Abstract
FTY720 (Fingolimod) is a known sphingosine-1-phosphate (S1P) receptor agonist that exerts strong anti-inflammatory effects and was approved as the first oral drug for the treatment of multiple sclerosis by the US Food and Drug Administration (FDA) in 2010. FTY720 is mainly associated with unique functional “antagonist” and “agonist” mechanisms. The functional antagonistic mechanism is mediated by the transient down-regulation and degradation of S1P receptors on lymphocytes, which prevents lymphocytes from entering the blood stream from the lymph node. This subsequently results in the development of lymphopenia and reduces lymphocytic inflammation. Functional agonistic mechanisms are executed through S1P receptors expressed on the surface of various cells including neurons, astrocytes, microglia, and blood vessel endothelial cells. These functions might play important roles in regulating anti-apoptotic systems, modulating brain immune and phagocytic activities, preserving the Blood-Brain-Barrier (BBB), and the proliferation of neural precursor cells. Recently, FTY720 have shown receptor-independent effects, including intracellular target bindings and epigenetic modulations. Many researchers have recognized the positive effects of FTY720 and launched basic and clinical experiments to test the use of this agent against stroke. Although the mechanism of FTY720 has not been fully elucidated, its efficacy against cerebral stroke is becoming clear, not only in animal models, but also in ischemic stroke patients through clinical trials. In this article, we review the data obtained from laboratory findings and preliminary clinical trials using FTY720 for stroke treatment.
Keywords: FTY720, fingolimod, stroke, sphingosine-1-phosphate, inflammation, sphingosine kinase.
[http://dx.doi.org/10.7164/antibiotics.47.208] [PMID: 8150717]
[http://dx.doi.org/10.1016/j.intimp.2010.10.005] [PMID: 20955831]
(b)Moon, E.; Han, J.E.; Jeon, S.; Ryu, J.H.; Choi, J.W.; Chun, J. Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediators Inflamm., 2015, 2015492659
[http://dx.doi.org/10.1155/2015/492659] [PMID: 26576074]
[http://dx.doi.org/10.1002/jnr.21586] [PMID: 18058948]
[http://dx.doi.org/10.4330/wjc.v5.i4.75] [PMID: 23675553]
[http://dx.doi.org/10.1172/JCI57144] [PMID: 22045572]
[http://dx.doi.org/10.1073/pnas.92.26.12275] [PMID: 8618884]
[PMID: 2394750]
(b)Taniguchi, M.; Kitatani, K.; Kondo, T.; Hashimoto-Nishimura, M.; Asano, S.; Hayashi, A.; Mitsutake, S.; Igarashi, Y.; Umehara, H.; Takeya, H.; Kigawa, J.; Okazaki, T. Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem., 2012, 287(47), 39898-39910.
[http://dx.doi.org/10.1074/jbc.M112.416552] [PMID: 23035115]
(c)Obeid, L.M.; Linardic, C.M.; Karolak, L.A.; Hannun, Y.A. Programmed cell death induced by ceramide. Science, 1993, 259(5102), 1769-1771.
[http://dx.doi.org/10.1126/science.8456305] [PMID: 8456305]
(d)Scarlatti, F.; Bauvy, C.; Ventruti, A.; Sala, G.; Cluzeaud, F.; Vandewalle, A.; Ghidoni, R.; Codogno, P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem., 2004, 279(18), 18384-18391.
[http://dx.doi.org/10.1074/jbc.M313561200] [PMID: 14970205]
(e)Wakita, H.; Tokura, Y.; Yagi, H.; Nishimura, K.; Furukawa, F.; Takigawa, M. Keratinocyte differentiation is induced by cell-permeant ceramides and its proliferation is promoted by sphingosine. Arch. Dermatol. Res., 1994, 286(6), 350-354.
[http://dx.doi.org/10.1007/BF00402228] [PMID: 7979551]
[http://dx.doi.org/10.1073/pnas.0406536101] [PMID: 15466700]
(b)Hannun, Y.A.; Loomis, C.R.; Merrill, A.H., Jr; Bell, R.M. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem., 1986, 261(27), 12604-12609.
[PMID: 3462188]
(c)Ohta, H.; Sweeney, E.A.; Masamune, A.; Yatomi, Y.; Hakomori, S.; Igarashi, Y. Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation. Cancer Res., 1995, 55(3), 691-697.
[PMID: 7834642]
(d)McDonough, P.M.; Yasui, K.; Betto, R.; Salviati, G.; Glembotski, C.C.; Palade, P.T.; Sabbadini, R.A. Control of cardiac Ca2+ levels. Inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. Circ. Res., 1994, 75(6), 981-989.
[http://dx.doi.org/10. 1161/01.RES.75.6.981] [PMID: 7955152]
[http://dx.doi.org/10.1002/jbt.20227] [PMID: 18418901]
[http://dx.doi.org/10.1124/pr.54.2.265] [PMID: 12037142]
[http://dx.doi.org/10.1042/bj3520809] [PMID: 11104690]
(b)Okajima, F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim. Biophys. Acta, 2002, 1582(1-3), 132-137.
[http://dx.doi.org/10.1016/S1388-1981(02)00147-6] [PMID: 12069820]
[http://dx.doi.org/10.1126/science.1139221] [PMID: 17363629]
(b)Yatomi, Y.; Ruan, F.; Hakomori, S.; Igarashi, Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood, 1995, 86(1), 193-202.
[http://dx.doi.org/10.1182/blood.V86.1.193.bloodjournal861193] [PMID: 7795224]
[http://dx.doi.org/10.1126/science.1113640] [PMID: 16151014]
[http://dx.doi.org/10.1074/jbc.M306577200] [PMID: 12954646]
(b)Pfeilschifter, W.; Czech-Zechmeister, B.; Sujak, M.; Mirceska, A.; Koch, A.; Rami, A.; Steinmetz, H.; Foerch, C.; Huwiler, A.; Pfeilschifter, J. Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia. Biochem. Biophys. Res. Commun., 2011, 413(2), 212-217.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.070] [PMID: 21872577]
(c)Blondeau, N.; Lai, Y.; Tyndall, S.; Popolo, M.; Topalkara, K.; Pru, J.K.; Zhang, L.; Kim, H.; Liao, J.K.; Ding, K.; Waeber, C. Distribution of sphingosine kinase activity and mRNA in rodent brain. J. Neurochem., 2007, 103(2), 509-517.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04755.x] [PMID: 17623044]
[http://dx.doi.org/10.1016/j.bbrc.2003.09.194] [PMID: 14575709]
[http://dx.doi.org/10.1074/jbc.273.37.23722] [PMID: 9726979]
(b)Mizugishi, K.; Yamashita, T.; Olivera, A.; Miller, G.F.; Spiegel, S.; Proia, R.L. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol., 2005, 25(24), 11113-11121.
[http://dx.doi.org/10.1128/MCB.25.24.11113-11121.2005] [PMID: 16314531]
[http://dx.doi.org/10.1016/S0014-5793(03)01168-2] [PMID: 14596938]
[http://dx.doi.org/10.1074/jbc.M110.171116] [PMID: 21084291]
[http://dx.doi.org/10.1016/j.pharmthera.2017.11.001] [PMID: 29127024]
[http://dx.doi.org/10.1182/blood-2004-02-0452] [PMID: 15632208]
(b)Kluk, M.J.; Hla, T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta, 2002, 1582(1-3), 72-80.
[http://dx.doi.org/10.1016/S1388-1981(02)00139-7] [PMID: 12069812]
[http://dx.doi.org/10.1046/j.0953-816x.2001.01585.x] [PMID: 11467306]
[http://dx.doi.org/10.1016/j.neulet.2009.12.070] [PMID: 20045720]
[PMID: 9590253]
[http://dx.doi.org/10.1161/STROKEAHA.116.015371] [PMID: 27827329]
[http://dx.doi.org/10.1186/2040-7378-3-2] [PMID: 21388542]
[http://dx.doi.org/10.3389/fimmu.2018.01696] [PMID: 30127782]
[http://dx.doi.org/10.1182/blood-2012-04-426734] [PMID: 23160472]
[http://dx.doi.org/10.1161/STROKEAHA.113.002880] [PMID: 24029635]
(b)Czech, B.; Pfeilschifter, W.; Mazaheri-Omrani, N.; Strobel, M.A.; Kahles, T.; Neumann-Haefelin, T.; Rami, A.; Huwiler, A.; Pfeilschifter, J. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem. Biophys. Res. Commun., 2009, 389(2), 251-256.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.142] [PMID: 19720050]
(c)Liesz, A.; Sun, L.; Zhou, W.; Schwarting, S.; Mracsko, E.; Zorn, M.; Bauer, H.; Sommer, C.; Veltkamp, R. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One, 2011, 6(6)e21312
[http://dx.doi.org/10.1371/journal.pone.0021312] [PMID: 21701599]
[http://dx.doi.org/10.1002/ana.22186] [PMID: 21280082]
[http://dx.doi.org/10.1371/journal.pone.0133392] [PMID: 26197437]
[http://dx.doi.org/10.1002/prp2.308] [PMID: 28480040]
[http://dx.doi.org/10.1038/nri3265] [PMID: 22903150]
[http://dx.doi.org/10.2174/156720208783565645] [PMID: 18289024]
[http://dx.doi.org/10.1155/2013/629782] [PMID: 23710225]
[http://dx.doi.org/10.1161/01.STR.0000016405.06729.83] [PMID: 12053015]
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[http://dx.doi.org/10.1124/jpet.109.153544] [PMID: 19592667]
[http://dx.doi.org/10.1016/j.molmed.2015.03.006] [PMID: 25939882]
[http://dx.doi.org/10.1111/j.1600-6143.2004.00476.x] [PMID: 15196057]
[http://dx.doi.org/10.1074/jbc.M604310200] [PMID: 16891661]
[http://dx.doi.org/10.1073/pnas.1618659114] [PMID: 28396408]
[http://dx.doi.org/10.1111/j.1471-4159.2006.04295.x] [PMID: 17316399]
[http://dx.doi.org/10.1111/j.1476-5381.2009.00451.x] [PMID: 19814729]
(b)Soliven, B.; Miron, V.; Chun, J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology, 2011, 76(8)(Suppl. 3), S9-S14.
[http://dx.doi.org/10.1212/WNL.0b013e31820d9507] [PMID: 21339490]
(c)Hasegawa, Y.; Suzuki, H.; Sozen, T.; Rolland, W.; Zhang, J.H. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke, 2010, 41(2), 368-374.
[http://dx.doi.org/10.1161/STROKEAHA.109.568899] [PMID: 19940275]
[http://dx.doi.org/10.1007/s12975-013-0260-7] [PMID: 24187597]
[http://dx.doi.org/10.7150/ijms.8140] [PMID: 24578611]
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115707] [PMID: 15771584]
[http://dx.doi.org/10.1111/j.1471-4159.2007.04629.x] [PMID: 17488279]
(b)Osinde, M.; Mullershausen, F.; Dev, K.K. Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology, 2007, 52(5), 1210-1218.
[http://dx.doi.org/10.1016/j.neuropharm.2006.11.010] [PMID: 17379261]
[http://dx.doi.org/10.1002/glia.10180] [PMID: 12509810]
(b)Sato, K.; Tomura, H.; Igarashi, Y.; Ui, M.; Okajima, F. Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol. Pharmacol., 1999, 55(1), 126-133.
[http://dx.doi.org/10.1124/mol.55.1.126] [PMID: 9882706]
[http://dx.doi.org/10.1073/pnas.1014154108] [PMID: 21177428]
[http://dx.doi.org/10.1016/j.immuni.2010.03.004] [PMID: 20303295]
[http://dx.doi.org/10.1038/nrd3248] [PMID: 21031003]
[http://dx.doi.org/10.1371/journal.pone.0070124] [PMID: 23936150]
[http://dx.doi.org/10.3389/fneur.2017.00467] [PMID: 28936196]
(b)Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci., 2016, 17(12)E1967
[http://dx.doi.org/10.3390/ijms17121967] [PMID: 27898011]
[http://dx.doi.org/10.1634/stemcells.2006-0223] [PMID: 16990586]
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.034] [PMID: 28373076]
[http://dx.doi.org/10.1161/STROKEAHA.117.018505] [PMID: 29114096]
(b)Gaire, B.P.; Song, M.R.; Choi, J.W. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J. Neuroinflammation, 2018, 15(1), 284.
[http://dx.doi.org/10.1186/s12974-018-1323-1] [PMID: 30305119]
[http://dx.doi.org/10.1016/j.pharmthera.2007.08.005] [PMID: 17961662]
[http://dx.doi.org/10.1046/j.1471-4159.2003.02219.x] [PMID: 14756825]
(b)Rao, T.S.; Lariosa-Willingham, K.D.; Lin, F.F.; Palfreyman, E.L.; Yu, N.; Chun, J.; Webb, M. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res., 2003, 990(1-2), 182-194.
[http://dx.doi.org/10.1016/S0006-8993(03)03527-3] [PMID: 14568343]
(c)Rao, T.S.; Lariosa-Willingham, K.D.; Lin, F.F.; Yu, N.; Tham, C.S.; Chun, J.; Webb, M. Growth factor pre-treatment differentially regulates phosphoinositide turnover downstream of lysophospholipid receptor and metabotropic glutamate receptors in cultured rat cerebrocortical astrocytes. Int. J. Dev. Neurosci., 2004, 22(3), 131-135.
[http://dx.doi.org/10.1016/j.ijdevneu.2004.03.005] [PMID: 15140466]
[http://dx.doi.org/10.1016/j.jns.2008.06.031] [PMID: 18678377]
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.004] [PMID: 27066884]
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
(b)Yue, Z.; Friedman, L.; Komatsu, M.; Tanaka, K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim. Biophys. Acta, 2009, 1793(9), 1496-1507.
[http://dx.doi.org/10.1016/j.bbamcr.2009.01.016] [PMID: 19339210]
[http://dx.doi.org/10.1371/journal.pone.0188748] [PMID: 29186197]
[http://dx.doi.org/10.4161/auto.6412] [PMID: 18567942]
(b)Zheng, Y.Q.; Liu, J.X.; Li, X.Z.; Xu, L.; Xu, Y.G. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol. Sin., 2009, 30(7), 919-927.
[http://dx.doi.org/10.1038/aps.2009.79] [PMID: 19574998]
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[http://dx.doi.org/10.1002/glia.23536] [PMID: 30485549]
[http://dx.doi.org/10.1155/2017/7584621] [PMID: 28367448]
[http://dx.doi.org/10.1016/j.cellsig.2014.07.009] [PMID: 25035231]
[http://dx.doi.org/10.1161/CIRCRESAHA.107.170779] [PMID: 18323526]
[http://dx.doi.org/10.1096/fj.201600788RR] [PMID: 29401601]
(b)Liang, J.; Nagahashi, M.; Kim, E.Y.; Harikumar, K.B.; Yamada, A.; Huang, W.C.; Hait, N.C.; Allegood, J.C.; Price, M.M.; Avni, D.; Takabe, K.; Kordula, T.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell, 2013, 23(1), 107-120.
[http://dx.doi.org/10.1016/j.ccr.2012.11.013] [PMID: 23273921]
[http://dx.doi.org/10.1016/j.tcb.2011.09.003] [PMID: 22001186]
[http://dx.doi.org/10.1056/NEJMoa052643] [PMID: 16971719]
[http://dx.doi.org/10.1038/nn.3728] [PMID: 24859201]
(b)Gardner, N.M.; Riley, R.T.; Showker, J.L.; Voss, K.A.; Sachs, A.J.; Maddox, J.R.; Gelineau-van Waes, J.B. Elevated nuclear and cytoplasmic FTY720-phosphate in mouse embryonic fibroblasts suggests the potential for multiple mechanisms in FTY720-induced neural tube defects. Toxicol. Sci., 2016, 150(1), 161-168.
[http://dx.doi.org/10.1093/toxsci/kfv321] [PMID: 26719367]
(c)Segura-Ulate, I.; Yang, B.; Vargas-Medrano, J.; Perez, R.G. FTY720 (Fingolimod) reverses α-synuclein-induced downregulation of brain-derived neurotrophic factor mRNA in OLN-93 oligodendroglial cells. Neuropharmacology, 2017, 117, 149-157.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.028] [PMID: 28153532]
(d)Leo, A.; Citraro, R.; Amodio, N.; De Sarro, C.; Gallo Cantafio, M.E.; Constanti, A.; De Sarro, G.; Russo, E. Fingolimod exerts only temporary antiepileptogenic effects but longer-lasting positive effects on behavior in the WAG/Rij rat absence epilepsy model. Neurotherapeutics, 2017, 14(4), 1134-1147.
[http://dx.doi.org/10.1007/s13311-017-0550-y] [PMID: 28653281]
(e)Baer, A.; Colon-Moran, W.; Bhattarai, N. Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Sci. Rep., 2018, 8(1), 10910.
[http://dx.doi.org/10.1038/s41598-018-29355-0] [PMID: 30026610]
(f)Saddoughi, S.A.; Gencer, S.; Peterson, Y.K.; Ward, K.E.; Mukhopadhyay, A.; Oaks, J.; Bielawski, J.; Szulc, Z.M.; Thomas, R.J.; Selvam, S.P.; Senkal, C.E.; Garrett-Mayer, E.; De Palma, R.M.; Fedarovich, D.; Liu, A.; Habib, A.A.; Stahelin, R.V.; Perrotti, D.; Ogretmen, B. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med., 2013, 5(1), 105-121.
[http://dx.doi.org/10.1002/emmm.201201283] [PMID: 23180565]
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0150] [PMID: 24448818]
[http://dx.doi.org/10.1161/STROKEAHA.109.552554] [PMID: 19478212]
[http://dx.doi.org/10.1161/STROKEAHA.109.560714] [PMID: 19644058]
[http://dx.doi.org/10.1038/nm.1999] [PMID: 19648929]
[http://dx.doi.org/10.1111/jnc.13946] [PMID: 28054340]
[http://dx.doi.org/10.1016/j.expneurol.2012.12.009] [PMID: 23261767]
(b)Lu, L.; Barfejani, A.H.; Qin, T.; Dong, Q.; Ayata, C.; Waeber, C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res., 2014, 1555, 89-96.
[http://dx.doi.org/10.1016/j.brainres.2014.01.048] [PMID: 24502984]
[http://dx.doi.org/10.1186/s12974-015-0234-7] [PMID: 25622980]
(b)Hasegawa, Y.; Uekawa, K.; Kawano, T.; Suzuki, H.; Kim-Mitsuyama, S. Blockage of central sphingosine-1-phosphate receptor does not abolish the protective effect of FTY720 in early brain injury after experimental subarachnoid hemorrhage. Curr. Drug Deliv., 2017, 14(6), 861-866.
[http://dx.doi.org/10.2174/1567201813666160907094401] [PMID: 27605019]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016371] [PMID: 26202811]
(b)Fu, Y.; Hao, J.; Zhang, N.; Ren, L.; Sun, N.; Li, Y.J.; Yan, Y.; Huang, D.; Yu, C.; Shi, F.D. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol., 2014, 71(9), 1092-1101.
[http://dx.doi.org/10.1001/jamaneurol.2014.1065] [PMID: 25003359]
(c)Fu, Y.; Zhang, N.; Ren, L.; Yan, Y.; Sun, N.; Li, Y.J.; Han, W.; Xue, R.; Liu, Q.; Hao, J.; Yu, C.; Shi, F.D. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl. Acad. Sci. USA, 2014, 111(51), 18315-18320.
[http://dx.doi.org/10.1073/pnas.1416166111] [PMID: 25489101]
[http://dx.doi.org/10.1177/1352458515587753] [PMID: 26041795]
[http://dx.doi.org/10.1212/WNL.0000000000000137] [PMID: 24463630]