Nanoparticles: Properties and Applications in Cancer Immunotherapy | Bentham Science
Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanoparticles: Properties and Applications in Cancer Immunotherapy

Author(s): Alessandra Iscaro*, Nutter F. Howard and Munitta Muthana*

Volume 25, Issue 17, 2019

Page: [1962 - 1979] Pages: 18

DOI: 10.2174/1381612825666190708214240

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications.

Aim: In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles.

Conclusion: Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.

Keywords: Nanoparticles, immunotherapy, cancer, nanomedicine, immunity, tumour microenvironment.

[1]
Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9(4): 239-52.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[2]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[3]
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480(7378): 480-9.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[4]
Oiseth SJ, Aziz MS. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017; 3: 250-61.
[http://dx.doi.org/10.20517/2394-4722.2017.41]
[5]
Lee Ventola C. Cancer Immunotherapy, Part 1: Current Strategies and Agents 2017; 42(6): 375-83.
[6]
Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30(7): 658-70.
[http://dx.doi.org/10.1038/nbt.2287] [PMID: 22781695]
[7]
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107(10): 1373-9.
[http://dx.doi.org/10.1111/cas.13027] [PMID: 27486853]
[8]
Hude I, Sasse S, Engert A, Bröckelmann PJ. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica 2017; 102(1): 30-42.
[http://dx.doi.org/10.3324/haematol.2016.150656] [PMID: 27884973]
[9]
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64(5): 1020-37.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[10]
Grimaldi AM, Incoronato M, Salvatore M, Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 2017; 12(19): 2349-65.
[http://dx.doi.org/10.2217/nnm-2017-0208] [PMID: 28868980]
[11]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[12]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-44.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[13]
de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6(1): 24-37.
[http://dx.doi.org/10.1038/nrc1782] [PMID: 16397525]
[14]
Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117(5): 1175-83.
[http://dx.doi.org/10.1172/JCI31537] [PMID: 17476347]
[15]
Yu P, Fu YX. Tumor-infiltrating T lymphocytes: Friends or foes? Lab Invest 2006; 86(3): 231-45.
[http://dx.doi.org/10.1038/labinvest.3700389] [PMID: 16446705]
[16]
Mailliard RB, Egawa S, Cai Q, et al. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: Helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 2002; 195(4): 473-83.
[http://dx.doi.org/10.1084/jem.20011662] [PMID: 11854360]
[17]
DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007; 9(4): 212.
[http://dx.doi.org/10.1186/bcr1746] [PMID: 17705880]
[18]
Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64(16): 5839-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0465] [PMID: 15313928]
[19]
Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2587] [PMID: 20028852]
[20]
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4): 253-68.
[http://dx.doi.org/10.1038/nri3175] [PMID: 22437938]
[21]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162-74.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[22]
Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity 2015; 43(3): 435-49.
[http://dx.doi.org/10.1016/j.immuni.2015.09.001] [PMID: 26377897]
[23]
Mantovani A, Sica A. Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol 2010; 22(2): 231-7.
[http://dx.doi.org/10.1016/j.coi.2010.01.009] [PMID: 20144856]
[24]
Comito G, Giannoni E, Segura CP, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 2014; 33(19): 2423-31.
[http://dx.doi.org/10.1038/onc.2013.191] [PMID: 23728338]
[25]
Geldhof AB, van Ginderachter JA, Liu Y, Noël W, de Baetselier P. Ablation of NK cell function during tumor growth favors Type 2-associated macrophages, leading to suppressed CTL generation. Clin Dev Immunol 2003; 10(2-4): 71-81.
[http://dx.doi.org/10.1080/10446670310001626580] [PMID: 14768937]
[26]
Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66(1): 1-9.
[http://dx.doi.org/10.1016/j.critrevonc.2007.07.004] [PMID: 17913510]
[27]
Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86(5): 1065-73.
[http://dx.doi.org/10.1189/jlb.0609385] [PMID: 19741157]
[28]
Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344(6186): 921-5.
[http://dx.doi.org/10.1126/science.1252510] [PMID: 24812208]
[29]
Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141(1): 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.03.014] [PMID: 20371344]
[30]
Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol 2016; 39(1): 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[31]
Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 2016; 9: 5023-39.
[http://dx.doi.org/10.2147/OTT.S105862] [PMID: 27574444]
[32]
Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329-60.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104803] [PMID: 15032581]
[33]
Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron 2013; 6(2): 123-33.
[http://dx.doi.org/10.1007/s12307-012-0127-6] [PMID: 23242673]
[34]
Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007; 121(1): 1-14.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x] [PMID: 17386080]
[35]
Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat Rev Cancer 2011; 11(11): 805-12.
[http://dx.doi.org/10.1038/nrc3153] [PMID: 22020206]
[36]
van den Bulk J, Verdegaal EM, de Miranda NF. Cancer immunotherapy: Broadening the scope of targetable tumours. Open Biol 2018; 8(6)180037
[http://dx.doi.org/10.1098/rsob.180037] [PMID: 29875199]
[37]
Tao Z, Li S, Ichim TE, et al. Cellular immunotherapy of cancer: An overview and future directions. Immunotherapy 2017; 9(7): 589-606.
[http://dx.doi.org/10.2217/imt-2016-0086] [PMID: 28595516]
[38]
Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med 2016; 4(14): 261.
[http://dx.doi.org/10.21037/atm.2016.04.01] [PMID: 27563648]
[39]
Lee C, Lee M, Rhee I. Distinct features of dendritic cell-based immunotherapy as cancer vaccines. Clin Exp Vaccine Res 2018; 7(1): 16-23.
[http://dx.doi.org/10.7774/cevr.2018.7.1.16] [PMID: 29399576]
[40]
Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: A basic review and recent advances. Immunol Res 2017; 65(4): 798-810.
[http://dx.doi.org/10.1007/s12026-017-8931-1] [PMID: 28660480]
[41]
Tacken PJ, de Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7(10): 790-802.
[http://dx.doi.org/10.1038/nri2173] [PMID: 17853902]
[42]
Caminschi I, Maraskovsky E, Heath WR. Targeting Dendritic Cells in vivo for Cancer Therapy. Front Immunol 2012; 3: 13.
[http://dx.doi.org/10.3389/fimmu.2012.00013] [PMID: 22566899]
[43]
Macri C, Dumont C, Johnston APR, Mintern JD. Targeting dendritic cells: A promising strategy to improve vaccine effectiveness. Clin Transl Immunology 2016; 5(3)e66
[http://dx.doi.org/10.1038/cti.2016.6] [PMID: 27217957]
[44]
Bonifaz LC, Bonnyay DP, Charalambous A, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199(6): 815-24.
[http://dx.doi.org/10.1084/jem.20032220] [PMID: 15024047]
[45]
Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 2005; 65(15): 7007-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0938] [PMID: 16061687]
[46]
Johnson TS, Mahnke K, Storn V, et al. Inhibition of melanoma growth by targeting of antigen to dendritic cells via an anti-DEC-205 single-chain fragment variable molecule. Clin Cancer Res 2008; 14(24): 8169-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1474] [PMID: 19088032]
[47]
Sancho D, Mourão-Sá D, Joffre OP, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118(6): 2098-110.
[http://dx.doi.org/10.1172/JCI34584] [PMID: 18497879]
[48]
Wei H, Wang S, Zhang D, et al. Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin Cancer Res 2009; 15(14): 4612-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3321] [PMID: 19584156]
[49]
Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. Clin Cancer Res 2016; 22(8): 1897-906.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1399] [PMID: 27084743]
[50]
Richwine L. US FDA OKs Dendreon’s prostate cancer vaccine. Reuters 2010.
[51]
[52]
Anassi E, Ndefo UA. Sipuleucel-T (Provenge) Injection The First Immunotherapy Agent (Vaccine) For Hormone-Refractory. Prostate Cancer 2011; 36(4): 197-202.
[53]
Beer TM, Bernstein GT, Corman JM, et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin Cancer Res 2011; 17(13): 4558-67.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3223] [PMID: 21558406]
[54]
Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24(19): 3089-94.
[http://dx.doi.org/10.1200/JCO.2005.04.5252] [PMID: 16809734]
[55]
Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363(5): 411-22.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[56]
Berraondo P, Labiano S, Minute L, et al. Cellular immunotherapies for cancer. OncoImmunology 2017; 6(5)e1306619
[http://dx.doi.org/10.1080/2162402X.2017.1306619] [PMID: 28638729]
[57]
D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis 2018; 9(3): 282.
[http://dx.doi.org/10.1038/s41419-018-0278-6] [PMID: 29449531]
[58]
[59]
[60]
Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008; 20(5): 267-75.
[http://dx.doi.org/10.1016/j.smim.2008.04.001] [PMID: 18539480]
[61]
Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 2015; 33(15): 1688-96.
[http://dx.doi.org/10.1200/JCO.2014.58.0225] [PMID: 25800760]
[62]
Lowry LE, Zehring WA. Potentiation of Natural Killer Cells for Cancer Immunotherapy: A Review of Literature. Front Immunol 2017; 8: 1061.
[http://dx.doi.org/10.3389/fimmu.2017.01061] [PMID: 28919894]
[63]
Hofer E, Koehl U. Natural Killer Cell-Based Cancer Immunotherapies: From Immune Evasion to Promising Targeted Cellular Therapies. Front Immunol 2017; 8: 745.
[http://dx.doi.org/10.3389/fimmu.2017.00745] [PMID: 28747910]
[64]
Granzin M, Soltenborn S, Müller S, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy 2015; 17(5): 621-32.
[http://dx.doi.org/10.1016/j.jcyt.2015.03.611] [PMID: 25881519]
[65]
Granzin M, Stojanovic A, Miller M, Childs R, Huppert V, Cerwenka A. Highly efficient IL-21 and feeder cell-driven ex vivo expansion of human NK cells with therapeutic activity in a xenograft mouse model of melanoma. OncoImmunology 2016; 5(9)e1219007
[http://dx.doi.org/10.1080/2162402X.2016.1219007] [PMID: 27757317]
[66]
Spanholtz J, Preijers F, Tordoir M, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 2011; 6(6)e20740
[http://dx.doi.org/10.1371/journal.pone.0020740] [PMID: 21698239]
[67]
Wang Z, Liu W, Shi J, Chen N, Fan C. Nanoscale delivery systems for cancer immunotherapy. Mater Horiz 2018; 5: 344.
[http://dx.doi.org/10.1039/C7MH00991G]
[68]
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol 2018; 8: 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[69]
Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35(Suppl.): S185-98.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.004] [PMID: 25818339]
[70]
Ludin A, Zon LI. Cancer immunotherapy: The dark side of PD-1 receptor inhibition. Nature 2017; 552(7683): 41-2.
[http://dx.doi.org/10.1038/nature24759] [PMID: 29143822]
[71]
Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol 2017; 8: 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[72]
Vanpouille-Box C, Lhuillier C, Bezu L, et al. Trial watch: Immune checkpoint blockers for cancer therapy. OncoImmunology 2017; 6(11)e1373237
[http://dx.doi.org/10.1080/2162402X.2017.1373237] [PMID: 29147629]
[73]
Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 2010; 9(10): 767-74.
[http://dx.doi.org/10.1038/nrd3229] [PMID: 20811384]
[74]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[75]
Buqué A, Bloy N, Aranda F, et al. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. OncoImmunology 2015; 4(4)e1008814
[http://dx.doi.org/10.1080/2162402X.2015.1008814] [PMID: 26137403]
[76]
Galluzzi L, Eggermont A, Kroemer G. Doubling the blockade for melanoma immunotherapy. OncoImmunology 2015; 5(1)e1106127
[http://dx.doi.org/10.1080/2162402X.2015.1106127] [PMID: 26942094]
[77]
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480(7378): 480-9.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[78]
Ascierto PA, Marincola FM, Ribas A. Anti-CTLA4 monoclonal antibodies: The past and the future in clinical application. J Transl Med 2011; 9: 196.
[http://dx.doi.org/10.1186/1479-5876-9-196] [PMID: 22077981]
[79]
Approval Letter - Ipilimumab Food and Drug Administration. 2011.https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125377
[80]
Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16(4): 375-84.
[http://dx.doi.org/10.1016/S1470-2045(15)70076-8] [PMID: 25795410]
[81]
Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384(9948): 1109-17.
[http://dx.doi.org/10.1016/S0140-6736(14)60958-2] [PMID: 25034862]
[82]
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373(2): 123-35.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[83]
Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17(11): 1497-508.
[http://dx.doi.org/10.1016/S1470-2045(16)30498-3] [PMID: 27745820]
[84]
Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 2016; 17(9): 1283-94.
[http://dx.doi.org/10.1016/S1470-2045(16)30167-X] [PMID: 27451390]
[85]
Chen R, Zinzani PL, Fanale MA, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 2017; 35(19): 2125-32.
[http://dx.doi.org/10.1200/JCO.2016.72.1316] [PMID: 28441111]
[86]
Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol 2017; 18(3): 312-22.
[http://dx.doi.org/10.1016/S1470-2045(17)30065-7] [PMID: 28131785]
[87]
Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017; 376(11): 1015-26.
[http://dx.doi.org/10.1056/NEJMoa1613683] [PMID: 28212060]
[88]
Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017; 389(10064): 67-76.
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[89]
Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016; 34(26): 3119-25.
[http://dx.doi.org/10.1200/JCO.2016.67.9761] [PMID: 27269937]
[90]
Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17(10): 1374-85.
[http://dx.doi.org/10.1016/S1470-2045(16)30364-3] [PMID: 27592805]
[91]
Gao J, Ward JF, Pettaway CA, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017; 23(5): 551-5.
[http://dx.doi.org/10.1038/nm.4308] [PMID: 28346412]
[92]
Nowak EC, Lines JL, Varn FS, et al. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276(1): 66-79.
[http://dx.doi.org/10.1111/imr.12525] [PMID: 28258694]
[93]
Lazorchak AS, Patterson T, Ding Y, et al. Abstract A36: CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer. Cancer Immunol Res 2017; 5: A36-A.
[94]
Anari F, Ramamurthy C, Zibelman M. Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer. Future Oncol 2018; 14(14): 1409-21.
[http://dx.doi.org/10.2217/fon-2017-0585] [PMID: 29848096]
[95]
Lyssiotis CA, Kimmelman AC. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol 2017; 27(11): 863-75.
[http://dx.doi.org/10.1016/j.tcb.2017.06.003] [PMID: 28734735]
[96]
Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011; 7(5): 651-8.
[http://dx.doi.org/10.7150/ijbs.7.651] [PMID: 21647333]
[97]
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014149185
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[98]
Morán GAG, Parra-Medina R, Cardona AG, Quintero-Ronderos P, Rodríguez EG. Cytokines, chemokines and growth factors Autoimmunity. El Rosario University Press 2013.
[99]
Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4(1): 11-22.
[http://dx.doi.org/10.1038/nrc1252] [PMID: 14708024]
[100]
Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018; 10(12)a028472
[http://dx.doi.org/10.1101/cshperspect.a028472] [PMID: 29101107]
[101]
García-Martínez E, Smith M, Buqué A, et al. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. OncoImmunology 2011; 15(7(6))e1433982
[102]
Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. J Interferon Cytokine Res 2019; 39(1): 6-21.
[PMID: 29889594]
[103]
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498-513.
[http://dx.doi.org/10.1038/s41577-018-0014-6] [PMID: 29743717]
[104]
van den Pol AN, Davis JN. Highly attenuated recombinant vesicular stomatitis virus VSV-12'GFP displays immunogenic and oncolytic activity. J Virol 2013; 87(2): 1019-34.
[http://dx.doi.org/10.1128/JVI.01106-12] [PMID: 23135719]
[105]
Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 2003; 10(4): 292-303.
[http://dx.doi.org/10.1038/sj.gt.3301885] [PMID: 12595888]
[106]
Tuve S, Wang H, Ware C, et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 2006; 80(24): 12109-20.
[http://dx.doi.org/10.1128/JVI.01370-06] [PMID: 17020944]
[107]
Uchida H, Marzulli M, Nakano K, et al. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21(3): 561-9.
[http://dx.doi.org/10.1038/mt.2012.211] [PMID: 23070115]
[108]
Schenk E, Essand M, Kraaij R, Adamson R, Maitland NJ, Bangma CH. Preclinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. Hum Gene Ther Clin Dev 2014; 25(1): 7-15.
[http://dx.doi.org/10.1089/humc.2013.181] [PMID: 24649837]
[109]
Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: The beginning of the end of cancer? BMC Med 2016; 14: 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[110]
Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33(25): 2780-8.
[http://dx.doi.org/10.1200/JCO.2014.58.3377] [PMID: 26014293]
[111]
Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 2016; 4: 53.
[http://dx.doi.org/10.1186/s40425-016-0158-5] [PMID: 27660707]
[112]
Schvartsman G, Perez K, Flynn JE, Myers JN, Tawbi H. Safe and effective administration of T-VEC in a patient with heart transplantation and recurrent locally advanced melanoma. J Immunother Cancer 2017; 5: 45.
[http://dx.doi.org/10.1186/s40425-017-0250-5] [PMID: 28642816]
[113]
Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 1999; 6(5): 409-22.
[http://dx.doi.org/10.1038/sj.cgt.7700066] [PMID: 10505851]
[114]
Park BH, Hwang T, Liu TC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: A phase I trial. Lancet Oncol 2008; 9(6): 533-42.
[http://dx.doi.org/10.1016/S1470-2045(08)70107-4] [PMID: 18495536]
[115]
Ramesh N, Ge Y, Ennist DL, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor--armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12(1): 305-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1059] [PMID: 16397056]
[116]
Burke JM, Lamm DL, Meng MV, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 2012; 188(6): 2391-7.
[http://dx.doi.org/10.1016/j.juro.2012.07.097] [PMID: 23088985]
[117]
Fountzilas C, Patel S, Mahalingam D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget 2017; 8(60): 102617-39.
[http://dx.doi.org/10.18632/oncotarget.18309] [PMID: 29254276]
[118]
Fountzilas C, Patel S, Mahalingam D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget 2017; 8(60): 102617-39.
[http://dx.doi.org/10.18632/oncotarget.18309] [PMID: 29254276]
[119]
Lal R, Harris D, Postel-Vinay S, de Bono J. Reovirus: Rationale and clinical trial update. Curr Opin Mol Ther 2009; 11(5): 532-9.
[PMID: 19806501]
[120]
Nagano S, Perentes JY, Jain RK, Boucher Y. Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res 2008; 68(10): 3795-802.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6193] [PMID: 18483263]
[121]
Oncolytics Biotech Inc Announces Receipt of FDA Orphan Drug Designation for REOLYSIN. 2015.https://www.oncolyticsbiotech.com/press-releases/detail/345/oncolytics-biotech-inc-announces-receipt-of-orphan-drug
[122]
Oncolytics Biotech Inc Announces FDA Fast Track Designation for REOLYSIN in Metastatic Breast Cancer. https://www.oncolyticsbiotech.com/press-releases/detail/39/oncolytics-biotech-inc-announces-fda-fast-track
[123]
Gajewski TF. The next hurdle in cancer immunotherapy: Overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol 2015; 42(4): 663-71.
[http://dx.doi.org/10.1053/j.seminoncol.2015.05.011] [PMID: 26320069]
[124]
Yang L, Yu H, Dong S, Zhong Y, Hu S. Recognizing and managing on toxicities in cancer immunotherapy. Tumour Biol 2017; 39(3)1010428317694542
[http://dx.doi.org/10.1177/1010428317694542] [PMID: 28351299]
[125]
Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28(suppl_4): Iv119-42.
[http://dx.doi.org/10.1093/annonc/mdx225] [PMID: 28881921]
[126]
Kroschinsky F, Stölzel F, von Bonin S, et al. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care 2017; 21(1): 89.
[http://dx.doi.org/10.1186/s13054-017-1678-1] [PMID: 28407743]
[127]
Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med 2016; 1(1): 47-62.
[http://dx.doi.org/10.1002/btm2.10005] [PMID: 29313006]
[128]
Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: New approaches to an old challenge. Cancer Res 2015; 75(1): 5-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2538] [PMID: 25524899]
[129]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9(9): 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[130]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[131]
Park J, Babensee JE. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater 2012; 8(10): 3606-17.
[http://dx.doi.org/10.1016/j.actbio.2012.06.006] [PMID: 22705044]
[132]
Zhang YR, Lin R, Li HJ, He WL, Du JZ, Wang J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(1)e1519
[http://dx.doi.org/10.1002/wnan.1519] [PMID: 29659166]
[133]
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug Chem 2016; 27(10): 2225-38.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[134]
Gao H. Shaping tumor microenvironment for improving nanoparticles delivery. Curr Drug Metab 2016; 17(8): 731-6.
[http://dx.doi.org/10.2174/1389200217666160630203600] [PMID: 27396754]
[135]
Miao L, Lin CM, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 2015; 219: 192-204.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.017] [PMID: 26277065]
[136]
Chauhan VP, Popović Z, Chen O, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed Engl 2011; 50(48): 11417-20.
[http://dx.doi.org/10.1002/anie.201104449] [PMID: 22113800]
[137]
Mueller SN, Tian S, DeSimone JM. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm 2015; 12(5): 1356-65.
[http://dx.doi.org/10.1021/mp500589c] [PMID: 25817072]
[138]
Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005; 298(2): 315-22.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.035] [PMID: 15961266]
[139]
Thiele L, Merkle HP, Walter E. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 2003; 20(2): 221-8.
[http://dx.doi.org/10.1023/A:1022271020390] [PMID: 12636160]
[140]
Wischke C, Borchert H-H, Zimmermann J, Siebenbrodt I, Lorenzen DR. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 2006; 114(3): 359-68.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.020] [PMID: 16889866]
[141]
Hirsjärvi S, Passirani C, Benoit JP. Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 2011; 8(3): 188-96.
[http://dx.doi.org/10.2174/157016311796798991] [PMID: 21513482]
[142]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017; 9(2)E12
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[143]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[144]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[145]
van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: A highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004; 64(12): 4357-65.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0138] [PMID: 15205352]
[146]
Saleh T, Shojaosadati SA. Multifunctional nanoparticles for cancer immunotherapy. Hum Vaccin Immunother 2016; 12(7): 1863-75.
[PMID: 26901287]
[147]
Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Res 2018; 78(13): 3718-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0306] [PMID: 29760047]
[148]
Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ. Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy Wiley Editing Services. Issue 2017; Vol. 1: Pp. 1-2
[149]
Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401.
[http://dx.doi.org/10.1038/nature18300] [PMID: 27281205]
[150]
Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle Design Strategies for Effective Cancer Immunotherapy. J Biomed (Syd) 2017; 2(2): 64-77.
[http://dx.doi.org/10.7150/jbm.18877] [PMID: 28503405]
[151]
Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored Anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res 2013; 73(5): 1547-58.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3343] [PMID: 23436794]
[152]
Wang D, Wang T, Liu J, et al. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Lett 2016; 16(9): 5503-13.
[http://dx.doi.org/10.1021/acs.nanolett.6b01994] [PMID: 27525587]
[153]
Chen J, Gao P, Yuan S, et al. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS Nano 2016; 10(12): 11548-60.
[http://dx.doi.org/10.1021/acsnano.6b06182] [PMID: 27977128]
[154]
Aoyama K, Kuroda S, Morihiro T, et al. Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Sci Rep 2017; 7(1): 14177.
[http://dx.doi.org/10.1038/s41598-017-14717-x] [PMID: 29074882]
[155]
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(2): 271-99.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[156]
Bohr A, Water J, Beck-Broichsitter M, Yang M. Nanoembedded Microparticles for Stabilization and Delivery of Drug-Loaded Nanoparticles. Curr Pharm Des 2015; 21(40): 5829-44.
[http://dx.doi.org/10.2174/1381612821666151008124322] [PMID: 26446473]
[157]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[158]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[159]
Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine (Lond) 2017; 12(5): 491-510.
[http://dx.doi.org/10.2217/nnm-2016-0295] [PMID: 28181470]
[160]
Li L, He ZY, Wei XW, Wei YQ. Recent advances of biomaterials in biotherapy. Regen Biomater 2016; 3(2): 99-105.
[http://dx.doi.org/10.1093/rb/rbw007] [PMID: 27047675]
[161]
Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater 2009; 8(2): 151-8.
[http://dx.doi.org/10.1038/nmat2357] [PMID: 19136947]
[162]
Hamdy S, Molavi O, Ma Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26(39): 5046-57.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.035] [PMID: 18680779]
[163]
Li SY, Liu Y, Xu CF, et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release 2016; 231: 17-28.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.044] [PMID: 26829099]
[164]
Mok H, Park JW, Park TG. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency. Pharm Res 2007; 24(12): 2263-9.
[http://dx.doi.org/10.1007/s11095-007-9441-y] [PMID: 17929147]
[165]
Yeh YC, Creran B, Rotello VM. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012; 4(6): 1871-80.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[166]
Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16(24): 6139-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[167]
Anselmo AC, Mitragotri S. A Review of Clinical Translation of Inorganic Nanoparticles. AAPS J 2015; 17(5): 1041-54.
[http://dx.doi.org/10.1208/s12248-015-9780-2] [PMID: 25956384]
[168]
Zhou Q, Zhang Y, Du J, et al. Different-sized gold nanoparticle activator/antigen increases dendritic cells accu- mulation in liver-draining lymph nodes and CD8+ T cell responses. ACS Nano 2016; 10(2): 2678-92.
[http://dx.doi.org/10.1021/acsnano.5b07716] [PMID: 26771692]
[169]
Park YM, Lee SJ, Kim YS, et al. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 2013; 13(5): 177-83.
[http://dx.doi.org/10.4110/in.2013.13.5.177] [PMID: 24198742]
[170]
Lee IH, Kwon HK, An S, et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew Chem Int Ed Engl 2012; 51(35): 8800-5.
[http://dx.doi.org/10.1002/anie.201203193] [PMID: 22847719]
[171]
Lei C, Liu P, Chen B, et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 2010; 132(20): 6906-7.
[http://dx.doi.org/10.1021/ja102414t] [PMID: 20433206]
[172]
Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater 2012; 24(29): 3981-7.
[http://dx.doi.org/10.1002/adma.201200776] [PMID: 22689074]
[173]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[174]
Cho NH, Cheong TC, Min JH, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011; 6(10): 675-82.
[http://dx.doi.org/10.1038/nnano.2011.149] [PMID: 21909083]
[175]
Cruz LJ, Tacken PJ, Zeelenberg IS, et al. Tracking targeted bimodal nanovaccines: Immune responses and routing in cells, tissue, and whole organism. Mol Pharm 2014; 11(12): 4299-313.
[http://dx.doi.org/10.1021/mp400717r] [PMID: 25290882]
[176]
Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014; 8(3): 2252-60.
[http://dx.doi.org/10.1021/nn405520d] [PMID: 24564881]
[177]
Chiang CS, Lin YJ, Lee R, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 2018; 13(8): 746-54.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[178]
Almstätter I, Mykhaylyk O, Settles M, et al. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 2015; 5(7): 667-85.
[http://dx.doi.org/10.7150/thno.10438] [PMID: 25897333]
[179]
Heyen U, Schüler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 2003; 61(5-6): 536-44.
[http://dx.doi.org/10.1007/s00253-002-1219-x] [PMID: 12764570]
[180]
Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol 2011; 77(17): 5851-6.
[http://dx.doi.org/10.1128/AEM.05962-11] [PMID: 21724877]
[181]
Erdal E, Demirbilek M, Yeh Y, et al. A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model. Appl Biochem Biotechnol 2018; 185(1): 91-113.
[http://dx.doi.org/10.1007/s12010-017-2642-x] [PMID: 29082480]
[182]
Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 2011; 5(8): 6279-96.
[http://dx.doi.org/10.1021/nn201290k] [PMID: 21732678]
[183]
Le Fèvre R, Durand-Dubief M, Chebbi I, et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics 2017; 7(18): 4618-31.
[http://dx.doi.org/10.7150/thno.18927] [PMID: 29158849]
[184]
Alphandéry E, Idbaih A, Adam C, et al. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 2017; 262: 259-72.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.020] [PMID: 28713041]
[185]
Ito A, Matsuoka F, Honda H, Kobayashi T. Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 2003; 10(12): 918-25.
[http://dx.doi.org/10.1038/sj.cgt.7700648] [PMID: 14712318]
[186]
Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia 2014; 30(8): 531-9.
[http://dx.doi.org/10.3109/02656736.2014.968640] [PMID: 25430985]
[187]
Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs 2009; 10(6): 550-8.
[PMID: 19513944]
[188]
Lin FC, Hsu CH, Lin YY. Nano-therapeutic cancer immunotherapy using hyperthermia-induced heat shock proteins: Insights from mathematical modeling. Int J Nanomedicine 2018; 13: 3529-39.
[http://dx.doi.org/10.2147/IJN.S166000] [PMID: 29950833]
[189]
Sun JB, Duan JH, Dai SL, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett 2007; 258(1): 109-17.
[http://dx.doi.org/10.1016/j.canlet.2007.08.018] [PMID: 17920762]
[190]
Deng Q, Liu Y, Wang S, et al. Construction of a Novel Magnetic Targeting Anti-Tumor Drug Delivery System: Cytosine Arabinoside-Loaded Bacterial Magnetosome. Materials (Basel) 2013; 6(9): 3755-63.
[http://dx.doi.org/10.3390/ma6093755] [PMID: 28788304]
[191]
Long R, Liu Y, Dai Q, Wang S, Deng Q, Zhou X. A Natural Bacterium-Produced Membrane-Bound Nanocarrier for Drug Combination Therapy. Materials (Basel) 2016; 9(11)E889
[http://dx.doi.org/10.3390/ma9110889] [PMID: 28774010]
[192]
Long RM, Dai QL, Zhou X, et al. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. Int J Nanomedicine 2018; 13: 8269-79.
[http://dx.doi.org/10.2147/IJN.S180503] [PMID: 30584299]
[193]
Xiang Z, Yang X, Xu J, et al. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials 2017; 115: 53-64.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.022] [PMID: 27888699]
[194]
Guo L, Huang J, Zheng LM. Control generating of bacterial magnetic nanoparticle-doxorubicin conjugates by poly-L-glutamic acid surface modification. Nanotechnology 2011; 22(17)175102
[http://dx.doi.org/10.1088/0957-4484/22/17/175102] [PMID: 21411921]
[195]
Zhang Y, Ni Q, Xu C, et al. Smart Bacterial Magnetic Nanoparticles for Tumor-Targeting Magnetic Resonance Imaging of HER2-Positive Breast Cancers. ACS Appl Mater Interfaces 2019; 11(4): 3654-65.
[PMID: 30495920]
[196]
Xu J, Hu J, Liu L, et al. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes. Front Microbiol 2014; 5: 136.
[http://dx.doi.org/10.3389/fmicb.2014.00136] [PMID: 24765089]
[197]
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 2016; 11(11): 941-7.
[http://dx.doi.org/10.1038/nnano.2016.137] [PMID: 27525475]
[198]
Tang YS, Wang D, Zhou C, et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 2012; 19(12): 1187-95.
[http://dx.doi.org/10.1038/gt.2011.197] [PMID: 22170341]
[199]
Zhang Q, Wei W, Wang P, et al. Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy. ACS Nano 2017; 11(11): 10724-32.
[http://dx.doi.org/10.1021/acsnano.7b04955] [PMID: 28921946]
[200]
Fadel TR, Fahmy TM. Immunotherapy applications of carbon nanotubes: From design to safe applications. Trends Biotechnol 2014; 32(4): 198-209.
[http://dx.doi.org/10.1016/j.tibtech.2014.02.005] [PMID: 24630474]
[201]
Meng J, Meng J, Duan J, et al. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 2008; 4(9): 1364-70.
[http://dx.doi.org/10.1002/smll.200701059] [PMID: 18720440]
[202]
Villa CH, Dao T, Ahearn I, et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 2011; 5(7): 5300-11.
[http://dx.doi.org/10.1021/nn200182x] [PMID: 21682329]
[203]
Bianco A, Hoebeke J, Godefroy S, et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J Am Chem Soc 2005; 127(1): 58-9.
[http://dx.doi.org/10.1021/ja044293y] [PMID: 15631447]
[204]
Fadel TR, Sharp FA, Vudattu N, et al. A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol 2014; 9(8): 639-47.
[http://dx.doi.org/10.1038/nnano.2014.154] [PMID: 25086604]
[205]
Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater 2014; 26(48): 8154-62.
[http://dx.doi.org/10.1002/adma.201402996] [PMID: 25331930]
[206]
Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2010; 9(10): 1149-76.
[http://dx.doi.org/10.1586/erv.10.115] [PMID: 20923267]
[207]
Gonzalez MJ, Plummer EM, Rae CS, Manchester M. Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One 2009; 4(11)e7981
[http://dx.doi.org/10.1371/journal.pone.0007981] [PMID: 19956734]
[208]
Steinmetz NF, Cho C-F, Ablack A, Lewis JD, Manchester M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond) 2011; 6(2): 351-64.
[http://dx.doi.org/10.2217/nnm.10.136] [PMID: 21385137]
[209]
Lizotte PH, Wen AM, Sheen MR, et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 2016; 11(3): 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[210]
Lebel M-È, Chartrand K, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett 2016; 16(3): 1826-32.
[http://dx.doi.org/10.1021/acs.nanolett.5b04877] [PMID: 26891174]
[211]
Goldinger SM, Dummer R, Baumgaertner P, et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur J Immunol 2012; 42(11): 3049-61.
[http://dx.doi.org/10.1002/eji.201142361] [PMID: 22806397]
[212]
Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 2011; 6: 3281-93.
[PMID: 22228996]
[213]
Hu CMJ, Kaushal S, Tran Cao HS, et al. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 2010; 7(3): 914-20.
[http://dx.doi.org/10.1021/mp900316a] [PMID: 20394436]
[214]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy