The Interplay Between Asthma and Other Diseases: Role of Ca2+/cAMP Signalling | Bentham Science
Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Interplay Between Asthma and Other Diseases: Role of Ca2+/cAMP Signalling

Author(s): Leandro B. Bergantin*

Volume 20, Issue 3, 2020

Page: [321 - 327] Pages: 7

DOI: 10.2174/1871530319666190828145854

Price: $65

Open Access Journals Promotions 2
Abstract

Objective: Asthma is correlated with a higher risk of manifesting other diseases, including hypertension, diabetes, obesity, psychiatric and neurological diseases, and cancer. Therefore, revealing this interplay between asthma and these illnesses may provide novel insights into their pathogenesis.

Results: It is highly debated that dysregulation of Ca2+ homeostasis is involved in the pathogenesis of these maladies. Not surprisingly, calcium (Ca2+) channel blockers (CCBs), classically used as antihypertensive medicines, have been demonstrating off-label effects such as alleviating asthma symptoms, in addition to antidiabetic, antiobesity, anticancer and antineurodegenerative effects. Our studies about Ca2+/cAMP signalling may shed some new light on this field.

Conclusion: Thus, considering that asthma and associated illnesses such as hypertension, diabetes, obesity, cancer and neurodegenerative diseases have become highly prevalent medical problems in the world, the comprehension of this interplay between asthma and other disorders could improve drug therapy.

Keywords: Asthma, diseases, cancer, hypertension, diabetes, neurodegenerative diseases, Ca2+/cAMP signalling.

Graphical Abstract
[1]
Su, X.; Ren, Y.; Li, M.; Zhao, X.; Kong, L.; Kang, J. Prevalence of Comorbidities in Asthma and Nonasthma Patients: A Meta-analysis. Medicine (Baltimore), 2016, 95(22)e3459
[http://dx.doi.org/10.1097/MD.0000000000003459] [PMID: 27258489]
[2]
Berair, R.; Hollins, F.; Brightling, C. Airway smooth muscle hypercontractility in asthma. J. Allergy (Cairo), 2013. 2013185971
[http://dx.doi.org/10.1155/2013/185971] [PMID: 23577039]
[3]
Bergantin, L.B.; Caricati-Neto, A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur. J. Pharmacol., 2016, 788, 255-260.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.034] [PMID: 27349146]
[4]
Bergantin, L.B.; Souza, C.F.; Ferreira, R.M.; Smaili, S.S.; Jurkiewicz, N.H.; Caricati-Neto, A.; Jurkiewicz, A. Novel model for “calcium paradox” in sympathetic transmission of smooth muscles: role of cyclic AMP pathway. Cell Calcium, 2013, 54(3), 202-212.
[http://dx.doi.org/10.1016/j.ceca.2013.06.004] [PMID: 23849429]
[5]
Bergantin, L.B. Neurodegenerative Diseases: Where To Go From Now? Thought Provoking Through Ca2+/cAMP Signaling Interaction. Brain Disord. Ther., 2017, 6e125 .
[http://dx.doi.org/10.4172/2168-975X.1000e125]
[6]
Bergantin, L.B. Neurological Disorders: Is There a Horizon? Emerging Ideas from the Interaction between Ca2+ and Camp Signaling Pathways. J. Neurol. Disord., 2017, 5e124 .
[http://dx.doi.org/10.4172/2329-6895.1000e124]
[7]
Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect., 2015, 3(5) e00181
[http://dx.doi.org/10.1002/prp2.181] [PMID: 26516591]
[8]
Bezprozvanny, I.; Mattson, M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci., 2008, 31(9), 454-463.
[http://dx.doi.org/10.1016/j.tins.2008.06.005] [PMID: 18675468]
[9]
Caricati-Neto, A.; Bergantin, L.B. Pharmacological modulation of neural Ca2+/camp signaling interaction as therapeutic goal for treatment of Alzheimer’s disease. J. Syst. Integr. Neurosci., 2017, 3.
[10]
Caricati-Neto, A.; Bergantin, L.B. The passion of a scientific discovery: the “calcium paradox” due to Ca2+/camp interaction. J. Syst. Integr. Neurosci., 2017, 3.
[http://dx.doi.org/10.15761/JSIN.1000186]
[11]
Caricati-Neto, A.; Bergantin, L.B. From a “eureka insight” to a novel potential therapeutic target to treat Parkinson’s disease: The Ca2+/camp signalling interaction. J. Syst. Integr. Neurosci., 2017, 4.
[12]
Fanta, C.H. Calcium-channel blockers in prophylaxis and treatment of asthma. Am. J. Cardiol., 1985, 55(3), 202B-209B.
[http://dx.doi.org/10.1016/0002-9149(85)90632-0] [PMID: 3881915]
[13]
Bergantin, L.B. Debating the “bidirectional link” between diabetes and depression through the Ca2+/cAMP signalling: Off-label effects of Ca2+ channel blockers. Pharmacol. Res., 2019, 141, 298-302.
[http://dx.doi.org/10.1016/j.phrs.2019.01.008] [PMID: 30639385]
[14]
Ahn, C.; Kang, J.H.; Jeung, E.B. Calcium homeostasis in diabetes mellitus. J. Vet. Sci., 2017, 18(3), 261-266.
[http://dx.doi.org/10.4142/jvs.2017.18.3.261] [PMID: 28927245]
[15]
Xu, G.; Chen, J.; Jing, G.; Shalev, A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes, 2012, 61(4), 848-856.
[http://dx.doi.org/10.2337/db11-0955] [PMID: 22442301]
[16]
Park, H.W.; Lee, J.H. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy, 2014, 10(12), 2385-2386.
[http://dx.doi.org/10.4161/15548627.2014.984268] [PMID: 25484079]
[17]
Bergantin, L.B. Diabetes and cancer: Debating the link through Ca2+/cAMP signalling. Cancer Lett., 2019, 448, 128-131.
[http://dx.doi.org/10.1016/j.canlet.2019.02.017] [PMID: 30771427]
[18]
Wu, C.L.; Wen, S.H. A 10-year follow-up study of the association between calcium channel blocker use and the risk of dementia in elderly hypertensive patients. Medicine (Baltimore), 2016, 95(32)e4593
[http://dx.doi.org/10.1097/MD.0000000000004593] [PMID: 27512890]
[19]
Gershon, A.S.; Guan, J.; Wang, C.; Victor, J.C.; To, T. Describing and quantifying asthma comorbidity [corrected]: a population study. PLoS One, 2012, 7(5)e34967
[http://dx.doi.org/10.1371/journal.pone.0034967] [PMID: 22586445]
[20]
McHugh, M.K.; Symanski, E.; Pompeii, L.A.; Delclos, G.L. Prevalence of asthma among adult females and males in the United States: results from the National Health and Nutrition Examination Survey (NHANES), 2001-2004. J. Asthma, 2009, 46(8), 759-766.
[PMID: 19863277]
[21]
Banerji, A.; Clark, S.; Afilalo, M.; Blanda, M.P.; Cydulka, R.K.; Camargo, C.A., Jr Prospective multicenter study of acute asthma in younger versus older adults presenting to the emergency department. J. Am. Geriatr. Soc., 2006, 54(1), 48-55.
[http://dx.doi.org/10.1111/j.1532-5415.2005.00563.x] [PMID: 16420197]
[22]
Tsai, C.L.; Lee, W.Y.; Hanania, N.A.; Camargo, C.A. Jr Age-related differences in clinical outcomes for acute asthma in the United States, 2006-2008. J. Allergy Clin. Immunol., 2012, 129(5), 1252-1258.e1.
[http://dx.doi.org/10.1016/j.jaci.2012.01.061] [PMID: 22385630]
[23]
Wardzyńska, A.; Kubsik, B.; Kowalski, M.L. Comorbidities in elderly patients with asthma: Association with control of the disease and concomitant treatment. Geriatr. Gerontol. Int., 2015, 15(7), 902-909.
[http://dx.doi.org/10.1111/ggi.12367] [PMID: 25243580]
[24]
Soriano, J.B.; Visick, G.T.; Muellerova, H.; Payvandi, N.; Hansell, A.L. Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest, 2005, 128(4), 2099-2107.
[http://dx.doi.org/10.1378/chest.128.4.2099] [PMID: 16236861]
[25]
Barnig, C.; Levy, B.D. Innate immunity is a key factor for the resolution of inflammation in asthma. Eur. Respir. Rev., 2015, 24(135), 141-153.
[http://dx.doi.org/10.1183/09059180.00012514] [PMID: 25726564]
[26]
Boulet, L.P.; Boulay, M.E. Asthma-related comorbidities. Expert Rev. Respir. Med., 2011, 5(3), 377-393.
[http://dx.doi.org/10.1586/ers.11.34] [PMID: 21702660]
[27]
Hsiao, Y.T.; Cheng, W.C.; Liao, W.C.; Lin, C.L.; Shen, T.C.; Chen, W.C.; Chen, C.H.; Kao, C.H. Type 1 Diabetes and Increased Risk of Subsequent Asthma: A Nationwide Population-Based Cohort Study. Medicine (Baltimore), 2015, 94(36)e1466
[http://dx.doi.org/10.1097/MD.0000000000001466] [PMID: 26356702]
[28]
Black, M.H.; Anderson, A.; Bell, R.A.; Dabelea, D.; Pihoker, C.; Saydah, S.; Seid, M.; Standiford, D.A.; Waitzfelder, B.; Marcovina, S.M.; Lawrence, J.M. Prevalence of asthma and its association with glycemic control among youth with diabetes. Pediatrics, 2011, 128(4), e839-e847.
[http://dx.doi.org/10.1542/peds.2010-3636] [PMID: 21949144]
[29]
Chen, M.H.; Li, C.T.; Tsai, C.F.; Lin, W.C.; Chang, W.H.; Chen, T.J.; Pan, T.L.; Su, T.P.; Bai, Y.M. Risk of dementia among patients with asthma: a nationwide longitudinal study. J. Am. Med. Dir. Assoc., 2014, 15(10), 763-767.
[http://dx.doi.org/10.1016/j.jamda.2014.06.003] [PMID: 25037169]
[30]
Brunner, W.M.; Schreiner, P.J.; Sood, A.; Jacobs, D.R., Jr Depression and risk of incident asthma in adults. The CARDIA study. Am. J. Respir. Crit. Care Med., 2014, 189(9), 1044-1051.
[http://dx.doi.org/10.1164/rccm.201307-1349OC] [PMID: 24456492]
[31]
Loerbroks, A.; Apfelbacher, C.J.; Bosch, J.A.; Stürmer, T. Depressive symptoms, social support, and risk of adult asthma in a population-based cohort study. Psychosom. Med., 2010, 72(3), 309-315.
[http://dx.doi.org/10.1097/PSY.0b013e3181d2f0f1] [PMID: 20190127]
[32]
Patten, S.B.; Williams, J.V.; Lavorato, D.H.; Modgill, G.; Jetté, N.; Eliasziw, M. Major depression as a risk factor for chronic disease incidence: longitudinal analyses in a general population cohort. Gen. Hosp. Psychiatry, 2008, 30(5), 407-413.
[http://dx.doi.org/10.1016/j.genhosppsych.2008.05.001] [PMID: 18774423]
[33]
Qu, Y.L.; Liu, J.; Zhang, L.X.; Wu, C.M.; Chu, A.J.; Wen, B.L.; Ma, C.; Yan, X.Y.; Zhang, X.; Wang, D.M.; Lv, X.; Hou, S.J. Asthma and the risk of lung cancer: a meta-analysis. Oncotarget, 2017, 8(7), 11614-11620.
[http://dx.doi.org/10.18632/oncotarget.14595] [PMID: 28086224]
[34]
Cheng, C.M.; Wu, Y.H.; Tsai, S.J.; Bai, Y.M.; Hsu, J.W.; Huang, K.L.; Su, T.P.; Li, C.T.; Tsai, C.F.; Yang, A.C.; Lin, W.C.; Pan, T.L.; Chang, W.H.; Chen, T.J.; Chen, M.H. Risk of developing Parkinson’s disease among patients with asthma: a nationwide longitudinal study. Allergy, 2015, 70(12), 1605-1612.
[http://dx.doi.org/10.1111/all.12758] [PMID: 26310430]
[35]
Miranda-Ferreira, R.; de Pascual, R.; Smaili, S.S.; Caricati-Neto, A.; Gandía, L.; García, A.G.; Jurkiewicz, A. Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats. Eur. J. Pharmacol., 2010, 636(1-3), 126-136.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.044] [PMID: 20361955]
[36]
Billington, C.K.; Ojo, O.O.; Penn, R.B.; Ito, S. cAMP regulation of airway smooth muscle function. Pulm. Pharmacol. Ther., 2013, 26(1), 112-120.
[http://dx.doi.org/10.1016/j.pupt.2012.05.007] [PMID: 22634112]
[37]
Arner, P. Relationship between intracellular cyclic AMP and lipolysis in human adipose tissue. Acta Med. Scand., 1976, 200(3), 179-186.
[http://dx.doi.org/10.1111/j.0954-6820.1976.tb08217.x] [PMID: 184689]
[38]
Gomez-Ospina, N.; Tsuruta, F.; Barreto-Chang, O.; Hu, L.; Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell, 2006, 127(3), 591-606.
[http://dx.doi.org/10.1016/j.cell.2006.10.017] [PMID: 17081980]
[39]
Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Biophys. Acta, 2015, 1848(10 Pt B), 2747-2755.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.034] [PMID: 25843679]
[40]
Dziegielewska, B.; Gray, L.S.; Dziegielewski, J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch., 2014, 466(4), 801-810.
[http://dx.doi.org/10.1007/s00424-014-1444-z] [PMID: 24449277]
[41]
Ohkubo, T.; Yamazaki, J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int. J. Oncol., 2012, 41(1), 267-275.
[http://dx.doi.org/10.3892/ijo.2012.1422] [PMID: 22469755]
[42]
Gackière, F.; Bidaux, G.; Delcourt, P.; Van Coppenolle, F.; Katsogiannou, M.; Dewailly, E.; Bavencoffe, A.; Van Chuoï-Mariot, M.T.; Mauroy, B.; Prevarskaya, N.; Mariot, P. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J. Biol. Chem., 2008, 283(15), 10162-10173.
[http://dx.doi.org/10.1074/jbc.M707159200] [PMID: 18230611]
[43]
Latour, I.; Louw, D.F.; Beedle, A.M.; Hamid, J.; Sutherland, G.R.; Zamponi, G.W. Expression of T-type calcium channel splice variants in human glioma. Glia, 2004, 48(2), 112-119.
[http://dx.doi.org/10.1002/glia.20063] [PMID: 15378657]
[44]
Arruda, A.P.; Hotamisligil, G.S. Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[45]
Kim, K.H.; Kim, D.; Park, J.Y.; Jung, H.J.; Cho, Y.H.; Kim, H.K.; Han, J.; Choi, K.Y.; Kwon, H.J. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J. Mol. Med. (Berl.), 2015, 93(5), 499-509.
[http://dx.doi.org/10.1007/s00109-014-1235-1] [PMID: 25471482]
[46]
Yoshida, J.; Ishibashi, T.; Nishio, M. G1 cell cycle arrest by amlodipine, a dihydropyridine Ca2+ channel blocker, in human epidermoid carcinoma A431 cells. Biochem. Pharmacol., 2007, 73(7), 943-953.
[http://dx.doi.org/10.1016/j.bcp.2006.12.011] [PMID: 17217918]
[47]
Krouse, A.J.; Gray, L.; Macdonald, T.; McCray, J. Repurposing and rescuing of mibefradil, an antihypertensive, for cancer: a case study. Assay Drug Dev. Technol., 2015, 13(10), 650-653.
[http://dx.doi.org/10.1089/adt.2015.29014.ajkdrrr] [PMID: 26690767]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy