zhang, B.; Ma, T.; Ma, X. Horseradish peroxidase (HRP): A tool for catalyzing the formation of novel bicoumarins. Catal. Sci. Technol., 2016, 6(10), 3585-3593.
[http://dx.doi.org/10.1039/C5CY01682G]
[63]
Hu, Y.; Wang, B.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 15-30.
[http://dx.doi.org/10.1080/14756366.2018.1518958] [PMID: 30362362]
[64]
Khan, K.M.; Rahim, F.; Wadood, A.; Kosar, N.; Taha, M.; Lalani, S.; Khan, A.; Fakhri, M.I.; Junaid, M.; Rehman, W.; Khan, M.; Perveen, S.; Sajid, M.; Choudhary, M.I. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. Eur. J. Med. Chem., 2014, 81, 245-252.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.010] [PMID: 24844449]
[65]
Mohammadi-Khanaposhtani, M.; Yahyavi, H.; Barzegaric, E.; Imanparast, S.; Heravi, M.M.; Faramarzi, M.A.; Foroumadi, A.; Adibi, H.; Larijani, B.; Mahdavi, M. New Biscoumarin Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Biological Evaluation, Kinetic Analysis, and Docking Study. Polycycl. Aromat. Compd., 2018, 38, 1-12.
[http://dx.doi.org/10.1080/10406638.2018.1509359]
[66]
Zawawi, N.K.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F.; Rehman, A.U. Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorg. Chem., 2015, 63, 36-44.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.004] [PMID: 26432614]
[67]
Ibrar, A.; Zaib, S.; Khan, I.; Shafique, Z.; Saeed, A.; Iqbal, J. New prospects for the development of selective inhibitors of α-glucosidase based on coumarin-iminothiazolidinone hybrids: Synthesis, in-vitro biological screening and molecular docking analysis. J. Taiwan Inst. Chem. E., 2017, 81, 119-133.
[http://dx.doi.org/10.1016/j.jtice.2017.09.041]
[68]
Mentese, E.; Karaali, N.; Akyüz, G.; Yılmaz, F.; Ulker, S.; Kahveci, B. Synthesis and evaluation of α-glucosidase and pancreatic lipase inhibition by quinazolinone-coumarin hybrids. Chem. Heterocycl. Compd., 2016, 52(12), 1017-1024.
[http://dx.doi.org/10.1007/s10593-017-2002-3]
[69]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77, 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[70]
Salar, U.; Taha, M.; Khan, K.M.; Ismail, N.H.; Imran, S.; Perveen, S.; Gul, S.; Wadood, A. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α-glucosidase inhibitory activity, and molecular modeling studies. Eur. J. Med. Chem., 2016, 122, 196-204.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.037] [PMID: 27371923]
[71]
Wang, G.; He, D.; Li, X.; Li, J.; Peng, Z. Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Bioorg. Chem., 2016, 65, 167-174.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.001] [PMID: 26964016]
[72]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis, in vitro evaluation and molecular docking studies of novel coumarin-isatin derivatives as α-glucosidase inhibitors. Chem. Biol. Drug Des., 2017, 89(3), 456-463.
[http://dx.doi.org/10.1111/cbdd.12867] [PMID: 27616456]
[73]
Sun, H.; Song, X.; Tao, Y.; Li, M.; Yang, K.; Zheng, H.; Jin, Z.; Dodd, R.H.; Pan, G.; Lu, K.; Yu, P. Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoid-coumarin hybrids. Future Med. Chem., 2018, 10(9), 1055-1066.
[http://dx.doi.org/10.4155/fmc-2017-0293] [PMID: 29676183]
[74]
Taha, M.; Shah, S.A.A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Khan, K.M. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem., 2018, 77, 586-592.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.033] [PMID: 29477126]
[75]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, •••2013963248
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[76]
Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. Incrassamarin A-D: Four new 4-substituted coumarins from Calophyllum incrassatum and their biological activities. Phytochem. Lett., 2016, 16, 287-293.
[http://dx.doi.org/10.1016/j.phytol.2016.05.008]
[77]
Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. α-Glucosidase and 15-Lipoxygenase Inhibitory Activities of Phytochemicals from Calophyllum symingtonianum. Nat. Prod. Commun., 2015, 10(9), 1585-1587.
[http://dx.doi.org/10.1177/1934578X1501000925] [PMID: 26594765]
[78]
Zou, J.; Wu, J.; Liu, S.Z.; Zhao, W.M. New coumarins and triterpenes from Calophyllum inophyllum. Helv. Chim. Acta, 2010, 93(9), 1812-1821.
[http://dx.doi.org/10.1002/hlca.200900469]
[79]
Abdullah, N.H.; Salim, F.; Ahmad, R. Chemical constituents of Malaysian U. cordata var. ferruginea and their in vitro α-glucosidase inhibitory activities. Molecules, 2016, 21(5), 525.
[http://dx.doi.org/10.3390/molecules21050525] [PMID: 27128898]
[80]
Yousof Ali, M.; Jung, H.A.; Choi, J.S. Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch. Pharm. Res., 2015, 38(12), 2216-2227.
[http://dx.doi.org/10.1007/s12272-015-0629-0] [PMID: 26152875]
[81]
Ali, M.Y.; Jannat, S.; Jung, H.A.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Chem. Biol. Interact., 2016, 252, 93-101.
[http://dx.doi.org/10.1016/j.cbi.2016.04.020] [PMID: 27085377]
[82]
Nguyen, T.P.; Le, T.D.; Minh, P.N.; Dat, B.T.; Pham, N.K.; Do, T.M.; Nguyen, D.T.; Mai, T.D. A new dihydrofurocoumarin from the fruits of Pandanus tectorius Parkinson ex Du Roi. Nat. Prod. Res., 2016, 30(21), 2389-2395.
[http://dx.doi.org/10.1080/14786419.2016.1188095] [PMID: 27228410]
[83]
Dang, P.H.; Le, T.H.; Phan, P.K.T.; Le, P.T.T.; Nguyen, M.T.T.; Nguyen, N.T. Two acridones and two coumarins from the roots of Paramignya trimera. Tetrahedron Lett., 2017, 58(16), 1553-1557.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.083]
[84]
Nurul Islam, M.; Jung, H.A.; Sohn, H.S.; Kim, H.M.; Choi, J.S. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch. Pharm. Res., 2013, 36(5), 542-552.
[http://dx.doi.org/10.1007/s12272-013-0069-7] [PMID: 23435948]
[85]
Güvenalp, Z.; Özbek, H.; Dursunoğlu, B.; Yuca, H.; Gözcü, S.; Çil, Y.M.; Kazaz, C.; Kara, K.; Demirezer, O.L. α-Amylase and α-glucosidase inhibitory activities of the herbs of Artemisia dracunculus L. and its active constituents. Med. Chem. Res., 2017, 26(12), 3209-3015.
[http://dx.doi.org/10.1007/s00044-017-2014-7]
[86]
Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol., 2018, 56(1), 18-24.
[http://dx.doi.org/10.1080/13880209.2017.1414857] [PMID: 29233045]
[87]
Milella, L.; Milazzo, S.; De Leo, M.; Vera Saltos, M.B.; Faraone, I.; Tuccinardi, T.; Lapillo, M.; De Tommasi, N.; Braca, A. α-Glucosidase and α-Amylase Inhibitors from Arcytophyllum thymifolium. J. Nat. Prod., 2016, 79(8), 2104-2112.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00484] [PMID: 27509358]
[88]
Murali, R.; Srinivasan, S.; Ashokkumar, N. Antihyperglycemic effect of fraxetin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biochimie, 2013, 95(10), 1848-1854.
[http://dx.doi.org/10.1016/j.biochi.2013.06.013] [PMID: 23806420]
[89]
Hu, P.; Li, D.H.; Jia, C.C.; Liu, Q.; Wang, X.F.; Li, Z.L.; Hua, H.M. Bioactive constituents from Vitex negundo var. heterophylla and their antioxidant and α-glucosidase inhibitory activities. J. Funct. Foods, 2017, 35, 236-244.
[http://dx.doi.org/10.1016/j.jff.2017.05.047]
[90]
Olennikov, D.N.; Kashchenko, N.I.; Vennos, C. A new esculetin glycoside from Calendula officinalis (Asteraceae) and its bioactivity. Farmacia, 2017, 65(5), 698-702.
[91]
Zhao, D.G.; Zhou, A.Y.; Du, Z.; Zhang, Y.; Zhang, K.; Ma, Y.Y. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri. Fitoterapia, 2015, 107, 122-127.
[http://dx.doi.org/10.1016/j.fitote.2015.10.012] [PMID: 26529177]
[92]
Nguyen, P.H.; Zhao, B.T.; Kim, O.; Lee, J.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J. Nat. Med., 2016, 70(2), 276-281.
[http://dx.doi.org/10.1007/s11418-015-0957-x] [PMID: 26753624]
[93]
Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol., 2018, 220, 67-74.
[http://dx.doi.org/10.1016/j.jep.2018.03.029] [PMID: 29604377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy