The Potential Use of Grape Phytochemicals for Preventing the Development of Intestine-Related and Subsequent Inflammatory Diseases | Bentham Science
Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

The Potential Use of Grape Phytochemicals for Preventing the Development of Intestine-Related and Subsequent Inflammatory Diseases

Author(s): Kazuki Santa*, Yoshio Kumazawa and Isao Nagaoka

Volume 19, Issue 6, 2019

Page: [794 - 802] Pages: 9

DOI: 10.2174/1871530319666190529105226

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Grape phytochemicals prevent intestine-related and subsequent other inflammatory diseases. Phytochemicals and vitamin D are useful for the regulation of inflammatory responses. Phytochemicals is the generic name for terpenoids, carotenoids, and flavonoids that consist of a variety of chemicals contained in vegetables and fruits. There are a variety of grape cultivars that contain many kinds of phytochemicals in their skin and seeds. Grape phytochemicals including Grape Seed Extracts (GSE) have already been used to maintain healthy condition through manipulating inflammatory responses by decreasing the expression of inflammation-related factors.

Discussion: Grape phytochemicals mainly consist of a variety of chemicals that include terpenoid (oleanolic acid), carotenoids (β-carotene, lutein), and flavonoids: flavon-3-ols (quercetin), flavan-3-ols (catechins), anthocyanins, oligomers and polymers (tannins and proanthocyanidins), and resveratrol. Phytochemicals improve the dysbiosis (gut microbiota complication) induced by metabolic syndrome and regulate inflammatory diseases induced by TNF-α production. Once absorbed, flavonoids change into glucuronide-form, move into the bloodstream and reach the inflammatory sites including liver, lung, and sites of arteriosclerosis, where they become active. Furthermore, oleanolic acid acts on TGR5 - the cholic acid receptor, as an agonist of cholic acid. These anti-inflammatory effects of phytochemicals have been proven by the experimental animal studies and the clinical trials.

Conclusion: It is expected the new health food products will be created from grape skins and seeds since grape phytochemicals participate in the prevention of inflammatory diseases like intestine-related inflammatory diseases.

Keywords: Phytochemicals, Oleanolic acid, Quercetin, TNF-α, microbiota, Treg (Regulatory T cells), Inflammatory bowel disease.

Graphical Abstract
[1]
Ankita, S.; Pragya, S.; Niharika, C.; Deepika, T.; Vanistha, S.; Avinash, T.; Sunil, K. Role of probiotics in control of gastrointestinal diseases. Int. J. Probiotics Prebiotics, 2018, 13(2/3), 55-68.
[2]
Sampey, B.P.; Vanhoose, A.M.; Winfield, H.M.; Freemerman, A.J.; Muehlbauer, M.J.; Fueger, P.T.; Newgard, C.B.; Makowski, L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring), 2011, 19(6), 1109-1117.
[http://dx.doi.org/10.1038/oby.2011.18] [PMID: 21331068]
[3]
Kaneko, M.; Takimoto, H.; Sugiyama, T.; Seki, Y.; Kawaguchi, K.; Kumazawa, Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol. Immunotoxicol., 2008, 30(4), 867-882.
[http://dx.doi.org/10.1080/08923970802135690] [PMID: 18720166]
[4]
Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology, 2013, 144(1), 145-154.
[http://dx.doi.org/10.1053/j.gastro.2012.09.055] [PMID: 23041323]
[5]
Mendes-Pinto, M.M. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch. Biochem. Biophys., 2009, 483(2), 236-245.
[http://dx.doi.org/10.1016/j.abb.2009.01.008] [PMID: 19320050]
[6]
Perusek, L.; Maeda, T. Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients, 2013, 5(7), 2646-2666.
[http://dx.doi.org/10.3390/nu5072646] [PMID: 23857173]
[7]
Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des., 2014, 20(6), 857-863.
[http://dx.doi.org/10.2174/138161282006140220120344] [PMID: 23701564]
[8]
Carbonell-Bejerano, P.; Diago, M.P.; Martínez-Abaigar, J.; Martínez-Zapater, J.M.; Tardáguila, J.; Núñez-Olivera, E. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol., 2014, 14, 183.
[http://dx.doi.org/10.1186/1471-2229-14-183] [PMID: 25012688]
[9]
Pinasseau, L.; Vallverdú-Queralt, A.; Verbaere, A.; Roques, M.; Meudec, E.; Le Cunff, L.; Péros, J.P.; Ageorges, A.; Sommerer, N.; Boulet, J.C.; Terrier, N.; Cheynier, V. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics. Front. Plant Sci., 2017, 8, 1826.
[http://dx.doi.org/10.3389/fpls.2017.01826] [PMID: 29163566]
[10]
Mena, P.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Baenas, N.; García-Viguera, C.; Villaño, D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life, 2014, 66(11), 745-758.
[http://dx.doi.org/10.1002/iub.1332] [PMID: 25504851]
[11]
Chen, P.; Zeng, H.; Wang, Y.; Fan, X.; Xu, C.; Deng, R.; Zhou, X.; Bi, H.; Huang, M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab. Dispos., 2014, 42(5), 844-852.
[http://dx.doi.org/10.1124/dmd.113.056549] [PMID: 24510383]
[12]
Jain, A.K.; Wen, J.X.; Blomenkamp, K.S.; Arora, S.; Blaufuss, T.A.; Rodrigues, J.; Long, J.P.; Neuschwander-Tetri, B.A.; Teckman, J.H. Oleanolic Acid Improves Gut Atrophy Induced by Parenteral Nutrition. JPEN J. Parenter. Enteral Nutr., 2016, 40(1), 67-72.
[http://dx.doi.org/10.1177/0148607115583536] [PMID: 25921560]
[13]
Catanzaro, R.; Anzalone, M.; Calabrese, F.; Milazzo, M.; Capuana, M.; Italia, A.; Occhipinti, S.; Marotta, F. The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med., 2015, 57(3), 127-143.
[PMID: 25390799] [PMID: 25390799]
[14]
Kumar, D.P.; Rajagopal, S.; Mahavadi, S.; Mirshahi, F.; Grider, J.R.; Murthy, K.S.; Sanyal, A.J. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem. Biophys. Res. Commun., 2012, 427(3), 600-605.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.104] [PMID: 23022524]
[15]
Comeglio, P.; Morelli, A.; Adorini, L.; Maggi, M.; Vignozzi, L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin. Investig. Drugs, 2017, 26(11), 1215-1228.
[http://dx.doi.org/10.1080/13543784.2017.1385760] [PMID: 28949776]
[16]
Yunoki, K.; Sasaki, G.; Tokuji, Y.; Kinoshita, M.; Naito, A.; Aida, K.; Ohnishi, M. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J. Agric. Food Chem., 2008, 56(24), 12052-12058.
[http://dx.doi.org/10.1021/jf8026217] [PMID: 19053393]
[17]
Duranti, S.; Ferrario, C.; van Sinderen, D.; Ventura, M.; Turroni, F. Obesity and microbiota: An example of an intricate relationship. Genes Nutr., 2017, 12, 18.
[http://dx.doi.org/10.1186/s12263-017-0566-2] [PMID: 28638490]
[18]
Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; Kerins, D.M.; Quigley, E.; Ross, R.P.; O’Toole, P.W.; Molloy, M.G.; Falvey, E.; Shanahan, F.; Cotter, P.D. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63(12), 1913-1920.
[http://dx.doi.org/10.1136/gutjnl-2013-306541] [PMID: 25021423]
[19]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[20]
Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; Honda, K.; Ishikawa, Y.; Hara, E.; Ohtani, N. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013, 499(7456), 97-101.
[http://dx.doi.org/10.1038/nature12347] [PMID: 23803760]
[21]
Psahoulia, F.H.; Moumtzi, S.; Roberts, M.L.; Sasazuki, T.; Shirasawa, S.; Pintzas, A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis, 2007, 28(5), 1021-1031.
[http://dx.doi.org/10.1093/carcin/bgl232] [PMID: 17148506]
[22]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[23]
Magrone, T.; Jirillo, E. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis. Curr. Pharm. Des., 2013, 19(7), 1329-1342.
[PMID: 23151182]
[24]
Sonnenburg, E.D.; Sonnenburg, J.L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab., 2014, 20(5), 779-786.
[http://dx.doi.org/10.1016/j.cmet.2014.07.003] [PMID: 25156449]
[25]
Baldwin, J.; Collins, B.; Wolf, P.G.; Martinez, K.; Shen, W.; Chuang, C.C.; Zhong, W.; Cooney, P.; Cockrell, C.; Chang, E.; Gaskins, H.R.; McIntosh, M.K. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J. Nutr. Biochem., 2016, 27, 123-135.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.027] [PMID: 26423887]
[26]
Ben Lagha, A.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep., 2017, 7, 44815.
[http://dx.doi.org/10.1038/srep44815] [PMID: 28322293]
[27]
Wang, H.; Xue, Y.; Zhang, H.; Huang, Y.; Yang, G.; Du, M.; Zhu, M.J. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol. Nutr. Food Res., 2013, 57(12), 2253-2257.
[http://dx.doi.org/10.1002/mnfr.201300146] [PMID: 23963706]
[28]
Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417.
[http://dx.doi.org/10.1039/C4FO01178C] [PMID: 25761771]
[29]
Ho, L.; Ferruzzi, M.G.; Janle, E.M.; Wang, J.; Gong, B.; Chen, T.Y.; Lobo, J.; Cooper, B.; Wu, Q.L.; Talcott, S.T.; Percival, S.S.; Simon, J.E.; Pasinetti, G.M. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J., 2013, 27(2), 769-781.
[http://dx.doi.org/10.1096/fj.12-212118] [PMID: 23097297]
[30]
Kawai, Y.; Nishikawa, T.; Shiba, Y.; Saito, S.; Murota, K.; Shibata, N.; Kobayashi, M.; Kanayama, M.; Uchida, K.; Terao, J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem., 2008, 283(14), 9424-9434.
[http://dx.doi.org/10.1074/jbc.M706571200] [PMID: 18199750]
[31]
Draijer, R.; de Graaf, Y.; Slettenaar, M.; de Groot, E.; Wright, C.I. Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects. Nutrients, 2015, 7(5), 3138-3153.
[http://dx.doi.org/10.3390/nu7053138] [PMID: 25942487]
[32]
Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; Kuperman, Y.; Harmelin, A.; Kolodkin-Gal, I.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514(7521), 181-186.
[http://dx.doi.org/10.1038/nature13793] [PMID: 25231862]
[33]
Lambertz, J.; Weiskirchen, S.; Landert, S.; Weiskirchen, R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front. Immunol., 2017, 8, 1159.
[http://dx.doi.org/10.3389/fimmu.2017.01159] [PMID: 28970836]
[34]
Marcolin, E.; San-Miguel, B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González-Gallego, J.; Tuñón, M.J. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[35]
Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; Zimmermann, B.F.; Stehle, P.; Egert, S. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-) hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br. J. Nutr., 2015, 114(8), 1263-1277.
[http://dx.doi.org/10.1017/S0007114515002950] [PMID: 26328470]
[36]
Sato, J.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Goto, H.; Abe, H.; Komiya, K.; Kawaguchi, M.; Shimizu, T.; Ogihara, T.; Tamura, Y.; Sakurai, Y.; Yamamoto, R.; Mita, T.; Fujitani, Y.; Fukuda, H.; Nomoto, K.; Takahashi, T.; Asahara, T.; Hirose, T.; Nagata, S.; Yamashiro, Y.; Watada, H. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care, 2014, 37(8), 2343-2350.
[http://dx.doi.org/10.2337/dc13-2817] [PMID: 24824547]
[37]
Kim, M.J.; Lim, S.W.; Kim, J.H.; Choe, D.J.; Kim, J.I.; Kang, M.J. Effect of Mixed Fruit and Vegetable Juice on Alcohol Hangovers in Healthy Adults. Prev. Nutr. Food Sci., 2018, 23(1), 1-7.
[http://dx.doi.org/10.3746/pnf.2018.23.1.1] [PMID: 29662841]
[38]
Chen, C.H.; Ferreira, J.C.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev., 2014, 94(1), 1-34.
[http://dx.doi.org/10.1152/physrev.00017.2013] [PMID: 24382882]
[39]
Bak, M.J.; Truong, V.L.; Ko, S.Y.; Nguyen, X.N.; Ingkasupart, P.; Jun, M.; Shin, J.Y.; Jeong, W.S. Antioxidant and Hepatoprotective Effects of Procyanidins from Wild Grape (Vitis amurensis) Seeds in Ethanol-Induced Cells and Rats. Int. J. Mol. Sci., 2016, 17(5)E758
[http://dx.doi.org/10.3390/ijms17050758] [PMID: 27213339]
[40]
Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet, 2018, 390(10114), 2769-2778.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[41]
Theoharides, T.C. Treatment approaches for painful bladder syndrome/interstitial cystitis. Drugs, 2007, 67(2), 215-235.
[http://dx.doi.org/10.2165/00003495-200767020-00004] [PMID: 17284085]
[42]
Biasi, F.; Deiana, M.; Guina, T.; Gamba, P.; Leonarduzzi, G.; Poli, G. Wine consumption and intestinal redox homeostasis. Redox Biol., 2014, 2, 795-802.
[http://dx.doi.org/10.1016/j.redox.2014.06.008] [PMID: 25009781]
[43]
Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity. Oxid. Med. Cell. Longev., 2017.20171459497
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[44]
Limketkai, B.N.; Mullin, G.E.; Limsui, D.; Parian, A.M. Role of Vitamin D in Inflammatory Bowel Disease. Nutr. Clin. Pract., 2017, 32(3), 337-345.
[http://dx.doi.org/10.1177/0884533616674492] [PMID: 28537516]
[45]
Cao, Y.; Shen, J.; Ran, Z.H. Association between Faecalibacterium prausnitzii Reduction and Inflammatory Bowel Disease: A Meta-Analysis and Systematic Review of the Literature. Gastroenterol. Res. Pract., 2014.2014872725
[http://dx.doi.org/10.1155/2014/872725] [PMID: 24799893]
[46]
Weng, H.; Endo, K.; Li, J.; Kito, N.; Iwai, N. Induction of peroxisomes by butyrate-producing probiotics. PLoS One, 2015, 10(2)e0117851
[http://dx.doi.org/10.1371/journal.pone.0117851] [PMID: 25659146]
[47]
Hayashi, A.; Sato, T.; Kamada, N.; Mikami, Y.; Matsuoka, K.; Hisamatsu, T.; Hibi, T.; Roers, A.; Yagita, H.; Ohteki, T.; Yoshimura, A.; Kanai, T. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe, 2013, 13(6), 711-722.
[http://dx.doi.org/10.1016/j.chom.2013.05.013] [PMID: 23768495]
[48]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[49]
Wei, C.B.; Tao, K.; Jiang, R.; Zhou, L.D.; Zhang, Q.H.; Yuan, C.S. Quercetin protects mouse liver against triptolide-induced hepatic injury by restoring Th17/Treg balance through Tim-3 and TLR4-MyD88-NF-κB pathway. Int. Immunopharmacol., 2017, 53, 73-82.
[http://dx.doi.org/10.1016/j.intimp.2017.09.026] [PMID: 29040945]
[50]
Del Pino-García, R.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Ortega-Heras, M.; García Lomillo, J.; Muñiz, P. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells. J. Agric. Food Chem., 2017, 65(1), 66-73.
[http://dx.doi.org/10.1021/acs.jafc.6b04561] [PMID: 27957845]
[51]
Farzaei, M.H.; Shams-Ardekani, M.R.; Abbasabadi, Z.; Rahimi, R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol., 2013.2013136932
[http://dx.doi.org/10.1155/2013/136932] [PMID: 24066235]
[52]
Kim, H.; Kim, D.H.; Seo, K.H.; Chon, J.W.; Nah, S.Y.; Bartley, G.E.; Arvik, T.; Lipson, R.; Yokoyama, W. Modulation of the intestinal microbiota is associated with lower plasma cholesterol and weight gain in hamsters fed chardonnay grape seed flour. J. Agric. Food Chem., 2015, 63(5), 1460-1467.
[http://dx.doi.org/10.1021/jf5026373] [PMID: 25598538]
[53]
Roopchand, D.E.; Carmody, R.N.; Kuhn, P.; Moskal, K.; Rojas-Silva, P.; Turnbaugh, P.J.; Raskin, I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes, 2015, 64(8), 2847-2858.
[http://dx.doi.org/10.2337/db14-1916] [PMID: 25845659]
[54]
Villani, T.S.; Reichert, W.; Ferruzzi, M.G.; Pasinetti, G.M.; Simon, J.E.; Wu, Q. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration. Food Chem., 2015, 170, 271-280.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.084] [PMID: 25306345]
[55]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett., 2014, 346(2), 206-216.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[56]
Farzaei, M.H.; Rahimi, R.; Abdollahi, M. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol., 2015, 16(3), 196-210.
[http://dx.doi.org/10.2174/1389201016666150118131704] [PMID: 25601607]
[57]
Kowalczyk, M.C.; Walaszek, Z.; Kowalczyk, P.; Kinjo, T.; Hanausek, M.; Slaga, T.J. Differential effects of several phytochemicals and their derivatives on murine keratinocytes in vitro and in vivo: Implications for skin cancer prevention. Carcinogenesis, 2009, 30(6), 1008-1015.
[http://dx.doi.org/10.1093/carcin/bgp069] [PMID: 19329757]
[58]
Fukushima, E.O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol., 2011, 52(12), 2050-2061.
[http://dx.doi.org/10.1093/pcp/pcr146] [PMID: 22039103]
[59]
Oikeh, E.I.; Omoregie, E.S.; Oviasogie, F.E.; Oriakhi, K. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates. Food Sci. Nutr., 2015, 4(1), 103-109.
[http://dx.doi.org/10.1002/fsn3.268] [PMID: 26788316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy