PPARγ: Potential Therapeutic Target for Ailments Beyond Diabetes and its Natural Agonism | Bentham Science
Review Article

PPARγ: Potential Therapeutic Target for Ailments Beyond Diabetes and its Natural Agonism

Author(s): Sana Shafi, Pawan Gupta, Gopal Lal Khatik and Jeena Gupta*

Volume 20, Issue 12, 2019

Page: [1281 - 1294] Pages: 14

DOI: 10.2174/1389450120666190527115538

Price: $65

Open Access Journals Promotions 2
Abstract

Intense research interests have been observed in establishing PPAR gamma as a therapeutic target for diabetes. However, PPARγ is also emerging as an important therapeutic target for varied disease states other than type 2 diabetes like neurodegenerative disorders, cancer, spinal cord injury, asthma, and cardiovascular problems. Furthermore, glitazones, the synthetic thiazolidinediones, also known as insulin sensitizers, are the largely studied PPARγ agonists and the only ones approved for the treatment of type 2 diabetes. However, they are loaded with side effects like fluid retention, obesity, hepatic failure, bone fractures, and cardiac failure; which restrict their clinical application. Medicinal plants used traditionally are the sources of bioactive compounds to be used for the development of successful drugs and many structurally diverse natural molecules are already established as PPARγ agonists. These natural partial agonists when compared to full agonist synthetic thiazolidinediones led to weaker PPARγ activation with lesser side effects but are not thoroughly investigated. Their thorough characterization and elucidation of mechanistic activity might prove beneficial for counteracting diseases by modulating PPARγ activity through dietary changes. We aim to review the therapeutic significance of PPARγ for ailments other than diabetes and highlight natural molecules with potential PPARγ agonistic activity.

Keywords: PPARγ agonists, natural products, therapeutic agents, metabolic syndrome, cancer.

Graphical Abstract
[1]
Laudet V, Hänni C, Coll J, Catzeflis F, Stéhelin D. Evolution of the nuclear receptor gene superfamily. EMBO J 1992; 11(3): 1003-13.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05139.x] [PMID: 1312460]
[2]
Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58(4): 726-41.
[http://dx.doi.org/10.1124/pr.58.4.5] [PMID: 17132851]
[3]
Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645-50.
[http://dx.doi.org/10.1038/347645a0] [PMID: 2129546]
[4]
Berger J, Leibowitz MD, Doebber TW, et al. Novel peroxisome proliferator-activated receptor (PPAR) γ and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999; 274(10): 6718-25.
[http://dx.doi.org/10.1074/jbc.274.10.6718] [PMID: 10037770]
[5]
Dussault I, Forman BM. Prostaglandins and fatty acids regulate transcriptional signaling via the peroxisome proliferator activated receptor nuclear receptors. Prostaglandins Other Lipid Mediat 2000; 62(1): 1-13.
[http://dx.doi.org/10.1016/S0090-6980(00)00071-X] [PMID: 10936411]
[6]
Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10(4): 355-61.
[http://dx.doi.org/10.1038/nm1025] [PMID: 15057233]
[7]
Gearing KL, Göttlicher M, Teboul M, Widmark E, Gustafsson JA. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci USA 1993; 90(4): 1440-4.
[http://dx.doi.org/10.1073/pnas.90.4.1440] [PMID: 8381967]
[8]
Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12(1): 335-63.
[http://dx.doi.org/10.1146/annurev.cellbio.12.1.335] [PMID: 8970730]
[9]
Yu S, Reddy JK. Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta 2007; 1771(8): 936-51.
[http://dx.doi.org/10.1016/j.bbalip.2007.01.008] [PMID: 17306620]
[10]
Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 2007; 17(6): 292-301.
[http://dx.doi.org/10.1016/j.tcb.2007.04.001] [PMID: 17475497]
[11]
Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46(8): 1319-27.
[http://dx.doi.org/10.2337/diab.46.8.1319] [PMID: 9231657]
[12]
Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 2009; 205(1): 1-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.03.008] [PMID: 19386311]
[13]
Barish GD, Narkar VA, Evans RM. PPAR δ: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006; 116(3): 590-7.
[http://dx.doi.org/10.1172/JCI27955] [PMID: 16511591]
[14]
Seedorf U, Aberle J. Emerging roles of PPARdelta in metabolism. Biochim Biophys Acta 2007; 1771(9): 1125-31.
[http://dx.doi.org/10.1016/j.bbalip.2007.04.017] [PMID: 17588807]
[15]
Vidal-Puig AJ, Considine RV, Jimenez-Liñan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416-22.
[http://dx.doi.org/10.1172/JCI119424] [PMID: 9153284]
[16]
Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 2007; 3(4)e64
[http://dx.doi.org/10.1371/journal.pgen.0030064] [PMID: 17465682]
[17]
Zhu Y, Qi C, Korenberg JR, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 1995; 92(17): 7921-5.
[http://dx.doi.org/10.1073/pnas.92.17.7921] [PMID: 7644514]
[18]
Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272(30): 18779-89.
[http://dx.doi.org/10.1074/jbc.272.30.18779] [PMID: 9228052]
[19]
Werman A, Hollenberg A, Solanes G, Bjorbaek C, Vidal-Puig AJ, Flier JS. Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J Biol Chem 1997; 272(32): 20230-5.
[http://dx.doi.org/10.1074/jbc.272.32.20230] [PMID: 9242701]
[20]
Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289-312.
[http://dx.doi.org/10.1146/annurev.biochem.77.061307.091829] [PMID: 18518822]
[21]
Na HK, Surh YJ. Peroxisome proliferator-activated receptor γ (PPARgamma) ligands as bifunctional regulators of cell proliferation. Biochem Pharmacol 2003; 66(8): 1381-91.
[http://dx.doi.org/10.1016/S0006-2952(03)00488-X] [PMID: 14555212]
[22]
Heikkinen S, Auwerx J, Argmann CA. PPARgamma in human and mouse physiology. Biochim Biophys Acta 2007; 1771(8): 999-1013.
[http://dx.doi.org/10.1016/j.bbalip.2007.03.006] [PMID: 17475546]
[23]
Auwerx J. PPARgamma, the ultimate thrifty gene. Diabetologia 1999; 42(9): 1033-49.
[http://dx.doi.org/10.1007/s001250051268] [PMID: 10447513]
[24]
Christodoulides C, Vidal-Puig A. PPARs and adipocyte function. Mol Cell Endocrinol 2010; 318(1-2): 61-8.
[http://dx.doi.org/10.1016/j.mce.2009.09.014] [PMID: 19772894]
[25]
Picard F, Auwerx J. PPAR(γ) and glucose homeostasis. Annu Rev Nutr 2002; 22(1): 167-97.
[http://dx.doi.org/10.1146/annurev.nutr.22.010402.102808] [PMID: 12055342]
[26]
Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19(5): 557-66.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[27]
Barak Y, Nelson MC, Ong ES, et al. PPAR γ is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4(4): 585-95.
[http://dx.doi.org/10.1016/S1097-2765(00)80209-9] [PMID: 10549290]
[28]
Szatmari I, Rajnavolgyi E, Nagy L. PPARgamma, a lipid-activated transcription factor as a regulator of dendritic cell function. Ann N Y Acad Sci 2006; 1088: 207-18.
[http://dx.doi.org/10.1196/annals.1366.013] [PMID: 17192567]
[29]
Széles L, Töröcsik D, Nagy L. PPARgamma in immunity and inflammation: cell types and diseases. Biochim Biophys Acta 2007; 1771(8): 1014-30.
[http://dx.doi.org/10.1016/j.bbalip.2007.02.005] [PMID: 17418635]
[30]
Huang W, Glass CK. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol 2010; 30(8): 1542-9.
[http://dx.doi.org/10.1161/ATVBAHA.109.191189] [PMID: 20631355]
[31]
Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 2010; 10(5): 365-76.
[http://dx.doi.org/10.1038/nri2748] [PMID: 20414208]
[32]
Han S, Roman J. Peroxisome proliferator-activated receptor γ: a novel target for cancer therapeutics? Anticancer Drugs 2007; 18(3): 237-44.
[http://dx.doi.org/10.1097/CAD.0b013e328011e67d] [PMID: 17264754]
[33]
Reka AK, Kurapati H, Narala VR, et al. Peroxisome proliferator-activated receptor-γ activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol Cancer Ther 2010; 9(12): 3221-32.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0570] [PMID: 21159608]
[34]
Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 1997; 94(9): 4318-23.
[http://dx.doi.org/10.1073/pnas.94.9.4318] [PMID: 9113987]
[35]
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J Biol Chem 1995; 270(22): 12953-6.
[http://dx.doi.org/10.1074/jbc.270.22.12953] [PMID: 7768881]
[36]
Cho N, Momose Y. Peroxisome proliferator-activated receptor γ agonists as insulin sensitizers: from the discovery to recent progress. Curr Top Med Chem 2008; 8(17): 1483-507.
[http://dx.doi.org/10.2174/156802608786413474] [PMID: 19075761]
[37]
Choi JH, Banks AS, Estall JL, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 2010; 466(7305): 451-6.
[http://dx.doi.org/10.1038/nature09291] [PMID: 20651683]
[38]
Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92(1): 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[39]
Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists. Lancet Oncol 2004; 5(7): 419-29.
[http://dx.doi.org/10.1016/S1470-2045(04)01509-8] [PMID: 15231248]
[40]
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2(4): 236-40.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[41]
Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod 2010; 83(2): 168-76.
[http://dx.doi.org/10.1095/biolreprod.110.083550] [PMID: 20427759]
[42]
Elasy TA, Griffin M. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association: response to Nesto. Diabetes Care 2004; 27(8): 2096.
[http://dx.doi.org/10.2337/diacare.27.8.2096] [PMID: 15277462]
[43]
Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355(23): 2427-43.
[http://dx.doi.org/10.1056/NEJMoa066224] [PMID: 17145742]
[44]
Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 1997; 94(9): 4312-7.
[http://dx.doi.org/10.1073/pnas.94.9.4312] [PMID: 9113986]
[45]
Al-Salman J, Arjomand H, Kemp DG, Mittal M. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132(2): 121-4.
[http://dx.doi.org/10.7326/0003-4819-132-2-200001180-00006] [PMID: 10644273]
[46]
Ku YH, Cho BJ, Kim MJ, et al. Rosiglitazone increases endothelial cell migration and vascular permeability through Akt phosphorylation. BMC Pharmacol Toxicol 2017; 18(1): 62.
[http://dx.doi.org/10.1186/s40360-017-0169-y] [PMID: 28854981]
[47]
Neschen S, Morino K, Dong J, et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 2007; 56(4): 1034-41.
[http://dx.doi.org/10.2337/db06-1206] [PMID: 17251275]
[48]
Krey G, Braissant O, L’Horset F, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 1997; 11(6): 779-91.
[http://dx.doi.org/10.1210/mend.11.6.0007] [PMID: 9171241]
[49]
Margeli A, Kouraklis G, Theocharis S. Peroxisome proliferator activated receptor-gamma (PPAR-gamma) ligands and angiogenesis. Angiogenesis 2003; 6(3): 165-9.
[http://dx.doi.org/10.1023/B:AGEN.0000021377.13669.c0] [PMID: 15041792]
[50]
Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65(7): 1255-66.
[http://dx.doi.org/10.1016/0092-8674(91)90020-Y] [PMID: 1648450]
[51]
Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20(5): 649-88.
[PMID: 10529898]
[52]
Greene ME, Blumberg B, McBride OW, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 1995; 4(4-5): 281-99.
[PMID: 7787419]
[53]
Beamer BA, Negri C, Yen CJ, et al. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene. Biochem Biophys Res Commun 1997; 233(3): 756-9.
[http://dx.doi.org/10.1006/bbrc.1997.6540] [PMID: 9168928]
[54]
Elbrecht A, Chen Y, Cullinan CA, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors γ 1 and γ 2. Biochem Biophys Res Commun 1996; 224(2): 431-7.
[http://dx.doi.org/10.1006/bbrc.1996.1044] [PMID: 8702406]
[55]
Sundvold H, Lien S. Identification of a novel peroxisome proliferator-activated receptor (PPAR) γ promoter in man and transactivation by the nuclear receptor RORalpha1. Biochem Biophys Res Commun 2001; 287(2): 383-90.
[http://dx.doi.org/10.1006/bbrc.2001.5602] [PMID: 11554739]
[56]
Celi FS, Shuldiner AR. The role of peroxisome proliferator-activated receptor gamma in diabetes and obesity. Curr Diab Rep 2002; 2(2): 179-85.
[http://dx.doi.org/10.1007/s11892-002-0078-2] [PMID: 12643137]
[57]
Kintscher U, Law RE. PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 2005; 288(2): E287-91.
[http://dx.doi.org/10.1152/ajpendo.00440.2004] [PMID: 15637349]
[58]
Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS. PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev 2002; 16(1): 27-32.
[http://dx.doi.org/10.1101/gad.953802] [PMID: 11782442]
[59]
Chang TH. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Cancer Res 2000; 60: 1129-38.
[PMID: 10706135]
[60]
Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863-9.
[http://dx.doi.org/10.1172/JCI119715] [PMID: 9312188]
[61]
Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307-12.
[http://dx.doi.org/10.1038/35053000] [PMID: 11201732]
[62]
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7(8): 947-53.
[http://dx.doi.org/10.1038/90992] [PMID: 11479628]
[63]
Dutchak PA, Katafuchi T, Bookout AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 2012; 148(3): 556-67.
[http://dx.doi.org/10.1016/j.cell.2011.11.062] [PMID: 22304921]
[64]
Ye JM, Dzamko N, Cleasby ME, et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 2004; 47(7): 1306-13.
[http://dx.doi.org/10.1007/s00125-004-1436-1] [PMID: 15232684]
[65]
Koutnikova H, Cock TA, Watanabe M, et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR γ hypomorphic mice. Proc Natl Acad Sci USA 2003; 100(24): 14457-62.
[http://dx.doi.org/10.1073/pnas.2336090100] [PMID: 14603033]
[66]
Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25(2): 376-80.
[http://dx.doi.org/10.2337/diacare.25.2.376] [PMID: 11815513]
[67]
Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem 2016; 109: 157-72.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.049] [PMID: 26774923]
[68]
Taygerly JP, McGee LR, Rubenstein SM, et al. Discovery of INT131: a selective PPARγ modulator that enhances insulin sensitivity. Bioorg Med Chem 2013; 21(4): 979-92.
[http://dx.doi.org/10.1016/j.bmc.2012.11.058] [PMID: 23294830]
[69]
Furukawa A, Arita T, Fukuzaki T, et al. Synthesis and biological evaluation of novel (-)-Cercosporamide derivatives as potent selective PPARγ modulators. Eur J Med Chem 2012; 54: 522-33.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.040] [PMID: 22727448]
[70]
Blöcher R, Lamers C, Wittmann SK, et al. N-benzylbenzamides: A novel merged scaffold for orally available dual soluble epoxide hydrolase/peroxisome proliferator-activated receptor γ modulators. J Med Chem 2016; 59(1): 61-81.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01239] [PMID: 26595749]
[71]
Deka N, Uravane M, Anthony J, et al. Design and synthesis of non-TZD peroxisome proliferator-activated receptor γ (PPARγ) modulator. Med Chem Res 2014; 23(4): 2150-9.
[http://dx.doi.org/10.1007/s00044-013-0814-y]
[72]
Bajare S, Anthony J, Nair A, et al. Synthesis of N-(5-chloro-6-(quinolin-3-yloxy)pyridin-3-yl)benzenesulfonamide derivatives as non-TZD peroxisome proliferator-activated receptor γ (PPARγ) agonist. Eur J Med Chem 2012; 58: 355-60.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.027] [PMID: 23142675]
[73]
Chou PS, Ho BL, Yang YH. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J Diabetes Complications 2017; 31(6): 1053-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.01.006] [PMID: 28254448]
[74]
Racke MK. The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies. Curr Opin Neurol 2008; 21(Suppl. 1): S9-S18.
[http://dx.doi.org/10.1097/01.wco.0000313359.61176.15] [PMID: 18388801]
[75]
Hsu WJ, Wildburger NC, Haidacher SJ, et al. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol 2017; 295: 1-17.
[http://dx.doi.org/10.1016/j.expneurol.2017.05.005] [PMID: 28522250]
[76]
de la Monte SM, Tong M, Schiano I, Didsbury J. Improved Brain Insulin/IGF Signaling and Reduced Neuroinflammation with T3D-959 in an Experimental Model of Sporadic Alzheimer’s Disease. J Alzheimers Dis 2017; 55(2): 849-64.
[http://dx.doi.org/10.3233/JAD-160656] [PMID: 27802237]
[77]
Prathab Balaji S, Vijay Chand C, Justin A, Ramanathan M. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling. Pharmacol Biochem Behav 2015; 137: 60-8.
[http://dx.doi.org/10.1016/j.pbb.2015.08.007] [PMID: 26264163]
[78]
Wu G, Jiao Y, Wu J, et al. Rosiglitazone infusion therapy following minimally invasive surgery for ICH evacuation decreased perihematomal glutamate content as well as BBB permeability in rabbits. World Neurosurg 2017.
[79]
Liu J, Wang LN. Peroxisome proliferator-activated receptor gamma agonists for preventing recurrent stroke and other vascular events in people with stroke or transient ischaemic attack Cochrane Database Syst Rev 2017; 12CD010693
[http://dx.doi.org/10.1002/14651858.CD010693.pub4]
[80]
Yuan J, Ge H, Liu W, et al. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 2017; 8(12): 19855-65.
[http://dx.doi.org/10.18632/oncotarget.15774] [PMID: 28423639]
[81]
Rubin GL, Zhao Y, Kalus AM, Simpson ER. Peroxisome proliferator-activated receptor γ ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 2000; 60(6): 1604-8.
[PMID: 10749129]
[82]
Hu J, Cao X, Pang D, et al. Tumor grade related expression of neuroglobin is negatively regulated by PPARγ and confers antioxidant activity in glioma progression. Redox Biol 2017; 12: 682-9.
[http://dx.doi.org/10.1016/j.redox.2017.03.023] [PMID: 28410531]
[83]
Copland JA, Marlow LA, Kurakata S, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene 2006; 25(16): 2304-17.
[http://dx.doi.org/10.1038/sj.onc.1209267] [PMID: 16331265]
[84]
Ni J, Zhou LL, Ding L, et al. PPARγ agonist efatutazone and gefitinib synergistically inhibit the proliferation of EGFR-TKI-resistant lung adenocarcinoma cells via the PPARγ/PTEN/Akt pathway. Exp Cell Res 2017; 361(2): 246-56.
[http://dx.doi.org/10.1016/j.yexcr.2017.10.024] [PMID: 29080795]
[85]
Wang W, Liu F, Chen N. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists attenuate the profibrotic response induced by TGF-β1 in renal interstitial fibroblasts. Mediators Inflamm 2007; 2007: 62641.
[http://dx.doi.org/10.1155/2007/62641] [PMID: 18274641]
[86]
Zhang Y, Zhang X, Wang J, et al. Expression and Function of PPARs in Cancer Stem Cells. Curr Stem Cell Res Ther 2016; 11(3): 226-34.
[http://dx.doi.org/10.2174/1574888X10666150728122921] [PMID: 26216131]
[87]
Pershadsingh HA, Kurtz TW. Insulin-sensitizing effects of telmisartan: implications for treating insulin-resistant hypertension and cardiovascular disease. Diabetes Care 2004; 27(4): 1015.
[http://dx.doi.org/10.2337/diacare.27.4.1015] [PMID: 15047668]
[88]
McTigue DM, Tripathi R, Wei P, Lash AT. The PPAR γ agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 2007; 205(2): 396-406.
[http://dx.doi.org/10.1016/j.expneurol.2007.02.009] [PMID: 17433295]
[89]
Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 2005; 191(2): 331-6.
[http://dx.doi.org/10.1016/j.expneurol.2004.10.007] [PMID: 15649489]
[90]
Shibata N, Kawaguchi-Niida M, Yamamoto T, Toi S, Hirano A, Kobayashi M. Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology 2008; 28(4): 387-98.
[http://dx.doi.org/10.1111/j.1440-1789.2008.00890.x] [PMID: 18312546]
[91]
Meng QQ, Liang XJ, Wang P, et al. Rosiglitazone enhances the proliferation of neural progenitor cells and inhibits inflammation response after spinal cord injury. Neurosci Lett 2011; 503(3): 191-5.
[http://dx.doi.org/10.1016/j.neulet.2011.08.033] [PMID: 21889575]
[92]
Li H, Zhang Q, Yang X, Wang L. PPAR-γ agonist rosiglitazone reduces autophagy and promotes functional recovery in experimental traumaticspinal cord injury. Neurosci Lett 2017; 650: 89-96.
[http://dx.doi.org/10.1016/j.neulet.2017.02.075] [PMID: 28433567]
[93]
Patel SP, Cox DH, Gollihue JL, et al. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Exp Neurol 2017; 293: 74-82.
[http://dx.doi.org/10.1016/j.expneurol.2017.03.021] [PMID: 28365473]
[94]
Jia H, Xu S, Liu Q, et al. Effect of pioglitazone on neuropathic pain and spinal expression of TLR-4 and cytokines. Exp Ther Med 2016; 12(4): 2644-50.
[http://dx.doi.org/10.3892/etm.2016.3643] [PMID: 27698768]
[95]
Benayoun L, Letuve S, Druilhe A, et al. Regulation of peroxisome proliferator-activated receptor γ expression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med 2001; 164(8 Pt 1): 1487-94.
[http://dx.doi.org/10.1164/ajrccm.164.8.2101070] [PMID: 11704601]
[96]
Becker J, Delayre-Orthez C, Frossard N, Pons F. Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundam Clin Pharmacol 2006; 20(5): 429-47.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00425.x] [PMID: 16968414]
[97]
Belvisi MG, Hele DJ, Birrell MA. New anti-inflammatory therapies and targets for asthma and chronic obstructive pulmonary disease. Expert Opin Ther Targets 2004; 8(4): 265-85.
[http://dx.doi.org/10.1517/14728222.8.4.265] [PMID: 15268623]
[98]
Spears M, McSharry C, Thomson NC. Peroxisome proliferator-activated receptor-γ agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy 2006; 36(12): 1494-504.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02604.x] [PMID: 17177672]
[99]
Birrell MA, Patel HJ, McCluskie K, et al. PPAR-γ agonists as therapy for diseases involving airway neutrophilia. Eur Respir J 2004; 24(1): 18-23.
[http://dx.doi.org/10.1183/09031936.04.00098303] [PMID: 15293600]
[100]
Ward JE, Fernandes DJ, Taylor CC, Bonacci JV, Quan L, Stewart AG. The PPARgamma ligand, rosiglitazone, reduces airways hyperresponsiveness in a murine model of allergen-induced inflammation. Pulm Pharmacol Ther 2006; 19(1): 39-46.
[http://dx.doi.org/10.1016/j.pupt.2005.02.005] [PMID: 16286236]
[101]
Lee KS, Park SJ, Kim SR, et al. Modulation of airway remodeling and airway inflammation by peroxisome proliferator-activated receptor γ in a murine model of toluene diisocyanate-induced asthma. J Immunol 2006; 177(8): 5248-57.
[http://dx.doi.org/10.4049/jimmunol.177.8.5248] [PMID: 17015710]
[102]
Gu MX, Liu XC, Jiang L. [Effect of peroxisome proliferatoractivated receptor-gamma on proliferation of airway smooth muscle cells in mice with asthma] Zhongguo Dang Dai Er Ke Za Zhi. 2013; 15(7): 583-7. [Effect of peroxisome proliferator-activated receptor- gamma on proliferation of airway smooth muscle cells in mice with asthma]
[PMID: 23866284]
[103]
Maslanka T, Otrocka-Domagała I, Zuśka-Prot M, Gesek M. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, reduces but does not prevent, the pulmonary CD4+ effector T-cell response in a murine model of asthma
[104]
Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523-31.
[http://dx.doi.org/10.1172/JCI10370] [PMID: 10953027]
[105]
Lim S, Lee KS, Lee JE, et al. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 2015; 243(1): 107-19.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.037] [PMID: 26363808]
[106]
Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83(11): 1097-103.
[http://dx.doi.org/10.1161/01.RES.83.11.1097] [PMID: 9831704]
[107]
Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 1999; 274(13): 9116-21.
[http://dx.doi.org/10.1074/jbc.274.13.9116] [PMID: 10085162]
[108]
Halabi CM, Beyer AM, de Lange WJ, et al. Interference with PPAR γ function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 2008; 7(3): 215-26.
[http://dx.doi.org/10.1016/j.cmet.2007.12.008] [PMID: 18316027]
[109]
Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880-3.
[http://dx.doi.org/10.1038/47254] [PMID: 10622252]
[110]
Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004; 43(5): 993-1002.
[http://dx.doi.org/10.1161/01.HYP.0000123072.34629.57] [PMID: 15007034]
[111]
Rani N, Bharti S, Bhatia J, Nag TC, Ray R, Arya DS. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem Biol Interact 2016; 250: 59-67.
[http://dx.doi.org/10.1016/j.cbi.2016.03.015] [PMID: 26972669]
[112]
Nolte RT, Wisely GB, Westin S, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 1998; 395(6698): 137-43.
[http://dx.doi.org/10.1038/25931] [PMID: 9744270]
[113]
de Groot JC, Weidner C, Krausze J, et al. Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor γ. J Med Chem 2013; 56(4): 1535-43.
[http://dx.doi.org/10.1021/jm3013272] [PMID: 23286787]
[114]
Guasch L, Sala E, Valls C, et al. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 2011; 25(8): 717-28.
[http://dx.doi.org/10.1007/s10822-011-9446-9] [PMID: 21691811]
[115]
Liberato MV, Nascimento AS, Ayers SD, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One 2012; 7(5)e36297
[http://dx.doi.org/10.1371/journal.pone.0036297] [PMID: 22649490]
[116]
Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G. Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact 2007; 165(3): 239-50.
[http://dx.doi.org/10.1016/j.cbi.2006.12.014] [PMID: 17275799]
[117]
Sun H, Berquin IM, Owens RT, O’Flaherty JT, Edwards IJ. Peroxisome proliferator-activated receptor γ-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res 2008; 68(8): 2912-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2305] [PMID: 18413760]
[118]
Yang ZH, Miyahara H, Iwasaki Y, Takeo J, Katayama M. Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR γ in adipose tissue in type 2 diabetic KK-Ay mice. Nutr Metab (Lond) 2013; 10(1): 16.
[http://dx.doi.org/10.1186/1743-7075-10-16] [PMID: 23360495]
[119]
Heim M, Johnson J, Boess F, et al. Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J 2002; 16(7): 718-20.
[http://dx.doi.org/10.1096/fj.01-0816fje] [PMID: 11923221]
[120]
Tanaka-Yachi R, Takahashi-Muto C, Adachi K, et al. Promoting effect of α-tocopherol on beige adipocyte differentiation in 3T3-L1 cells and rat white adipose tissue. J Oleo Sci 2017; 66(2): 171-9.
[http://dx.doi.org/10.5650/jos.ess16137] [PMID: 28154348]
[121]
Campbell SE, Stone WL, Whaley SG, Qui M, Krishnan K. Gamma (gamma) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (gamma) expression in SW 480 human colon cancer cell lines. BMC Cancer 2003; 3(1): 25.
[http://dx.doi.org/10.1186/1471-2407-3-25] [PMID: 14521714]
[122]
Campbell SE, Musich PR, Whaley SG, et al. γ tocopherol upregulates the expression of 15-S-HETE and induces growth arrest through a PPAR γ-dependent mechanism in PC-3 human prostate cancer cells. Nutr Cancer 2009; 61(5): 649-62.
[http://dx.doi.org/10.1080/01635580902825654] [PMID: 19838939]
[123]
Salam NK, Huang TH, Kota BP, Kim MS, Li Y, Hibbs DE. Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem Biol Drug Des 2008; 71(1): 57-70.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00606.x] [PMID: 18086153]
[124]
Nadal X, Del Río C, Casano S, et al. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 2017; 174(23): 4263-76.
[http://dx.doi.org/10.1111/bph.14019] [PMID: 28853159]
[125]
D’Aniello E, Fellous T, Iannotti FA, et al. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta, Gen Subj 2019; 1863(3): 586-97.
[http://dx.doi.org/10.1016/j.bbagen.2019.01.002] [PMID: 30611848]
[126]
Dreier D, Latkolik S, Rycek L, et al. Linked magnolol dimer as a selective PPARγ agonist - Structure-based rational design, synthesis, and bioactivity evaluation. Sci Rep 2017; 7(1): 13002.
[http://dx.doi.org/10.1038/s41598-017-12628-5] [PMID: 29057944]
[127]
Dreier D, Resetar M, Temml V, et al. Magnolol dimer-derived fragments as PPARγ-selective probes. Org Biomol Chem 2018; 16(38): 7019-28.
[http://dx.doi.org/10.1039/C8OB01745J] [PMID: 30232493]
[128]
Zurlo D, Ziccardi P, Votino C, et al. The antiproliferative and proapoptotic effects of cladosporols A and B are related to their different binding mode as PPARγ ligands. Biochem Pharmacol 2016; 108: 22-35.
[http://dx.doi.org/10.1016/j.bcp.2016.03.007] [PMID: 26995279]
[129]
Weidner C, Rousseau M, Micikas RJ, et al. Amorfrutin C induces apoptosis and inhibits proliferation in colon cancer cells through targeting mitochondria. J Nat Prod 2016; 79(1): 2-12.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00072] [PMID: 26731300]
[130]
Georgiadis I, Karatzas T, Korou LM, et al. Evaluation of Chios mastic gum on lipid and glucose metabolism in diabetic mice. J Med Food 2014; 17(3): 393-9.
[http://dx.doi.org/10.1089/jmf.2013.0069] [PMID: 24404977]
[131]
Zou G, Gao Z, Wang J, et al. Deoxyelephantopin inhibits cancer cell proliferation and functions as a selective partial agonist against PPARgamma. Biochem Pharmacol 2008; 75(6): 1381-92.
[http://dx.doi.org/10.1016/j.bcp.2007.11.021] [PMID: 18164690]
[132]
Xu ME, Xiao SZ, Sun YH, Ou-Yang Y, Zheng XX. Effects of astragaloside IV on pathogenesis of metabolic syndrome in vitro. Acta Pharmacol Sin 2006; 27(2): 229-36.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00243.x] [PMID: 16412274]
[133]
Wang X, Wang Y, Hu JP, et al. Astragaloside IV, a natural PPARγ agonist, reduces Aβ production in Alzheimer’s disease through inhibition of BACE1. Mol Neurobiol 2017; 54(4): 2939-49.
[http://dx.doi.org/10.1007/s12035-016-9874-6] [PMID: 27023226]
[134]
Sun B, Rui R, Pan H, Zhang L, Wang X. Effect of Combined Use of Astragaloside IV (AsIV) and Atorvastatin (AV) on Expression of PPAR-γ and Inflammation-Associated Cytokines in Atherosclerosis Rats. Med Sci Monit 2018; 24: 6229-36.
[http://dx.doi.org/10.12659/MSM.908480] [PMID: 30190450]
[135]
Feng L, Luo H, Xu Z, et al. Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice. Diabetologia 2016; 59(6): 1276-86.
[http://dx.doi.org/10.1007/s00125-016-3912-9] [PMID: 26983922]
[136]
Qian J, Xie F, Shi Y, et al. Pharmacokinetic and metabolism studies of bavachinin through ultra-high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2018; 32(10)e4293
[http://dx.doi.org/10.1002/bmc.4293] [PMID: 29782651]
[137]
Du G, Zhao Y, Feng L, et al. Design, Synthesis, and Structure-Activity Relationships of Bavachinin Analogues as Peroxisome Proliferator-Activated Receptor γ Agonists. ChemMedChem 2017; 12(2): 183-93.
[http://dx.doi.org/10.1002/cmdc.201600554] [PMID: 27914122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy