Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy

Author(s): Shahram Golbabapour, Kamran Bagheri-Lankarani, Saeid Ghavami and Bita Geramizadeh*

Volume 27, Issue 35, 2020

Page: [6073 - 6095] Pages: 23

DOI: 10.2174/0929867326666190402120231

Price: $65

Open Access Journals Promotions 2
Abstract

Autoimmune hepatitis is a necroinflammatory process of liver, featuring interface hepatitis by T cells, macrophages and plasma cells that invade to periportal parenchyma. In this process, a variety of cytokines are secreted and liver tissues undergo fibrogenesis, resulting in the apoptosis of hepatocytes. Autophagy is a complementary mechanism for restraining intracellular pathogens to which the innate immune system does not provide efficient endocytosis. Hepatocytes with their particular regenerative features are normally in a quiescent state, and, autophagy controls the accumulation of excess products, therefore the liver serves as a basic model for the study of autophagy. Impairment of autophagy in the liver causes the accumulation of damaged organelles, misfolded proteins and exceeded lipids in hepatocytes as seen in metabolic diseases. In this review, we introduce autoimmune hepatitis in association with autophagy signaling. We also discuss some genes and proteins of autophagy, their regulatory roles in the activation of hepatic stellate cells and the importance of lipophagy and tyrosine kinase in hepatic fibrogenesis. In order to provide a comprehensive overview of the regulatory role of autophagy in autoimmune hepatitis, the pathway analysis of autophagy in autoimmune hepatitis is also included in this article.

Keywords: Autoimmune hepatitis, stellate cells, autophagy, cell signaling, autoimmune diseases, AIH, chronic hepatitis.

« Previous
[1]
Manns, M.P.; Czaja, A.J.; Gorham, J.D.; Krawitt, E.L.; Mieli-Vergani, G.; Vergani, D.; Vierling, J.M. American association for the study of liver diseases. Diagnosis and management of autoimmune hepatitis. Hepatology, 2010, 51(6), 2193-2213.
[http://dx.doi.org/10.1002/hep.23584 ] [PMID: 20513004]
[2]
Liberal, R.; Grant, C.R.; Longhi, M.S.; Mieli-Vergani, G.; Vergani, D. Diagnostic criteria of autoimmune hepatitis. Autoimmun. Rev., 2014, 13(4-5), 435-440.
[http://dx.doi.org/10.1016/j.autrev.2013.11.009 ] [PMID: 24418295]
[3]
Doumtsis, P.; Oikonomou, T.; Goulis, I.; Zachou, K.; Dalekos, G.; Cholongitas, E. Type 1 autoimmune hepatitis presenting with severe autoimmune neutropenia. Ann. Gastroenterol., 2018, 31(1), 123-126.
[http://dx.doi.org/10.20524/aog.2017.0186 ] [PMID: 29333079]
[4]
Amin, K.; Rasool, A.H.; Hattem, A.; Al-Karboly, T.A.; Taher, T.E.; Bystrom, J. Autoantibody profiles in autoimmune hepatitis and chronic hepatitis C identifies similarities in patients with severe disease. World J. Gastroenterol., 2017, 23(8), 1345-1352.
[http://dx.doi.org/10.3748/wjg.v23.i8.1345 ] [PMID: 28293081]
[5]
Lowe, D.; John, S. Autoimmune hepatitis: appraisal of current treatment guidelines. World J. Hepatol., 2018, 10(12), 911-923.
[http://dx.doi.org/10.4254/wjh.v10.i12.911 ] [PMID: 30631396]
[6]
Floreani, A.; Restrepo-Jiménez, P.; Secchi, M.F.; De Martin, S.; Leung, P.S.C.; Krawitt, E.; Bowlus, C.L.; Gershwin, M.E.; Anaya, J-M. Etiopathogenesis of autoimmune hepatitis. J. Autoimmun., 2018, 95, 133-143.
[http://dx.doi.org/10.1016/j.jaut.2018.10.020 ] [PMID: 30385083]
[7]
Zhang, J.Y.; Zhang, Z.; Lin, F.; Zou, Z.S.; Xu, R.N.; Jin, L.; Fu, J.L.; Shi, F.; Shi, M.; Wang, H.F.; Wang, F.S. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology, 2010, 51(1), 81-91.
[http://dx.doi.org/10.1002/hep.23273 ] [PMID: 19842207]
[8]
Christen, U.; Hintermann, E. Immunopathogenic mechanisms of autoimmune hepatitis: how much do we know from animal models? Int. J. Mol. Sci., 2016, 17(12), 2007.
[http://dx.doi.org/10.3390/ijms17122007 ] [PMID: 27916939]
[9]
Liberal, R.; Mieli-Vergani, G.; Vergani, D. Autoimmune hepatitis: From mechanisms to therapy. Rev Clin Esp, 2016, 216(7), 372-383.
[http://dx.doi.org/10.1016/j.rce.2016.04.003 ] [PMID: 27161382]
[10]
Liberal, R.; Vergani, D.; Mieli-Vergani, G. Update on autoimmune hepatitis. J. Clin. Transl. Hepatol., 2015, 3(1), 42-52.
[http://dx.doi.org/10.14218/JCTH.2014.00032 ] [PMID: 26357634]
[11]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38 ] [PMID: 28487545]
[12]
Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev., 2017, 121, 27-42.
[http://dx.doi.org/10.1016/j.addr.2017.05.007 ] [PMID: 28506744]
[13]
Fleisher, T.A.; Shearer, W.T.; Frew, A.J.; Schroeder, H.W., Jr; Weyand, C.M. Clinical immunology, principles and practice (expert consult-online and print), 4: Clinical immunology; Elsevier Health Sciences, 2013.
[14]
Anthony, P.P.; Ishak, K.G.; Nayak, N.C.; Poulsen, H.E.; Scheuer, P.J.; Sobin, L.H. The morphology of cirrhosis. Recommendations on definition, nomenclature and classification by a working group sponsored by the World Health Organization. J. Clin. Pathol., 1978, 31(5), 395-414.
[http://dx.doi.org/10.1136/jcp.31.5.395 ] [PMID: 649765]
[15]
Wells, R.G. Cellular sources of extracellular matrix in hepatic fibrosis. Clin. Liver Dis., 2008, 12(4), 759-768 viii..
[http://dx.doi.org/10.1016/j.cld.2008.07.008 ] [PMID: 18984465]
[16]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003 ] [PMID: 18471545]
[17]
Pinzani, M.; Marra, F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis., 2001, 21(3), 397-416.
[http://dx.doi.org/10.1055/s-2001-17554 ] [PMID: 11586468]
[18]
Guo, C.Y.; Wu, J.Y.; Wu, Y.B.; Zhong, M.Z.; Lu, H.M. Effects of endothelin-1 on hepatic stellate cell proliferation, collagen synthesis and secretion, intracellular free calcium concentration. World J. Gastroenterol., 2004, 10(18), 2697-2700.
[http://dx.doi.org/10.3748/wjg.v10.i18.2697 ] [PMID: 15309721]
[19]
Gonzalo, T.; Beljaars, L.; van de Bovenkamp, M.; Temming, K.; van Loenen, A-M.; Reker-Smit, C.; Meijer, D.K.F.; Lacombe, M.; Opdam, F.; Kéri, G.; Örfi, L.; Poelstra, K.; Kok, R.J. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells. J. Pharmacol. Exp. Ther., 2007, 321(3), 856-865.
[http://dx.doi.org/10.1124/jpet.106.114496 ] [PMID: 17369283]
[20]
Marra, F.; Romanelli, R.G.; Giannini, C.; Failli, P.; Pastacaldi, S.; Arrighi, M.C.; Pinzani, M.; Laffi, G.; Montalto, P.; Gentilini, P. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology, 1999, 29(1), 140-148.
[http://dx.doi.org/10.1002/hep.510290107 ] [PMID: 9862860]
[21]
Gentilini, A.; Marra, F.; Gentilini, P.; Pinzani, M. Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-I in human hepatic stellate cells. J. Hepatol., 2000, 32(2), 227-234.
[http://dx.doi.org/10.1016/S0168-8278(00)80067-7 ] [PMID: 10707862]
[22]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326.
[http://dx.doi.org/10.1089/jir.2008.0027 ] [PMID: 19441883]
[23]
DeLeve, L.D. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology, 2015, 61(5), 1740-1746.
[http://dx.doi.org/10.1002/hep.27376 ] [PMID: 25131509]
[24]
Luo, J.; Liang, Y.; Kong, F.; Qiu, J.; Liu, X.; Chen, A.; Luxon, B.A.; Wu, H.W.; Wang, Y. Vascular endothelial growth factor promotes the activation of hepatic stellate cells in chronic schistosomiasis. Immunol. Cell Biol., 2017, 95(4), 399-407.
[http://dx.doi.org/10.1038/icb.2016.109 ] [PMID: 27808086]
[25]
Jager, J.; Aparicio-Vergara, M.; Aouadi, M. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J. Intern. Med., 2016, 280(2), 209-220.
[http://dx.doi.org/10.1111/joim.12483 ] [PMID: 26864622]
[26]
Moreno, M.; Bataller, R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin. Liver Dis., 2008, 12(4), 825-852 ix..
[http://dx.doi.org//10.1016/j.cld.2008.07.013] [PMID: 18984469]
[27]
Bataller, R.; Sancho-Bru, P.; Ginès, P.; Lora, J.M.; Al-Garawi, A.; Solé, M.; Colmenero, J.; Nicolás, J.M.; Jiménez, W.; Weich, N.; Gutiérrez-Ramos, J.C.; Arroyo, V.; Rodés, J. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology, 2003, 125(1), 117-125.
[http://dx.doi.org/10.1016/S0016-5085(03)00695-4 ] [PMID: 12851877]
[28]
Choi, S.S.; Syn, W-K.; Karaca, G.F.; Omenetti, A.; Moylan, C.A.; Witek, R.P.; Agboola, K.M.; Jung, Y.; Michelotti, G.A.; Diehl, A.M. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J. Biol. Chem., 2010, 285(47), 36551-36560.
[http://dx.doi.org/10.1074/jbc.M110.168542 ] [PMID: 20843817]
[29]
Manns, M.P.; Taubert, R. Treatment of autoimmune hepatitis. Clin. Liver Dis. (Hoboken), 2014, 3(1), 15-17.
[http://dx.doi.org/10.1002/cld.306 ] [PMID: 30992882]
[30]
Cropley, A.; Weltman, M. The use of immunosuppression in autoimmune hepatitis: a current literature review. Clin. Mol. Hepatol., 2017, 23(1), 22-26.
[http://dx.doi.org/10.3350/cmh.2016.0089 ] [PMID: 28288505]
[31]
Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. Autoimmune hepatitis: Standard treatment and systematic review of alternative treatments. World J. Gastroenterol., 2017, 23(33), 6030-6048.
[http://dx.doi.org/10.3748/wjg.v23.i33.6030 ] [PMID: 28970719]
[32]
Doycheva, I.; Watt, K.D.; Gulamhusein, A.F. Autoimmune hepatitis: current and future therapeutic options. Liver Int., 2019, 39(6), 1002-1013.
[http://dx.doi.org/10.1111/liv.14062 ] [PMID: 30716203]
[33]
Janmohamed, A.; Hirschfield, G.M. Autoimmune hepatitis and complexities in management. Frontline Gastroenterol., 2019, 10(1), 77-87.
[http://dx.doi.org/10.1136/flgastro-2018-101015 ] [PMID: 30651962]
[34]
Taubert, R.; Hupa-Breier, K.L.; Jaeckel, E.; Manns, M.P. Novel therapeutic targets in autoimmune hepatitis. J. Autoimmun., 2018, 95, 34-46.
[http://dx.doi.org/10.1016/j.jaut.2018.10.022 ] [PMID: 30401504]
[35]
Jang, Y.J.; Kim, J.H.; Byun, S. Modulation of autophagy for controlling immunity. Cells, 2019, 8(2), 138.
[http://dx.doi.org/10.3390/cells8020138 ] [PMID: 30744138]
[36]
Schulze, R.J.; Drižytė, K.; Casey, C.A.; McNiven, M.A. Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol Commun, 2017, 1(5), 359-369.
[http://dx.doi.org/10.1002/hep4.1056 ] [PMID: 29109982]
[37]
Hernández-Gea, V.; Ghiassi-Nejad, Z.; Rozenfeld, R.; Gordon, R.; Fiel, M.I.; Yue, Z.; Czaja, M.J.; Friedman, S.L. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology, 2012, 142(4), 938-946.
[http://dx.doi.org/10.1053/j.gastro.2011.12.044 ] [PMID: 22240484]
[38]
Ravanan, P.; Srikumar, I.F.; Talwar, P. Autophagy: the spotlight for cellular stress responses. Life Sci., 2017, 188, 53-67.
[http://dx.doi.org/10.1016/j.lfs.2017.08.029 ] [PMID: 28866100]
[39]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697 ] [PMID: 20225336]
[40]
Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Debnath, J.; Deretic, V.; Dikic, I.; Eskelinen, E.L.; Fimia, G.M.; Fulda, S.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Harper, J.W.; Jäättelä, M.; Johansen, T.; Juhasz, G.; Kimmelman, A.C.; Kraft, C.; Ktistakis, N.T.; Kumar, S.; Levine, B.; Lopez-Otin, C.; Madeo, F.; Martens, S.; Martinez, J.; Melendez, A.; Mizushima, N.; Münz, C.; Murphy, L.O.; Penninger, J.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Santambrogio, L.; Scorrano, L.; Simon, A.K.; Simon, H.U.; Simonsen, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Kroemer, G. Molecular definitions of autophagy and related processes. EMBO J., 2017, 36(13), 1811-1836.
[http://dx.doi.org/10.15252/embj.201796697 ] [PMID: 28596378]
[41]
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242), 1131-1135.
[http://dx.doi.org/10.1038/nature07976 ] [PMID: 19339967]
[42]
Madrigal-Matute, J.; Cuervo, A.M. Regulation of liver metabolism by autophagy. Gastroenterology, 2016, 150(2), 328-339.
[http://dx.doi.org/10.1053/j.gastro.2015.09.042 ] [PMID: 26453774]
[43]
Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med., 2013, 19(8), 983-997.
[http://dx.doi.org/10.1038/nm.3232 ] [PMID: 23921753]
[44]
Budini, M.; Buratti, E.; Morselli, E.; Criollo, A. Autophagy and its impact on neurodegenerative diseases: new roles for TDP-43 and C9orf72. Front. Mol. Neurosci., 2017, 10, 170.
[http://dx.doi.org/10.3389/fnmol.2017.00170 ] [PMID: 28611593]
[45]
Thurston, T.L.M.; Ryzhakov, G.; Bloor, S.; von Muhlinen, N.; Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol., 2009, 10(11), 1215-1221.
[http://dx.doi.org/10.1038/ni.1800 ] [PMID: 19820708]
[46]
Bah, A.; Vergne, I. Macrophage autophagy and bacterial infections. Front. Immunol., 2017, 8, 1483.
[http://dx.doi.org/10.3389/fimmu.2017.01483 ] [PMID: 29163544]
[47]
Dash, S.; Chava, S.; Aydin, Y.; Chandra, P.K.; Ferraris, P.; Chen, W.; Balart, L.A.; Wu, T.; Garry, R.F. Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic er-stress response. Viruses, 2016, 8(5), 150.
[http://dx.doi.org/10.3390/v8050150 ] [PMID: 27223299]
[48]
Ke, P-Y.; Chen, S.S.L. Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liver-associated diseases. World J. Gastroenterol., 2014, 20(19), 5773-5793.
[http://dx.doi.org/10.3748/wjg.v20.i19.5773 ] [PMID: 24914338]
[49]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941 ] [PMID: 25654549]
[50]
Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J.M.; Amaravadi, R.K.; Baehrecke, E.H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D.A.; Karantza, V.; Kimmelman, A.; Kumar, S.; Levine, B.; Maiuri, M.C.; Martin, S.J.; Penninger, J.; Piacentini, M.; Rubinsztein, D.C.; Simon, H-U.; Simonsen, A.; Thorburn, A.M.; Velasco, G.; Ryan, K.M.; Kroemer, G. Autophagy in malignant transformation and cancer progression. EMBO J., 2015, 34(7), 856-880.
[http://dx.doi.org/10.15252/embj.201490784 ] [PMID: 25712477]
[51]
Chung, S.J.; Nagaraju, G.P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J.; Győrffy, B.; Gabrielson, E.; Saxena, N.K.; Sharma, D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy, 2017, 13(8), 1386-1403.
[http://dx.doi.org/10.1080/15548627.2017.1332565 ] [PMID: 28696138]
[52]
Ezaki, J.; Matsumoto, N.; Takeda-Ezaki, M.; Komatsu, M.; Takahashi, K.; Hiraoka, Y.; Taka, H.; Fujimura, T.; Takehana, K.; Yoshida, M.; Iwata, J.; Tanida, I.; Furuya, N.; Zheng, D-M.; Tada, N.; Tanaka, K.; Kominami, E.; Ueno, T. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy, 2011, 7(7), 727-736.
[http://dx.doi.org/10.4161/auto.7.7.15371 ] [PMID: 21471734]
[53]
Puleston, D.J.; Simon, A.K. Autophagy in the immune system. Immunology, 2014, 141(1), 1-8.
[http://dx.doi.org/10.1111/imm.12165 ] [PMID: 23991647]
[54]
Jia, W.; He, M-X.; McLeod, I.X.; Guo, J.; Ji, D.; He, Y-W. Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy, 2015, 11(12), 2335-2345.
[http://dx.doi.org/10.1080/15548627.2015.1110666 ] [PMID: 26569626]
[55]
McLeod, I.X.; Jia, W.; He, Y-W. The contribution of autophagy to lymphocyte survival and homeostasis. Immunol. Rev., 2012, 249(1), 195-204.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01143.x ] [PMID: 22889223]
[56]
Weindel, C.G.; Richey, L.J.; Bolland, S.; Mehta, A.J.; Kearney, J.F.; Huber, B.T. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy, 2015, 11(7), 1010-1024.
[http://dx.doi.org/10.1080/15548627.2015.1052206 ] [PMID: 26120731]
[57]
Bhattacharya, A.; Eissa, N.T. Autophagy and autoimmunity crosstalks. Front. Immunol., 2013, 4, 88.
[http://dx.doi.org/10.3389/fimmu.2013.00088 ] [PMID: 23596443]
[58]
Nedjic, J.; Aichinger, M.; Emmerich, J.; Mizushima, N.; Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 2008, 455(7211), 396-400.
[http://dx.doi.org/10.1038/nature07208 ] [PMID: 18701890]
[59]
Fujishima, Y.; Nishiumi, S.; Masuda, A.; Inoue, J.; Nguyen, N.M.T.; Irino, Y.; Komatsu, M.; Tanaka, K.; Kutsumi, H.; Azuma, T.; Yoshida, M. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Arch. Biochem. Biophys., 2011, 506(2), 223-235.
[http://dx.doi.org/10.1016/j.abb.2010.12.009 ] [PMID: 21156154]
[60]
Unger, R.H.; Clark, G.O.; Scherer, P.E.; Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta, 2010, 1801(3), 209-214.
[http://dx.doi.org/10.1016/j.bbalip.2009.10.006 ] [PMID: 19948243]
[61]
Hintermann, E.; Ehser, J.; Bayer, M.; Pfeilschifter, J.M.; Christen, U. Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6. J. Autoimmun., 2013, 44, 49-60.
[http://dx.doi.org/10.1016/j.jaut.2013.05.001 ] [PMID: 23809878]
[62]
Komiya, K.; Uchida, T.; Ueno, T.; Koike, M.; Abe, H.; Hirose, T.; Kawamori, R.; Uchiyama, Y.; Kominami, E.; Fujitani, Y.; Watada, H. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway. Biochem. Biophys. Res. Commun., 2010, 401(4), 561-567.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.101 ] [PMID: 20888798]
[63]
Thoen, L.F.; Guimarães, E.L.; Grunsven, L.A. Autophagy: a new player in hepatic stellate cell activation. Autophagy, 2012, 8(1), 126-128.
[http://dx.doi.org/10.4161/auto.8.1.18105 ] [PMID: 22082960]
[64]
Yamada, M.; Blaner, W.S.; Soprano, D.R.; Dixon, J.L.; Kjeldbye, H.M.; Goodman, D.S. Biochemical characteristics of isolated rat liver stellate cells. Hepatology, 1987, 7(6), 1224-1229.
[http://dx.doi.org/10.1002/hep.1840070609 ] [PMID: 2824313]
[65]
Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.; Mizushima, N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 2006, 441(7095), 885-889.
[http://dx.doi.org/10.1038/nature04724 ] [PMID: 16625204]
[66]
Suzuki, K.; Kirisako, T.; Kamada, Y.; Mizushima, N.; Noda, T.; Ohsumi, Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J., 2001, 20(21), 5971-5981.
[http://dx.doi.org/10.1093/emboj/20.21.5971 ] [PMID: 11689437]
[67]
Dreux, M.; Gastaminza, P.; Wieland, S.F.; Chisari, F.V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14046-14051.
[http://dx.doi.org/10.1073/pnas.0907344106 ] [PMID: 19666601]
[68]
Jounai, N.; Takeshita, F.; Kobiyama, K.; Sawano, A.; Miyawaki, A.; Xin, K.Q.; Ishii, K.J.; Kawai, T.; Akira, S.; Suzuki, K.; Okuda, K. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 14050-14055.
[http://dx.doi.org/10.1073/pnas.0704014104 ] [PMID: 17709747]
[69]
Matsunaga, K.; Morita, E.; Saitoh, T.; Akira, S.; Ktistakis, N.T.; Izumi, T.; Noda, T.; Yoshimori, T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol., 2010, 190(4), 511-521.
[http://dx.doi.org/10.1083/jcb.200911141 ] [PMID: 20713597]
[70]
Fogel, A.I.; Dlouhy, B.J.; Wang, C.; Ryu, S.W.; Neutzner, A.; Hasson, S.A.; Sideris, D.P.; Abeliovich, H.; Youle, R.J. Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol. Cell. Biol., 2013, 33(18), 3675-3688.
[http://dx.doi.org/10.1128/MCB.00079-13 ] [PMID: 23878393]
[71]
Nishimura, T.; Kaizuka, T.; Cadwell, K.; Sahani, M.H.; Saitoh, T.; Akira, S.; Virgin, H.W.; Mizushima, N. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep., 2013, 14(3), 284-291.
[http://dx.doi.org/10.1038/embor.2013.6 ] [PMID: 23392225]
[72]
Homer, C.R.; Richmond, A.L.; Rebert, N.A.; Achkar, J.P.; McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology, 2010, 139(5), 1630-1641, 1641.e1-1641.e2.,
[http://dx.doi.org/10.1053/j.gastro.2010.07.006] [PMID: 20637199]
[73]
Sorbara, M.T.; Ellison, L.K.; Ramjeet, M.; Travassos, L.H.; Jones, N.L.; Girardin, S.E.; Philpott, D.J. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity, 2013, 39(5), 858-873.
[http://dx.doi.org/10.1016/j.immuni.2013.10.013 ] [PMID: 24238340]
[74]
Gaugel, A.; Bakula, D.; Hoffmann, A.; Proikas-Cezanne, T. Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J. Mol. Signal., 2012, 7(1), 16.
[http://dx.doi.org/10.1186/1750-2187-7-16 ] [PMID: 23088497]
[75]
Radoshevich, L.; Murrow, L.; Chen, N.; Fernandez, E.; Roy, S.; Fung, C.; Debnath, J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 2010, 142(4), 590-600.
[http://dx.doi.org/10.1016/j.cell.2010.07.018 ] [PMID: 20723759]
[76]
Sou, Y.S.; Tanida, I.; Komatsu, M.; Ueno, T.; Kominami, E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem., 2006, 281(6), 3017-3024.
[http://dx.doi.org/10.1074/jbc.M505888200 ] [PMID: 16303767]
[77]
Tanida, I.; Yamasaki, M.; Komatsu, M.; Ueno, T. The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation. Autophagy, 2012, 8(1), 88-97.
[http://dx.doi.org/10.4161/auto.8.1.18339 ] [PMID: 22170151]
[78]
Young, A.R.; Chan, E.Y.; Hu, X.W.; Köchl, R.; Crawshaw, S.G.; High, S.; Hailey, D.W.; Lippincott-Schwartz, J.; Tooze, S.A. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci., 2006, 119(Pt 18), 3888-3900.
[http://dx.doi.org/10.1242/jcs.03172 ] [PMID: 16940348]
[79]
Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126(1), 121-134.
[http://dx.doi.org/10.1016/j.cell.2006.05.034 ] [PMID: 16839881]
[80]
Singh, S.B.; Davis, A.S.; Taylor, G.A.; Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 2006, 313(5792), 1438-1441.
[http://dx.doi.org/10.1126/science.1129577 ] [PMID: 16888103]
[81]
Hubert, V.; Peschel, A.; Langer, B.; Gröger, M.; Rees, A.; Kain, R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol. Open, 2016, 5(10), 1516-1529.
[http://dx.doi.org/10.1242/bio.018648 ] [PMID: 27628032]
[82]
Lu, B.; Nakamura, T.; Inouye, K.; Li, J.; Tang, Y.; Lundbäck, P.; Valdes-Ferrer, S.I.; Olofsson, P.S.; Kalb, T.; Roth, J.; Zou, Y.; Erlandsson-Harris, H.; Yang, H.; Ting, J.P.; Wang, H.; Andersson, U.; Antoine, D.J.; Chavan, S.S.; Hotamisligil, G.S.; Tracey, K.J. Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 2012, 488(7413), 670-674.
[http://dx.doi.org/10.1038/nature11290 ] [PMID: 22801494]
[83]
Mitoma, H.; Hanabuchi, S.; Kim, T.; Bao, M.; Zhang, Z.; Sugimoto, N.; Liu, Y.J. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity, 2013, 39(1), 123-135.
[http://dx.doi.org/10.1016/j.immuni.2013.07.001 ] [PMID: 23871209]
[84]
Inohara, N.; Koseki, T.; del Peso, L.; Hu, Y.; Yee, C.; Chen, S.; Carrio, R.; Merino, J.; Liu, D.; Ni, J.; Núñez, G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem., 1999, 274(21), 14560-14567.
[http://dx.doi.org/10.1074/jbc.274.21.14560 ] [PMID: 10329646]
[85]
Ren, Y.; Liu, S.F.; Nie, L.; Cai, S.Y.; Chen, J. Involvement of ayu NOD2 in NF-kappaB and MAPK signaling pathways: Insights into functional conservation of NOD2 in antibacterial innate immunity. Zool. Res., 2019, 40(2), 77-88.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2018.066 ] [PMID: 29872030]
[86]
Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151(6), 1256-1269.
[http://dx.doi.org/10.1016/j.cell.2012.11.001 ] [PMID: 23217709]
[87]
Chen, D.; Fan, W.; Lu, Y.; Ding, X.; Chen, S.; Zhong, Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell, 2012, 45(5), 629-641.
[http://dx.doi.org/10.1016/j.molcel.2011.12.036 ] [PMID: 22342342]
[88]
Mizushima, N.; Yoshimori, T.; Levine, B. Methods in mammalian autophagy research. Cell, 2010, 140(3), 313-326.
[http://dx.doi.org/10.1016/j.cell.2010.01.028 ] [PMID: 20144757]
[89]
Noda, T.; Matsunaga, K.; Taguchi-Atarashi, N.; Yoshimori, T. Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin. Cell Dev. Biol., 2010, 21(7), 671-676.
[http://dx.doi.org/10.1016/j.semcdb.2010.04.002 ] [PMID: 20403452]
[90]
Morris, D.H.; Yip, C.K.; Shi, Y.; Chait, B.T.; Wang, Q.J. BECLIN 1-VPS34 complex architecture: understanding the nuts and bolts of therapeutic targets. Front. Biol. (Beijing), 2015, 10(5), 398-426.
[http://dx.doi.org/10.1007/s11515-015-1374-y ] [PMID: 26692106]
[91]
Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y.S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J.; Ezaki, J.; Murata, S.; Hamazaki, J.; Nishito, Y.; Iemura, S.; Natsume, T.; Yanagawa, T.; Uwayama, J.; Warabi, E.; Yoshida, H.; Ishii, T.; Kobayashi, A.; Yamamoto, M.; Yue, Z.; Uchiyama, Y.; Kominami, E.; Tanaka, K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007, 131(6), 1149-1163.
[http://dx.doi.org/10.1016/j.cell.2007.10.035 ] [PMID: 18083104]
[92]
Luo, M.X.M.; Wong, S.H.; Chan, M.T.V.; Yu, L.; Yu, S.S.B.; Wu, F.; Xiao, Z.; Wang, X.; Zhang, L.; Cheng, A.S.L.; Ng, S.S.M.; Chan, F.K.L.; Cho, C.H.; Yu, J.; Sung, J.J.Y.; Wu, W.K.K. Autophagy mediates HBx-induced nuclear factor-κB activation and release of IL-6, IL-8, and CXCL2 in hepatocytes. J. Cell. Physiol., 2015, 230(10), 2382-2389.
[http://dx.doi.org/10.1002/jcp.24967 ] [PMID: 25708728]
[93]
Nakatogawa, H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem., 2013, 55, 39-50.
[http://dx.doi.org/10.1042/bse0550039 ] [PMID: 24070470]
[94]
Papinski, D.; Schuschnig, M.; Reiter, W.; Wilhelm, L.; Barnes, C.A.; Maiolica, A.; Hansmann, I.; Pfaffenwimmer, T.; Kijanska, M.; Stoffel, I.; Lee, S.S.; Brezovich, A.; Lou, J.H.; Turk, B.E.; Aebersold, R.; Ammerer, G.; Peter, M.; Kraft, C. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell, 2014, 53(3), 471-483.
[http://dx.doi.org/10.1016/j.molcel.2013.12.011 ] [PMID: 24440502]
[95]
Mari, M.; Griffith, J.; Rieter, E.; Krishnappa, L.; Klionsky, D.J.; Reggiori, F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol., 2010, 190(6), 1005-1022.
[http://dx.doi.org/10.1083/jcb.200912089 ] [PMID: 20855505]
[96]
Backues, S.K.; Orban, D.P.; Bernard, A.; Singh, K.; Cao, Y.; Klionsky, D.J. Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic, 2015, 16(2), 172-190.
[http://dx.doi.org/10.1111/tra.12240 ] [PMID: 25385507]
[97]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018 ] [PMID: 18191218]
[98]
Komatsu, M.; Waguri, S.; Ueno, T.; Iwata, J.; Murata, S.; Tanida, I.; Ezaki, J.; Mizushima, N.; Ohsumi, Y.; Uchiyama, Y.; Kominami, E.; Tanaka, K.; Chiba, T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol., 2005, 169(3), 425-434.
[http://dx.doi.org/10.1083/jcb.200412022 ] [PMID: 15866887]
[99]
Xiao, Y.; Liu, H.; Yu, J.; Zhao, Z.; Xiao, F.; Xia, T.; Wang, C.; Li, K.; Deng, J.; Guo, Y.; Chen, S.; Chen, Y.; Guo, F. MAPK1/3 regulate hepatic lipid metabolism via ATG7-dependent autophagy. Autophagy, 2016, 12(3), 592-593.
[http://dx.doi.org/10.1080/15548627.2015.1135282 ] [PMID: 26760678]
[100]
Yeganeh, B.; Hashemi, M.; de Serres, F.J.; Los, M.J.; Ghavami, S. Different faces of hepatocellular carcinoma as a health threat in 21st century. Hepat. Mon., 2013, 13(2)e9308
[http://dx.doi.org/10.5812/hepatmon.9308 ] [PMID: 23613688]
[101]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res. Rev., 2013, 12(2), 520-534.
[http://dx.doi.org/10.1016/j.arr.2012.11.004 ] [PMID: 23220384]
[102]
Zhou, X.J.; Zhang, H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy, 2012, 8(9), 1286-1299.
[http://dx.doi.org/10.4161/auto.21212 ] [PMID: 22878595]
[103]
Hwang, S.; Maloney, N.S.; Bruinsma, M.W.; Goel, G.; Duan, E.; Zhang, L.; Shrestha, B.; Diamond, M.S.; Dani, A.; Sosnovtsev, S.V.; Green, K.Y.; Lopez-Otin, C.; Xavier, R.J.; Thackray, L.B.; Virgin, H.W. Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe, 2012, 11(4), 397-409.
[http://dx.doi.org/10.1016/j.chom.2012.03.002 ] [PMID: 22520467]
[104]
Dreux, M.; Chisari, F.V. Viruses and the autophagy machinery. Cell Cycle, 2010, 9(7), 1295-1307.
[http://dx.doi.org/10.4161/cc.9.7.11109 ] [PMID: 20305376]
[105]
Travassos, L.H.; Carneiro, L.A.; Ramjeet, M.; Hussey, S.; Kim, Y-G.; Magalhães, J.G.; Yuan, L.; Soares, F.; Chea, E.; Le Bourhis, L.; Boneca, I.G.; Allaoui, A.; Jones, N.L.; Nuñez, G.; Girardin, S.E.; Philpott, D.J. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol., 2010, 11(1), 55-62.
[http://dx.doi.org/10.1038/ni.1823 ] [PMID: 19898471]
[106]
Correa, R.G.; Milutinovic, S.; Reed, J.C. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci. Rep., 2012, 32(6), 597-608.
[http://dx.doi.org/10.1042/BSR20120055 ] [PMID: 22908883]
[107]
Park, J-H.; Kim, Y-G.; McDonald, C.; Kanneganti, T-D.; Hasegawa, M.; Body-Malapel, M.; Inohara, N.; Núñez, G. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol., 2007, 178(4), 2380-2386.
[http://dx.doi.org/10.4049/jimmunol.178.4.2380 ] [PMID: 17277144]
[108]
Chauhan, S.; Mandell, M.A.; Deretic, V. Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy, 2016, 12(2), 429-431.
[http://dx.doi.org/10.1080/15548627.2015.1084457 ] [PMID: 26313894]
[109]
Parkes, M.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Anderson, C.A.; Fisher, S.A.; Roberts, R.G.; Nimmo, E.R.; Cummings, F.R.; Soars, D.; Drummond, H.; Lees, C.W.; Khawaja, S.A.; Bagnall, R.; Burke, D.A.; Todhunter, C.E.; Ahmad, T.; Onnie, C.M.; McArdle, W.; Strachan, D.; Bethel, G.; Bryan, C.; Lewis, C.M.; Deloukas, P.; Forbes, A.; Sanderson, J.; Jewell, D.P.; Satsangi, J.; Mansfield, J.C.; Cardon, L.; Mathew, C.G. Wellcome trust case control consortium. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet., 2007, 39(7), 830-832.
[http://dx.doi.org/10.1038/ng2061 ] [PMID: 17554261]
[110]
McCarroll, S.A.; Huett, A.; Kuballa, P.; Chilewski, S.D.; Landry, A.; Goyette, P.; Zody, M.C.; Hall, J.L.; Brant, S.R.; Cho, J.H.; Duerr, R.H.; Silverberg, M.S.; Taylor, K.D.; Rioux, J.D.; Altshuler, D.; Daly, M.J.; Xavier, R.J. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet., 2008, 40(9), 1107-1112.
[http://dx.doi.org/10.1038/ng.215 ] [PMID: 19165925]
[111]
Brest, P.; Lapaquette, P.; Mograbi, B.; Darfeuille-Michaud, A.; Hofman, P. Risk predisposition for Crohn disease: a “ménage à trois” combining IRGM allele, miRNA and xenophagy. Autophagy, 2011, 7(7), 786-787.
[http://dx.doi.org/10.4161/auto.7.7.15595 ] [PMID: 21508684]
[112]
Villani, A.C.; Lemire, M.; Fortin, G.; Louis, E.; Silverberg, M.S.; Collette, C.; Baba, N.; Libioulle, C.; Belaiche, J.; Bitton, A.; Gaudet, D.; Cohen, A.; Langelier, D.; Fortin, P.R.; Wither, J.E.; Sarfati, M.; Rutgeerts, P.; Rioux, J.D.; Vermeire, S.; Hudson, T.J.; Franchimont, D. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat. Genet., 2009, 41(1), 71-76.
[http://dx.doi.org/10.1038/ng.285 ] [PMID: 19098911]
[113]
Igor’V, M.; Andreev, D.N. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn’s disease. Inflamm. Bowel Dis., 2014, 1, 5.
[114]
Canbay, A.; Bechmann, L.P.; Best, J.; Jochum, C.; Treichel, U.; Gerken, G. Crohn’s disease-induced non-alcoholic fatty liver disease (NAFLD) sensitizes for severe acute hepatitis B infection and liver failure. Z. Gastroenterol., 2006, 44(3), 245-248.
[http://dx.doi.org/10.1055/s-2006-926502 ] [PMID: 16514570]
[115]
Chong, Z.Z. mTOR: a novel therapeutic target for diseases of multiple systems. Curr. Drug Targets, 2015, 16(10), 1107-1132.
[http://dx.doi.org/10.2174/1389450116666150408103448 ] [PMID: 25850623]
[116]
Perl, A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann. N. Y. Acad. Sci., 2015, 1346(1), 33-44.
[http://dx.doi.org/10.1111/nyas.12756 ] [PMID: 25907074]
[117]
Matter, M.S.; Decaens, T.; Andersen, J.B.; Thorgeirsson, S.S. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J. Hepatol., 2014, 60(4), 855-865.
[http://dx.doi.org/10.1016/j.jhep.2013.11.031 ] [PMID: 24308993]
[118]
Chen, J.S.; Wang, Q.; Fu, X.H.; Huang, X-H.; Chen, X.L.; Cao, L.Q.; Chen, L.Z.; Tan, H.X.; Li, W.; Bi, J.; Zhang, L.J. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol. Res., 2009, 39(2), 177-186.
[http://dx.doi.org/10.1111/j.1872-034X.2008.00449.x ] [PMID: 19208038]
[119]
Kerkar, N.; Dugan, C.; Rumbo, C.; Morotti, R.A.; Gondolesi, G.; Shneider, B.L.; Emre, S. Rapamycin successfully treats post-transplant autoimmune hepatitis. Am. J. Transplant., 2005, 5(5), 1085-1089.
[http://dx.doi.org/10.1111/j.1600-6143.2005.00801.x ] [PMID: 15816890]
[120]
Song, G.; Ouyang, G.; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med., 2005, 9(1), 59-71.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00337.x ] [PMID: 15784165]
[121]
Schmelzle, T.; Hall, M.N. TOR, a central controller of cell growth. Cell, 2000, 103(2), 253-262.
[http://dx.doi.org/10.1016/S0092-8674(00)00117-3 ] [PMID: 11057898]
[122]
Mahadevan, D.; Powis, G.; Mash, E.A.; George, B.; Gokhale, V.M.; Zhang, S.; Shakalya, K.; Du-Cuny, L.; Berggren, M.; Ali, M.A.; Jana, U.; Ihle, N.; Moses, S.; Franklin, C.; Narayan, S.; Shirahatti, N.; Meuillet, E.J. Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol. Cancer Ther., 2008, 7(9), 2621-2632.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2276 ] [PMID: 18790745]
[123]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009 ] [PMID: 17604717]
[124]
Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev., 1999, 13(22), 2905-2927.
[http://dx.doi.org/10.1101/gad.13.22.2905 ] [PMID: 10579998]
[125]
Ghavami, S.; Hashemi, M.; Kadkhoda, K.; Alavian, S.M.; Bay, G.H.; Los, M. Apoptosis in liver diseases--detection and therapeutic applications. Med. Sci. Monit., 2005, 11(11), RA337-RA345.
[PMID: 16258409]
[126]
Martindale, J.L.; Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol., 2002, 192(1), 1-15.
[http://dx.doi.org/10.1002/jcp.10119 ] [PMID: 12115731]
[127]
Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J., 1996, 15(23), 6541-6551.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01045.x ] [PMID: 8978681]
[128]
Lee, J.V.; Carrer, A.; Shah, S.; Snyder, N.W.; Wei, S.; Venneti, S.; Worth, A.J.; Yuan, Z.F.; Lim, H.W.; Liu, S.; Jackson, E.; Aiello, N.M.; Haas, N.B.; Rebbeck, T.R.; Judkins, A.; Won, K.J.; Chodosh, L.A.; Garcia, B.A.; Stanger, B.Z.; Feldman, M.D.; Blair, I.A.; Wellen, K.E. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab., 2014, 20(2), 306-319.
[http://dx.doi.org/10.1016/j.cmet.2014.06.004 ] [PMID: 24998913]
[129]
Jain, M.V.; Shareef, A.; Likus, W.; Cieślar-Pobuda, A.; Ghavami, S.; Łos, M.J. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins. Oncotarget, 2016, 7(15), 20953-20965.
[http://dx.doi.org/10.18632/oncotarget.7996 ] [PMID: 26967567]
[130]
Czaja, A.J. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev. Gastroenterol. Hepatol., 2007, 1(1), 113-128.
[http://dx.doi.org/10.1586/17474124.1.1.113 ] [PMID: 19072440]
[131]
Bortoluci, K.R.; Medzhitov, R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell. Mol. Life Sci., 2010, 67(10), 1643-1651.
[http://dx.doi.org/10.1007/s00018-010-0335-5 ] [PMID: 20229126]
[132]
Baccala, R.; Hoebe, K.; Kono, D.H.; Beutler, B.; Theofilopoulos, A.N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med., 2007, 13(5), 543-551.
[http://dx.doi.org/10.1038/nm1590 ] [PMID: 17479100]
[133]
Krieg, A.M.; Vollmer, J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol. Rev., 2007, 220(1), 251-269.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00572.x ] [PMID: 17979852]
[134]
Kanno, A.; Tanimura, N.; Ishizaki, M.; Ohko, K.; Motoi, Y.; Onji, M.; Fukui, R.; Shimozato, T.; Yamamoto, K.; Shibata, T.; Sano, S.; Sugahara-Tobinai, A.; Takai, T.; Ohto, U.; Shimizu, T.; Saitoh, S.; Miyake, K. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat. Commun., 2015, 6, 6119.
[http://dx.doi.org/10.1038/ncomms7119 ] [PMID: 25648980]
[135]
Delgado, M.A.; Elmaoued, R.A.; Davis, A.S.; Kyei, G.; Deretic, V. Toll-like receptors control autophagy. EMBO J., 2008, 27(7), 1110-1121.
[http://dx.doi.org/10.1038/emboj.2008.31 ] [PMID: 18337753]
[136]
Shi, C.S.; Kehrl, J.H. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem., 2008, 283(48), 33175-33182.
[http://dx.doi.org/10.1074/jbc.M804478200 ] [PMID: 18772134]
[137]
Delgado, M.A.; Deretic, V. Toll-like receptors in control of immunological autophagy. Cell Death Differ., 2009, 16(7), 976-983.
[http://dx.doi.org/10.1038/cdd.2009.40 ] [PMID: 19444282]
[138]
Liu, B.; Dai, J.; Zheng, H.; Stoilova, D.; Sun, S.; Li, Z. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15824-15829.
[http://dx.doi.org/10.1073/pnas.2635458100 ] [PMID: 14668429]
[139]
Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.G.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S.; Green, D.R. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253.
[http://dx.doi.org/10.1038/nature06421 ] [PMID: 18097414]
[140]
Ghavami, S.; Cunnington, R.H.; Gupta, S.; Yeganeh, B.; Filomeno, K.L.; Freed, D.H.; Chen, S.; Klonisch, T.; Halayko, A.J.; Ambrose, E.; Singal, R.; Dixon, I.M. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis., 2015, 6e1696
[http://dx.doi.org/10.1038/cddis.2015.36 ] [PMID: 25789971]
[141]
Olsen, A.L.; Bloomer, S.A.; Chan, E.P.; Gaça, M.D.A.; Georges, P.C.; Sackey, B.; Uemura, M.; Janmey, P.A.; Wells, R.G. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 301(1), G110-G118.
[http://dx.doi.org/10.1152/ajpgi.00412.2010 ] [PMID: 21527725]
[142]
Hsieh, C.C.; Hung, C.H.; Lu, L.; Qian, S. Hepatic immune tolerance induced by hepatic stellate cells. World J. Gastroenterol., 2015, 21(42), 11887-11892.
[http://dx.doi.org/10.3748/wjg.v21.i42.11887 ] [PMID: 26576077]
[143]
Winau, F.; Hegasy, G.; Weiskirchen, R.; Weber, S.; Cassan, C.; Sieling, P.A.; Modlin, R.L.; Liblau, R.S.; Gressner, A.M.; Kaufmann, S.H. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity, 2007, 26(1), 117-129.
[http://dx.doi.org/10.1016/j.immuni.2006.11.011 ] [PMID: 17239632]
[144]
Friedman, S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem., 2000, 275(4), 2247-2250.
[http://dx.doi.org/10.1074/jbc.275.4.2247 ] [PMID: 10644669]
[145]
Weinreich, M.A.; Lintmaer, I.; Wang, L.; Liggitt, H.D.; Harkey, M.A.; Blau, C.A. Growth factor receptors as regulators of hematopoiesis. Blood, 2006, 108(12), 3713-3721.
[http://dx.doi.org/10.1182/blood-2006-01-012278 ] [PMID: 16902155]
[146]
Hinz, B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol., 2015, 47, 54-65.
[http://dx.doi.org/10.1016/j.matbio.2015.05.006 ] [PMID: 25960420]
[147]
Qureshi, O.S.; Bon, H.; Twomey, B.; Holdsworth, G.; Ford, K.; Bergin, M.; Huang, L.; Muzylak, M.; Healy, L.J.; Hurdowar, V.; Johnson, T.S. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix. Biol. Open, 2017, 6(10), 1423-1433.
[http://dx.doi.org/10.1242/bio.025866 ] [PMID: 29032370]
[148]
Cattaneo, F.; Guerra, G.; Parisi, M.; De Marinis, M.; Tafuri, D.; Cinelli, M.; Ammendola, R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int. J. Mol. Sci., 2014, 15(11), 19700-19728.
[http://dx.doi.org/10.3390/ijms151119700 ] [PMID: 25356505]
[149]
Parola, M.; Marra, F.; Pinzani, M. Myofibroblast - like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol. Aspects Med., 2008, 29(1-2), 58-66.
[http://dx.doi.org/10.1016/j.mam.2007.09.002 ] [PMID: 18022682]
[150]
Li, J.T.; Liao, Z.X.; Ping, J.; Xu, D.; Wang, H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J. Gastroenterol., 2008, 43(6), 419-428.
[http://dx.doi.org/10.1007/s00535-008-2180-y ] [PMID: 18600385]
[151]
Kisseleva, T.; Uchinami, H.; Feirt, N.; Quintana-Bustamante, O.; Segovia, J.C.; Schwabe, R.F.; Brenner, D.A. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol., 2006, 45(3), 429-438.
[http://dx.doi.org/10.1016/j.jhep.2006.04.014 ] [PMID: 16846660]
[152]
Cassiman, D.; Libbrecht, L.; Desmet, V.; Denef, C.; Roskams, T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J. Hepatol., 2002, 36(2), 200-209.
[http://dx.doi.org/10.1016/S0168-8278(01)00260-4 ] [PMID: 11830331]
[153]
Gupta, S.S.; Zeglinski, M.R.; Rattan, S.G.; Landry, N.M.; Ghavami, S.; Wigle, J.T.; Klonisch, T.; Halayko, A.J.; Dixon, I.M. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget, 2016, 7(48), 78516-78531.
[http://dx.doi.org/10.18632/oncotarget.12392 ] [PMID: 27705938]
[154]
Ghavami, S.; Cunnington, R.H.; Yeganeh, B.; Davies, J.J.; Rattan, S.G.; Bathe, K.; Kavosh, M.; Los, M.J.; Freed, D.H.; Klonisch, T.; Pierce, G.N.; Halayko, A.J.; Dixon, I.M. Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. Biochim. Biophys. Acta, 2012, 1823(12), 2274-2286.
[http://dx.doi.org/10.1016/j.bbamcr.2012.09.008 ] [PMID: 23026405]
[155]
Bonner, J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev., 2004, 15(4), 255-273.
[http://dx.doi.org/10.1016/j.cytogfr.2004.03.006 ] [PMID: 15207816]
[156]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101 ] [PMID: 15912202]
[157]
Kolios, G.; Valatas, V.; Kouroumalis, E. Role of Kupffer cells in the pathogenesis of liver disease. World J. Gastroenterol., 2006, 12(46), 7413-7420.
[http://dx.doi.org/10.3748/wjg.v12.i46.7413 ] [PMID: 17167827]
[158]
Duarte, S.; Baber, J.; Fujii, T.; Coito, A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol., 2015, 44-46, 147-156.
[http://dx.doi.org/10.1016/j.matbio.2015.01.004] [PMID: 25599939]
[159]
Nikitin, A.; Egorov, S.; Daraselia, N.; Mazo, I. Pathway studio--the analysis and navigation of molecular networks. Bioinformatics, 2003, 19(16), 2155-2157.
[http://dx.doi.org/10.1093/bioinformatics/btg290 ] [PMID: 14594725]
[160]
Rachfal, A.W.; Brigstock, D.R. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol. Res., 2003, 26(1), 1-9.
[http://dx.doi.org/10.1016/s1386-6346(03)00115-3 ] [PMID: 12787797]
[161]
DeLeve, L.D. Liver sinusoidal endothelial cells and liver regeneration. J. Clin. Invest., 2013, 123(5), 1861-1866.
[http://dx.doi.org/10.1172/JCI66025 ] [PMID: 23635783]
[162]
Ghatak, S.; Biswas, A.; Dhali, G.K.; Chowdhury, A.; Boyer, J.L.; Santra, A. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol. Appl. Pharmacol., 2011, 251(1), 59-69.
[http://dx.doi.org/10.1016/j.taap.2010.11.016 ] [PMID: 21134390]
[163]
Gandhi, C.R. Oxidative stress and hepatic stellate cells: a paradoxical relationship. Trends Cell Mol. Biol., 2012, 7, 1-10.
[PMID: 27721591]
[164]
March, S.; Graupera, M.; Rosa Sarrias, M.; Lozano, F.; Pizcueta, P.; Bosch, J.; Engel, P. Identification and functional characterization of the hepatic stellate cell CD38 cell surface molecule. Am. J. Pathol., 2007, 170(1), 176-187.
[http://dx.doi.org/10.2353/ajpath.2007.051212 ] [PMID: 17200192]
[165]
Sanz, S.; Pucilowska, J.B.; Liu, S.; Rodríguez-Ortigosa, C.M.; Lund, P.K.; Brenner, D.A.; Fuller, C.R.; Simmons, J.G.; Pardo, A.; Martínez-Chantar, M.L.; Fagin, J.A.; Prieto, J. Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut, 2005, 54(1), 134-141.
[http://dx.doi.org/10.1136/gut.2003.024505 ] [PMID: 15591519]
[166]
Nishizawa, H.; Iguchi, G.; Fukuoka, H.; Takahashi, M.; Suda, K.; Bando, H.; Matsumoto, R.; Yoshida, K.; Odake, Y.; Ogawa, W.; Takahashi, Y. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci. Rep., 2016, 6, 34605.
[http://dx.doi.org/10.1038/srep34605 ] [PMID: 27721459]
[167]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7 ] [PMID: 22878108]
[168]
Dooley, S.; ten Dijke, P. TGF-β in progression of liver disease. Cell Tissue Res., 2012, 347(1), 245-256.
[http://dx.doi.org/10.1007/s00441-011-1246-y ] [PMID: 22006249]
[169]
Yokomori, H.; Oda, M.; Yoshimura, K.; Nagai, T.; Ogi, M.; Nomura, M.; Ishii, H. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver Int., 2003, 23(6), 467-475.
[http://dx.doi.org/10.1111/j.1478-3231.2003.00880.x ] [PMID: 14986821]
[170]
Cattoretti, G.; Angelin-Duclos, C.; Shaknovich, R.; Zhou, H.; Wang, D.; Alobeid, B. PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage. J. Pathol., 2005, 206(1), 76-86.
[http://dx.doi.org/10.1002/path.1752 ] [PMID: 15772984]
[171]
Tucci, M.; Stucci, S.; Savonarola, A.; Resta, L.; Cives, M.; Rossi, R.; Silvestris, F. An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation. Exp. Hematol., 2014, 42(10), 897-908.e1.
[http://dx.doi.org/10.1016/j.exphem.2014.06.005 ] [PMID: 24971696]
[172]
Yuan, J.; Yu, M.; Li, H-H.; Long, Q.; Liang, W.; Wen, S.; Wang, M.; Guo, H-P.; Cheng, X.; Liao, Y-H. Autophagy contributes to IL-17-induced plasma cell differentiation in experimental autoimmune myocarditis. Int. Immunopharmacol., 2014, 18(1), 98-105.
[http://dx.doi.org/10.1016/j.intimp.2013.11.008 ] [PMID: 24269624]
[173]
Valaperti, A.; Eriksson, U. The role of IL-17 in experimental autoimmune myocarditis In: Th 17 Cells: Role in Inflammation and Autoimmune Disease, Quesniaux, V.;Ryffel, B.; Padova, F.D. (Eds.); Springer Link, 2009, 115- 126..
[http://dx.doi.org/10.1007/978-3-7643-8681-8_10]
[174]
Eriksson, U. The role of IL-17 in experimental autoimmune myocarditis In: IL-17, IL-22 and their producing cells: role in inflammation and autoimmunity, Quesniaux, V.; Ryffel, B.; Padova, F.D. (Eds.); Springer Link; , 2013. 165-175.
[http://dx.doi.org/10.1007/978-3-0348-0522-3_12]
[175]
Kimura, A.; Ishida, Y.; Wada, T.; Hisaoka, T.; Morikawa, Y.; Sugaya, T.; Mukaida, N.; Kondo, T. The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am. J. Pathol., 2010, 176(1), 40-50.
[http://dx.doi.org/10.2353/ajpath.2010.090146 ] [PMID: 20008137]
[176]
Hamzawy, M.; Gouda, S.A.A.; Rashid, L.; Attia Morcos, M.; Shoukry, H.; Sharawy, N. The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy. Endocrine, 2017, 58(1), 66-80.
[http://dx.doi.org/10.1007/s12020-017-1402-6 ] [PMID: 28889337]
[177]
Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 2001, 19, 683-765.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.683 ] [PMID: 11244051]
[178]
Park, H.J.; Lee, S.J.; Kim, S.H.; Han, J.; Bae, J.; Kim, S.J.; Park, C.G.; Chun, T. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol. Immunol., 2011, 48(4), 720-727.
[http://dx.doi.org/10.1016/j.molimm.2010.10.020 ] [PMID: 21095008]
[179]
Efimova, O.V.; Kelley, T.W. Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway. BMC Immunol., 2009, 10, 59-59.
[http://dx.doi.org/10.1186/1471-2172-10-59 ] [PMID: 19930596]
[180]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017 ] [PMID: 22500797]
[181]
Säemann, M.D.; Haidinger, M.; Hecking, M.; Hörl, W.H.; Weichhart, T. The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am. J. Transplant., 2009, 9(12), 2655-2661.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02832.x ] [PMID: 19788500]
[182]
Kang, R.; Tang, D.; Lotze, M.T.; Zeh Iii, H.J. Autophagy is required for IL-2-mediated fibroblast growth. Exp. Cell Res., 2013, 319(4), 556-565.
[http://dx.doi.org/10.1016/j.yexcr.2012.11.012 ] [PMID: 23195496]
[183]
Criollo, A.; Chereau, F.; Malik, S.A.; Niso-Santano, M.; Mariño, G.; Galluzzi, L.; Maiuri, M.C.; Baud, V.; Kroemer, G. Autophagy is required for the activation of NFκB. Cell Cycle, 2012, 11(1), 194-199.
[http://dx.doi.org/10.4161/cc.11.1.18669 ] [PMID: 22186785]
[184]
Dickinson, J.D.; Alevy, Y.; Malvin, N.P.; Patel, K.K.; Gunsten, S.P.; Holtzman, M.J.; Stappenbeck, T.S.; Brody, S.L. IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy, 2016, 12(2), 397-409.
[http://dx.doi.org/10.1080/15548627.2015.1056967 ] [PMID: 26062017]
[185]
Ren, C.; Zhang, X.; Shi, H.; Chen, D.; Duan, Z.; Zhang, H.; Ren, F. Autophagy modulates the levels of inflammatory cytokines in macrophages induced by lipopolysaccharide. Chinese J. Cell. Mol., 2017, 33(5), 581-585.
[PMID: 28502292]
[186]
Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435.
[http://dx.doi.org/10.1152/physrev.00030.2009 ] [PMID: 20959619]
[187]
Jia, G.; Cheng, G.; Gangahar, D.M.; Agrawal, D.K. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol., 2006, 84(5), 448-454.
[http://dx.doi.org/10.1111/j.1440-1711.2006.01454.x ] [PMID: 16942488]
[188]
Yang, Z.; Klionsky, D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 2010, 22(2), 124-131.
[http://dx.doi.org/10.1016/j.ceb.2009.11.014 ] [PMID: 20034776]
[189]
Jung, C.H.; Ro, S-H.; Cao, J.; Otto, N.M.; Kim, D-H. mTOR regulation of autophagy. FEBS Lett., 2010, 584(7), 1287-1295.
[http://dx.doi.org/10.1016/j.febslet.2010.01.017 ] [PMID: 20083114]
[190]
Cai, S.L.; Tee, A.R.; Short, J.D.; Bergeron, J.M.; Kim, J.; Shen, J.; Guo, R.; Johnson, C.L.; Kiguchi, K.; Walker, C.L. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol., 2006, 173(2), 279-289.
[http://dx.doi.org/10.1083/jcb.200507119 ] [PMID: 16636147]
[191]
Pierdominici, M.; Vacirca, D.; Delunardo, F.; Ortona, E. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr. Pharm. Des., 2011, 17(35), 3888-3897.
[http://dx.doi.org/10.2174/138161211798357809 ] [PMID: 21933144]
[192]
Yang, H.; Wang, X.; Zhang, Y.; Liu, H.; Liao, J.; Shao, K.; Chu, Y.; Liu, G. Modulation of TSC-mTOR signaling on immune cells in immunity and autoimmunity. J. Cell. Physiol., 2014, 229(1), 17-26.
[PMID: 23804073]
[193]
Clark, C.A.; Gupta, H.B.; Curiel, T.J. Tumor cell-intrinsic CD274/PD-L1: A novel metabolic balancing act with clinical potential. Autophagy, 2017, 13(5), 987-988.
[http://dx.doi.org/10.1080/15548627.2017.1280223 ] [PMID: 28368722]
[194]
Longhi, M.S.; Liberal, R.; Holder, B.; Robson, S.C.; Ma, Y.; Mieli-Vergani, G.; Vergani, D. Inhibition of interleukin-17 promotes differentiation of CD25- cells into stable t regulatory cells in patients with au-toimmune hepatitis. Gastroenterology, 2012, 142(7), 1526-1535.
[http://dx.doi.org/10.1053/j.gastro.2012.02.041]]
[195]
Holla, S.; Kurowska-Stolarska, M.; Bayry, J.; Balaji, K.N. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling. Autophagy, 2014, 10(2), 311-330.
[http://dx.doi.org/10.4161/auto.27225 ] [PMID: 24343269]
[196]
Seto, S.; Tsujimura, K.; Horii, T.; Koide, Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One, 2013, 8(12)e86017
[http://dx.doi.org/10.1371/journal.pone.0086017 ] [PMID: 24376899]
[197]
Dutta, R.K.; Kathania, M.; Raje, M.; Majumdar, S. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol., 2012, 44(6), 942-954.
[http://dx.doi.org/10.1016/j.biocel.2012.02.021 ] [PMID: 22426116]
[198]
Harris, J.; De Haro, S.A.; Master, S.S.; Keane, J.; Roberts, E.A.; Delgado, M.; Deretic, V. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity, 2007, 27(3), 505-517.
[http://dx.doi.org/10.1016/j.immuni.2007.07.022 ] [PMID: 17892853]
[199]
Wang, Z.; Jia, G.; Li, Y.; Liu, J.; Luo, J.; Zhang, J.; Xu, G.; Chen, G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget, 2017, 8(14), 22563-22580.
[http://dx.doi.org/10.18632/oncotarget.15124 ] [PMID: 28186966]
[200]
Wang, G.; Song, Y.; Liu, T.; Wang, C.; Zhang, Q.; Liu, F.; Cai, X.; Miao, Z.; Xu, H.; Xu, H.; Cao, L.; Li, F. PAK1-mediated MORC2 phosphorylation promotes gastric tumorigenesis. Oncotarget, 2015, 6(12), 9877-9886.
[http://dx.doi.org/10.18632/oncotarget.3185 ] [PMID: 25888627]
[201]
Ramachandran, A.; Jaeschke, H. PGAM5: a new player in immune-mediated liver injury. Gut, 2017, 66(4), 567-568.
[http://dx.doi.org/10.1136/gutjnl-2016-312775 ] [PMID: 27797941]
[202]
Expression of the serine/threonine kinase hSGK1 in chronic viral hepatitis. Cell. Physiol. Biochem., 2002, 12(1), 47-54..
[http://dx.doi.org/10.1159/000047826] [PMID: 11914548]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy