Peptides as Potential Anticancer Agents | Bentham Science
Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Peptides as Potential Anticancer Agents

Author(s): Shams Aaghaz, Vivek Gohel and Ahmed Kamal*

Volume 19, Issue 17, 2019

Page: [1491 - 1511] Pages: 21

DOI: 10.2174/1568026619666190125161517

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer consists of heterogeneous multiple cell subpopulation which at a later stage develop resistant phenotypes, which include resistance to pro-apoptotic stimuli and/or cytotoxic resistance to anticancer compounds. The property of cancerous cells to affect almost any part of the body categorizes cancer to many anatomic and molecular subtypes, each requiring a particular therapeutic intervention. As several modalities are hindered in a variety of cancers and as the cancer cells accrue varied types of oncogenic mutations during their progression the most likely benefit will be obtained by a combination of therapeutic agents that might address the diverse hallmarks of cancer. Natural compounds are the backbone of cancer therapeutics owing to their property of affecting the DNA impairment and restoration mechanisms and also the gene expression modulated via several epigenetic molecular mechanisms. Bioactive peptides isolated from flora and fauna have transformed the arena of antitumour therapy and prompt progress in preclinical studies is promising. The difficulties in creating ACP rest in improving its delivery to the tumour site and it also must maintain a low toxicity profile. The substantial production costs, low selectivity and proteolytic stability of some ACP are some of the factors hindering the progress of peptide drug development. Recently, several publications have tried to edify the field with the idea of using peptides as adjuvants with established drugs for antineoplastic use. This review focuses on peptides from natural sources that precisely target tumour cells and subsequently serve as anticancer agents that are less toxic to normal tissues.

Keywords: Cancer, Oncogene, Epigenetics, Apoptosis, Marine, Peptide.

Graphical Abstract
[1]
Sudhakar, A. History of Cancer, Ancient and Modern Treatment Methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[2]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6ed16
[PMID: 24883085]
[3]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[4]
WHO | Cancer. WHO; 2018. (Available at:. https://www.who.int/health-topics/cancer#tab=overview
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[6]
Thun, M.; Peto, R.; Boreham, J.; Lopez, A.D. Stages of the cigarette epidemic on entering its second century. Tob. Control, 2012, 21(2), 96-101.
[http://dx.doi.org/10.1136/tobaccocontrol-2011-050294] [PMID: 22345230]
[7]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[8]
Weinstein, I.B. Cancer: Addiction to Oncogenes - The Achilles Heal of Cancer. Science, 2002, 297(5578), 63-64.
[http://dx.doi.org/DOI 10.1126/science.1073096]
[9]
Borghouts, C.; Kunz, C.; Groner, B. Current strategies for the development of peptide-based anti-cancer therapeutics. J. Pept. Sci., 2005, 11(11), 713-726.
[http://dx.doi.org/10.1002/psc.717] [PMID: 16138387]
[10]
Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources.(Review) Oncol. Rep., 2017, 38(2), 637-651.
[http://dx.doi.org/ 0.3892/or.2017.5778] [PMID: 28677775]
[11]
Porta, A.; Petrone, A.M.; Morello, S.; Granata, I.; Rizzo, F.; Memoli, D.; Weisz, A.; Maresca, B. Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell. Microbiol., 2017, 19(2)e12645
[http://dx.doi.org/10.1111/cmi.12645] [PMID: 27404739]
[12]
Dabarera, M.C.; Athiththan, L.V.; Perera, R.P. Antihypertensive peptides from curd. Ayu, 2015, 36(2), 214-219.
[http://dx.doi.org/10.4103/0974-8520.175534] [PMID: 27011726]
[13]
Zhou, J.; Yang, X.; Zhang, W.; Wang, J.; Wei, C.; Gu, F.; Lei, T.; Qin, Y. Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer. Agents Med. Chem., 2017, 17(4), 635-643.
[http://dx.doi.org/10.2174/1871520616666160627091131] [PMID: 27357543]
[14]
Kongcharoen, A.; Poolex, W.; Wichai, T.; Boonsombat, R. Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol. Lett., 2016, 38(7), 1195-1201.
[http://dx.doi.org/10.1007/s10529-016-2096-1] [PMID: 27094844]
[15]
Iwaniak, A.; Darewicz, M.; Minkiewicz, P.; Protasiewicz, M.; Borawska, J. Biologically active peptides derived from food proteins as the food components with cardioprotective properties. Pol. Merkuriusz Lek., 2014, 36(216), 403-406.
[16]
Mandal, S.M.; Pati, B.R.; Chakraborty, R.; Franco, O.L. New insights into the bioactivity of peptides from probiotics. Front. Biosci. (Elite Ed.), 2016, 8(3), 450-459.
[http://dx.doi.org/10.2741/e779]
[17]
Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4(OCT), 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[18]
Liao, W.; Zhang, R.; Dong, C.; Yu, Z.; Ren, J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. Int. J. Nanomedicine, 2016, 11, 1305-1321.
[PMID: 27143875]
[19]
Yamazaki, C.M.; Nakase, I.; Endo, H.; Kishimoto, S.; Mashiyama, Y.; Masuda, R.; Futaki, S.; Koide, T.; Pye, C.R.; Hewitt, W.M. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev., 2015, 57(4), 529-545.
[PMID: 15722162] [http://dx.doi.org/DOI 10.1016/j.addr.2004.10.010]
[20]
Wakabayashi, N.; Yano, Y.; Kawano, K.; Matsuzaki, K. A pH-dependent charge reversal peptide for cancer targeting. Eur. Biophys. J., 2017, 46(2), 121-127.
[http://dx.doi.org/10.1007/s00249-016-1145-y] [PMID: 27278924]
[21]
Balducci, A.; Wen, Y.; Zhang, Y.; Helfer, B.M.; Hitchens, T.K.; Meng, W.S.; Wesa, A.K.; Janjic, J.M. A novel probe for the non-invasive detection of tumor-associated inflammation. OncoImmunology, 2013, 2(2)e23034
[http://dx.doi.org/10.4161/onci.23034] [PMID: 23526711]
[22]
Suarez-Jimenez, G.M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs, 2012, 10(5), 963-986.
[http://dx.doi.org/10.3390/md10050963] [PMID: 22822350]
[23]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P.S. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(Database issue), D837-D843.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[24]
Ruiz-Torres, V.; Encinar, J.A.; Herranz-López, M.; Pérez-Sánchez, A.; Galiano, V.; Barrajón-Catalán, E.; Micol, V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules, 2017, 22(7), 1037.
[http://dx.doi.org/10.3390/molecules22071037] [PMID: 28644406]
[25]
Liu, F.; Mischel, P.S.; Cavenee, W.K. Precision cancer therapy is impacted by oncogene-dependent epigenome remodeling. NPJ Precis Oncol, 2017, 1(1), 1.
[http://dx.doi.org/10.1038/s41698-017-0005-2] [PMID: 29872691]
[26]
Novartis Oncology Targeting cancer pathways. Nat. Rev. Cancer., (Accessed: 6th September 2019 at:. https://www.nature.com/re-views/poster/pathways/index.html
[27]
Zhang, L.; Wen, X.; Li, M.; Li, S.; Zhao, H. Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. Biofactors, 2018, 44(1), 61-68.
[http://dx.doi.org/10.1002/biof.1398] [PMID: 29205560]
[28]
Ryan, P.D.; Chabner, B.A. On receptor inhibitors and chemotherapy. Clin. Cancer Res., 2000, 6(12), 4607-4609.
[PMID: 11156209]
[29]
Neuzillet, C.; Tijeras-Raballand, A.; Cohen, R.; Cros, J.; Faivre, S.; Raymond, E.; de Gramont, A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther., 2015, 147, 22-31.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.001] [PMID: 25444759]
[30]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159.
[http://dx.doi.org/DOI 10.1056/NEJMra072067]
[31]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[32]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[33]
Easwaran, H.; Tsai, H.C.; Baylin, S.B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell, 2014, 54(5), 716-727.
[http://dx.doi.org/10.1016/j.molcel.2014.05.015] [PMID: 24905005]
[34]
Ratovitski, E.A. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr. Genomics, 2017, 18(2), 175-205.
[http://dx.doi.org/10.2174/1389202917666160803165229] [PMID: 28367075]
[35]
Willis, R.E. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int. J. Mol. Sci., 2016, 17(9)E1552
[http://dx.doi.org/10.3390/ijms17091552] [PMID: 27649156]
[36]
McCarty, M.F. Targeting multiple signaling pathways as a strategy for managing prostate cancer: Multifocal signal modulation therapy. Integr. Cancer Ther., 2004, 3(4), 349-380.
[http://dx.doi.org/10.1177/1534735404270757] [PMID: 15523106]
[37]
Papo, N.; Shai, Y. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci., 2005, 62(7-8), 784-790.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403]
[38]
Huang, Y.B.; Wang, X.F.; Wang, H.Y.; Liu, Y.; Chen, Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther., 2011, 10(3), 416-426.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0811] [PMID: 21252288]
[39]
Chakraborty, C.; Hsu, C.H.; Wen, Z.H.; Lin, C.S. Anticancer drugs discovery and development from marine organism. Curr. Top. Med. Chem., 2009, 9(16), 1536-1545.
[http://dx.doi.org/10.2174/156802609789909803] [PMID: 19903164]
[40]
Tan, N.H.; Zhou, J. Plant cyclopeptides. Chem. Rev., 2006, 106(3), 840-895.
[http://dx.doi.org/DOI 10.1021/cr040699h]
[41]
Wélé, A.; Zhang, Y.; Ndoye, I.; Brouard, J-P.; Pousset, J-L.; Bodo, B. A cytotoxic cyclic heptapeptide from the seeds of Annona cherimola. J. Nat. Prod., 2004, 67(9), 1577-1579.
[http://dx.doi.org/10.1021/np040068i] [PMID: 15387664]
[42]
Hsieh, P-W.; Chang, F-R.; Wu, C-C.; Wu, K-Y.; Li, C-M.; Chen, S-L.; Wu, Y-C. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod., 2004, 67(9), 1522-1527.
[http://dx.doi.org/10.1021/np040036v] [PMID: 15387653]
[43]
Hsieh, P-W.; Chang, F-R.; Wu, C-C.; Li, C-M.; Wu, K-Y.; Chen, S-L.; Yen, H-F.; Wu, Y-C. Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL. Chem. Pharm. Bull. (Tokyo), 2005, 53(3), 336-338.
[http://dx.doi.org/10.1248/cpb.53.336] [PMID: 15744111]
[44]
Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. Isolation, structural elucidation, and synthesis of RA-XVII, a novel bicyclic hexapeptide from rubia cordifolia, and the effect of side chain at residue 1 upon the conformation and cytotoxic activity. Tetrahedron Lett., 2004, 45(5), 935-938.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.112]
[45]
Cozzolino, R.; Palladino, P.; Rossi, F.; Calì, G.; Benedetti, E.; Laccetti, P. Antineoplastic cyclic astin analogues kill tumour cells via caspase-mediated induction of apoptosis. Carcinogenesis, 2005, 26(4), 733-739.
[http://dx.doi.org/10.1093/carcin/bgi017] [PMID: 15661812]
[46]
Craik, D.J.; Daly, N.L.; Mulvenna, J.; Plan, M.R.; Trabi, M. Discovery, structure and biological activities of the cyclotides. Curr. Protein Pept. Sci., 2004, 5(5), 297-315.
[http://dx.doi.org/10.2174/1389203043379512] [PMID: 15544527]
[47]
Göransson, U.; Luijendijk, T.; Johansson, S.; Bohlin, L.; Claeson, P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod., 1999, 62(2), 283-286.
[http://dx.doi.org/10.1021/np9803878] [PMID: 10075760]
[48]
Lindholm, P.; Göransson, U.; Johansson, S.; Claeson, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Backlund, A. Cyclotides: a novel type of cytotoxic agents. Mol. Cancer Ther., 2002, 1(6), 365-369.
[PMID: 12477048]
[49]
Kong, J.L.; Du, X.B.; Fan, C.X.; Xu, J.F.; Zheng, X.J. [Determination of primary structure of a novel peptide from mistletoe and its antitumor activity] Yao Xue Xue Bao, 2004, 39(10), 813-817.
[PMID: 15700822]
[50]
Ma, X.; Wu, C.; Wang, W.; Li, X. Peptides from plants: A new source for antitumour drug research. Asian J. Tradit. Med., 2006, 1, 1-6.
[51]
John, E.A.; Pollet, P.; Gelbaum, L.; Kubanek, J. Regioselective syntheses of 2,3,4-tribromopyrrole and 2,3,5-tribromopyrrole. J. Nat. Prod., 2004, 67(11), 1929-1931.
[http://dx.doi.org/DOI 10.1021/np0498399]
[52]
Davies-Coleman, M.T.; Dzeha, T.M.; Gray, C.A.; Hess, S.; Pannell, L.K.; Hendricks, D.T.; Arendse, C.E. Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J. Nat. Prod., 2003, 66(5), 712-715.
[http://dx.doi.org/DOI 10.1021/np030014t]
[53]
Han, B.; Goeger, D.; Maier, C.S.; Gerwick, W.H. The wewakpeptins, cyclic depsipeptides from a papua new guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem., 2005, 70(8), 3133-3139.
[http://dx.doi.org/DOI 10.1021/jo0478858]
[54]
Horgen, F.D.; Kazmierski, E.B.; Westenburg, H.E.; Yoshida, W.Y.; Scheuer, P.J.; Malevamide, D. Isolation and structure determination of an isodolastatin h analogue from the marine cyanobacterium symploca hydnoides. J. Nat. Prod., 2003, 66(1), 155-156.
[http://dx.doi.org/DOI 10.1021/np020473e]
[55]
Zhou, Q-J.; Wang, J.; Liu, M.; Qiao, Y.; Hong, W-S.; Su, Y-Q.; Han, K-H.; Ke, Q-Z.; Zheng, W-Q. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol., 2016, 55, 195-202.
[http://dx.doi.org/10.1016/j.fsi.2016.05.035] [PMID: 27238427]
[56]
Harnedy, P.A.; FitzGerald, R.J. Bioactive Peptides from Marine Processing Waste and Shellfish: A Review. J. Funct. Foods, 2012, 4(1), 6-24.
[http://dx.doi.org/10.1016/j.jff.2011.09.001]
[57]
Shaala, L.A.; Youssef, D.T.A.; Ibrahim, S.R.M.; Mohamed, G.A. Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat. Prod. Res., 2016, 30(24), 2783-2790.
[http://dx.doi.org/10.1080/14786419.2016.1155577] [PMID: 26946937]
[58]
Guha, P.; Kaptan, E.; Bandyopadhyaya, G.; Kaczanowska, S.; Davila, E.; Thompson, K.; Martin, S.S.; Kalvakolanu, D.V.; Vasta, G.R.; Ahmed, H. Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 5052-5057.
[http://dx.doi.org/10.1073/pnas.1202653110] [PMID: 23479624]
[59]
Jumeri; Kim, S. M. Antioxidant and Anticancer Activities of Enzymatic Hydrolysates of Solitary Tunicate (Styela Clava). Food Sci. Biotechnol., 2011, 20(4), 1075-1085.
[http://dx.doi.org/10.1007/s10068-011-0146-y]
[60]
Kurt, O.; Özdal-Kurt, F.; Tuğlu, M.I.; Akçora, C.M. The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the MCF-7 cell line. Biotech. Histochem., 2014, 89(8), 568-576.
[http://dx.doi.org/10.3109/10520295.2014.917199] [PMID: 24867496]
[61]
Hsu, K-C.; Li-Chan, E.C.Y.; Jao, C-L. Antiproliferative Activity of Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle on Human Breast Cancer Cell Line MCF-7. Food Chem., 2011, 126(2), 617-622.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.066]
[62]
Lee, Y.G.; Kim, J.Y.; Lee, K.W.; Kim, K.H.; Lee, H.J. Peptides from anchovy sauce induce apoptosis in a human lymphoma cell (U937) through the increase of caspase-3 and -8 activities. Ann. N. Y. Acad. Sci., 2003, 1010, 399-404.
[http://dx.doi.org/10.1196/annals.1299.073] [PMID: 15033760]
[63]
Lee, Y.G.; Lee, K.W.; Kim, J.Y.; Kim, K.H.; Lee, H.J. Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactors, 2004, 21(1-4), 63-67.
[http://dx.doi.org/10.1002/biof.552210112] [PMID: 15630171]
[64]
Picot, L.; Bordenave, S.; Didelot, S.; Fruitier-Arnaudin, I.; Sannier, F.; Thorkelsson, G.; Bergé, J.P.; Guérard, F.; Chabeaud, A.; Piot, J.M. Antiproliferative Activity of Fish Protein Hydrolysates on Human Breast Cancer Cell Lines. Process Biochem., 2006, 41(5), 1217-1222.
[http://dx.doi.org/10.1016/j.procbio.2005.11.024]
[65]
Chen, J-Y.; Lin, W-J.; Lin, T-L. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides, 2009, 30(9), 1636-1642.
[http://dx.doi.org/10.1016/j.peptides.2009.06.009] [PMID: 19539000]
[66]
Chang, W-T.; Pan, C-Y.; Rajanbabu, V.; Cheng, C-W.; Chen, J-Y. Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides, 2011, 32(2), 342-352.
[http://dx.doi.org/10.1016/j.peptides.2010.11.003] [PMID: 21093514]
[67]
Wilson-Sanchez, G.; Moreno-Félix, C.; Velazquez, C.; Plascencia-Jatomea, M.; Acosta, A.; Machi-Lara, L.; Aldana-Madrid, M-L.; Ezquerra-Brauer, J-M.; Robles-Zepeda, R.; Burgos-Hernandez, A. Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vannamei). Mar. Drugs, 2010, 8(11), 2795-2809.
[http://dx.doi.org/10.3390/md8112795] [PMID: 21139845]
[68]
Lin, M-C.; Lin, S-B.; Chen, J-C.; Hui, C-F.; Chen, J-Y. Shrimp anti-lipopolysaccharide factor peptide enhances the antitumor activity of cisplatin in vitro and inhibits HeLa cells growth in nude mice. Peptides, 2010, 31(6), 1019-1025.
[http://dx.doi.org/10.1016/j.peptides.2010.02.023] [PMID: 20214941]
[69]
Somboonwiwat, K. Marcos, M.; Tassanakajon, A.; Klinbunga, S.; Aumelas, A.; Romestand, B.; Gueguen, Y.; Boze, H.; Moulin, G.; Bachere, E. Recombinant Expression and Anti-Microbial Activity of Anti-Lipopolysaccharide Factor (ALF) from the Black Tiger Shrimp. Dev. Comp. Immunol., 2005, 29(10), 841-851.
[http://dx.doi.org/10.1016/j.dci.2005.02.004] [PMID: 15978281]
[70]
Kannan, A.; Hettiarachchy, N.S.; Marshall, M.; Raghavan, S.; Kristinsson, H. Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. J. Sci. Food Agric., 2011, 91(10), 1920-1924.
[http://dx.doi.org/10.1002/jsfa.4464] [PMID: 21594874]
[71]
Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 803(1), 41-53.
[http://dx.doi.org/10.1016/j.jchromb.2003.11.005] [PMID: 15025997]
[72]
Baker, M.A.; Grubb, D.R.; Lawen, A.; Didemnin, B. Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells. Apoptosis, 2002, 7(5), 407-412.
[http://dx.doi.org/10.1023/A:1020078907108] [PMID: 12207173]
[73]
Ahuja, Deepika Matthew D. Vera; Bhagyashri V. SirDeshpande; Hiromi Morimoto; Phillip G. Williams; Madeleine M. Joullié, and; Peter L. Toogood. Inhibition of Protein Synthesis by Didemnin B: How EF-1α Mediates Inhibition of Translocation. 2000.
[74]
Taraboletti, G.; Poli, M.; Dossi, R.; Manenti, L.; Borsotti, P.; Faircloth, G.T.; Broggini, M.; D’Incalci, M.; Ribatti, D.; Giavazzi, R. Antiangiogenic activity of aplidine, a new agent of marine origin. Br. J. Cancer, 2004, 90(12), 2418-2424.
[http://dx.doi.org/10.1038/sj.bjc.6601864] [PMID: 15173857]
[75]
Andavan, G.S.B.; Lemmens-Gruber, R. Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar. Drugs, 2010, 8(3), 810-834.
[http://dx.doi.org/10.3390/md8030810] [PMID: 20411126]
[76]
Faivre, S.; Chièze, S.; Delbaldo, C.; Ady-Vago, N.; Guzman, C.; Lopez-Lazaro, L.; Lozahic, S.; Jimeno, J.; Pico, F.; Armand, J.P.; Martin, J.A.; Raymond, E. Phase I and pharmacokinetic study of aplidine, a new marine cyclodepsipeptide in patients with advanced malignancies. J. Clin. Oncol., 2005, 23(31), 7871-7880.
[http://dx.doi.org/10.1200/JCO.2005.09.357] [PMID: 16172454]
[77]
Geldof, A.A.; Mastbergen, S.C.; Henrar, R.E.C.; Faircloth, G.T. Cytotoxicity and neurocytotoxicity of new marine anticancer agents evaluated using in vitro assays. Cancer Chemother. Pharmacol., 1999, 44(4), 312-318.
[http://dx.doi.org/10.1007/s002800050983] [PMID: 10447579]
[78]
Viscoli, C. EORTC International Antimicrobial Therapy Group. Management of infection in cancer patients. studies of the EORTC International Antimicrobial Therapy Group (IATG). Eur. J. Cancer, 2002, 38(Suppl. 4), S82-S87.
[http://dx.doi.org/10.1016/S0959-8049(01)00461-0] [PMID: 11858971]
[79]
Hamada, Y.; Shioiri, T. Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem. Rev., 2005, 105(12), 4441-4482.
[http://dx.doi.org/10.1021/cr0406312] [PMID: 16351050]
[80]
Vervoort, H.; Fenical, W. Epifanio, R.de A. Tamandarins A and B: New cytotoxic depsipeptides from a Brazilian ascidian of the family didemnidae. J. Org. Chem., 2000, 65(3), 782-792.
[http://dx.doi.org/DOI 10.1021/jo991425a]
[81]
Cheng, L.; Wang, C.; Liu, H.; Wang, F.; Zheng, L.; Zhao, J.; Chu, E.; Lin, X. A novel polypeptide extracted from Ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells. Clin. Colorectal Cancer, 2012, 11(3), 207-214.
[http://dx.doi.org/10.1016/j.clcc.2012.01.002] [PMID: 22440403]
[82]
Liu, G.; Liu, M.; Wei, J.; Huang, H.; Zhang, Y.; Zhao, J.; Xiao, L.; Wu, N.; Zheng, L.; Lin, X. CS5931, a novel polypeptide in Ciona savignyi, represses angiogenesis via inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Mar. Drugs, 2014, 12(3), 1530-1544.
[http://dx.doi.org/10.3390/md12031530] [PMID: 24633253]
[83]
Blunt, J.W.; Copp, B.R.; Hu, W-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2009, 26(2), 170-244.
[http://dx.doi.org/10.1039/b805113p] [PMID: 19177222]
[84]
Ibrahim, S.R.M.; Min, C.C.; Teuscher, F.; Ebel, R.; Kakoschke, C.; Lin, W.; Wray, V.; Edrada-Ebel, R.; Proksch, P. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg. Med. Chem., 2010, 18(14), 4947-4956.
[http://dx.doi.org/10.1016/j.bmc.2010.06.012] [PMID: 20599387]
[85]
Coello, L.; Reyes, F.; Martín, M.J.; Cuevas, C.; Fernández, R. Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa. J. Nat. Prod., 2014, 77(2), 298-303.
[http://dx.doi.org/10.1021/np400888e] [PMID: 24456064]
[86]
Zhan, K-X.; Jiao, W-H.; Yang, F.; Li, J.; Wang, S-P.; Li, Y-S.; Han, B-N.; Lin, H-W. Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J. Nat. Prod., 2014, 77(12), 2678-2684.
[http://dx.doi.org/10.1021/np5006778] [PMID: 25490132]
[87]
Williams, D.E.; Yu, K.; Behrisch, H.W.; Van Soest, R.; Andersen, R.J. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J. Nat. Prod., 2009, 72(7), 1253-1257.
[http://dx.doi.org/10.1021/np900121m] [PMID: 19583251]
[88]
Nakazawa, H.; Kitano, K.; Cioca, D.; Ishikawa, M.; Ueno, M.; Ishida, F.; Kiyosawa, K. Induction of polyploidization by jaspamide in HL-60 cells. Acta Haematol., 2000, 104(2-3), 65-71.
[http://dx.doi.org/10.1159/000039754] [PMID: 11154977]
[89]
Cioca, D.P.; Kitano, K. Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell. Mol. Life Sci., 2002, 59(8), 1377-1387.
[http://dx.doi.org/10.1007/s00018-002-8515-6] [PMID: 12363040]
[90]
Odaka, C.; Sanders, M.L.; Crews, P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin. Diagn. Lab. Immunol., 2000, 7(6), 947-952.
[PMID: 11063504]
[91]
Ebada, S.S.; Wray, V.; de Voogd, N.J.; Deng, Z.; Lin, W.; Proksch, P. Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar. Drugs, 2009, 7(3), 434-444.
[http://dx.doi.org/10.3390/md7030435] [PMID: 19841723]
[92]
Zampella, A.; Sepe, V.; Bellotta, F.; Luciano, P.; D’Auria, M.V.; Cresteil, T.; Debitus, C.; Petek, S.; Poupat, C.; Ahond, A. Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org. Biomol. Chem., 2009, 7(19), 4037-4044.
[http://dx.doi.org/10.1039/b910015f] [PMID: 19763308]
[93]
Pelay-Gimeno, M.; García-Ramos, Y.; Jesús Martin, M.; Spengler, J.; Molina-Guijarro, J.M.; Munt, S.; Francesch, A.M.; Cuevas, C.; Tulla-Puche, J.; Albericio, F. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat. Commun., 2013, 4(1), 2352.
[http://dx.doi.org/10.1038/ncomms3352] [PMID: 23989475]
[94]
Freitas, V.M.; Rangel, M.; Bisson, L.F.; Jaeger, R.G.; Machado-Santelli, G.M. The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J. Cell. Physiol., 2008, 216(3), 583-594.
[http://dx.doi.org/10.1002/jcp.21432] [PMID: 18330887]
[95]
Tan, K.C.; Wakimoto, T.; Abe, I. Lipodiscamides A-C, new cytotoxic lipopeptides from Discodermia kiiensis. Org. Lett., 2014, 16(12), 3256-3259.
[http://dx.doi.org/10.1021/ol501271v] [PMID: 24906171]
[96]
Bishara, A.; Rudi, A.; Aknin, M.; Neumann, D.; Ben-Califa, N.; Kashman, Y. Taumycins A and B, two bioactive lipodepsipeptides from the Madagascar sponge Fascaplysinopsis sp. Org. Lett., 2008, 10(19), 4307-4309.
[http://dx.doi.org/10.1021/ol801750y] [PMID: 18781810]
[97]
Teta, R.; Irollo, E.; Della Sala, G.; Pirozzi, G.; Mangoni, A.
Costantino, V. Smenamides A and B, chlorinated pep-tide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar. Drugs, 2013, 11(11), 4451-4463.
[http://dx.doi.org/10.3390/md11114451] [PMID: 24217287]
[98]
Wang, Y-K.; He, H-L.; Wang, G-F.; Wu, H.; Zhou, B-C.; Chen, X-L.; Zhang, Y-Z. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs, 2010, 8(2), 255-268.
[http://dx.doi.org/10.3390/md8020255] [PMID: 20390104]
[99]
Cheong, S.H.; Kim, E-K.; Hwang, J-W.; Kim, Y-S.; Lee, J-S.; Moon, S-H.; Jeon, B-T.; Park, P-J. Purification of a novel peptide derived from a shellfish, Crassostrea gigas, and evaluation of its anticancer property. J. Agric. Food Chem., 2013, 61(47), 11442-11446.
[http://dx.doi.org/10.1021/jf4032553] [PMID: 24199654]
[100]
Kim, E-K.; Joung, H-J.; Kim, Y-S.; Hwang, J-W.; Ahn, C-B.; Jeon, Y-J.; Moon, S-H.; Park, P-J. Purification of a novel anticancer peptide from enzymatic hydrolysate of Mytilus coruscus. J. Microbiol. Biotechnol., 2012, 22(10), 1381-1387.
[http://dx.doi.org/10.4014/jmb.1207.07015] [PMID: 23075789]
[101]
Harris, J.R.; Markl, J. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur. Urol., 2000, 37(Suppl. 3), 24-33.
[http://dx.doi.org/10.1159/000052389] [PMID: 10828684]
[102]
Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev., 2000, 13(4), 523-533.
[http://dx.doi.org/10.1128/CMR.13.4.523] [PMID: 11023954]
[103]
Lamm, D.L.; Dehaven, J.I.; Riggs, D.R. Keyhole Limpet hemocyanin immunotherapy of bladder cancer: laboratory and clinical studies. Eur. Urol., 2000, 37(Suppl 3(Suppl. 3)), 41-44.
[104]
Murai, A.; Kitahara, K.; Okumura, S.; Kobayashi, M.; Horio, F. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim. Sci. J., 2016, 87(2), 257-265.
[http://dx.doi.org/10.1111/asj.12424] [PMID: 26304689]
[105]
Riggs, D.R.; Jackson, B.; Vona-Davis, L.; McFadden, D. In vitro anticancer effects of a novel immunostimulant: keyhole limpet hemocyanin. J. Surg. Res., 2002, 108(2), 279-284.
[http://dx.doi.org/10.1006/jsre.2002.6548] [PMID: 12505053]
[106]
McFadden, D.W.; Riggs, D.R.; Jackson, B.J.; Vona-Davis, L. Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett’s esophageal adenocarcinoma. Am. J. Surg., 2003, 186(5), 552-555.
[http://dx.doi.org/10.1016/j.amjsurg.2003.08.002] [PMID: 14599624]
[107]
Riggs, D.R.; Jackson, B.J.; Vona-Davis, L.; Nigam, A.; McFadden, D.W. In vitro effects of keyhole limpet hemocyanin in breast and pancreatic cancer in regards to cell growth, cytokine production, and apoptosis. Am. J. Surg., 2005, 189(6), 680-684.
[http://dx.doi.org/10.1016/j.amjsurg.2004.10.005] [PMID: 15910720]
[108]
Pettit, G.R.; Srirangam, J.K.; Barkoczy, J.; Williams, M.D.; Durkin, K.P.; Boyd, M.R.; Bai, R.; Hamel, E.; Schmidt, J.M.; Chapuis, J.C. Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des., 1995, 10(7), 529-544.
[PMID: 7495477]
[109]
Pettit, G.R.; Flahive, E.J.; Boyd, M.R.; Bai, R.; Hamel, E.; Pettit, R.K.; Schmidt, J.M. Antineoplastic agents 360. Synthesis and cancer cell growth inhibitory studies of dolastatin 15 structural modifications. Anticancer Drug Des., 1998, 13(1), 47-66.
[PMID: 9474242]
[110]
Maderna, A.; Doroski, M.; Subramanyam, C.; Porte, A.; Leverett, C.A.; Vetelino, B.C.; Chen, Z.; Risley, H.; Parris, K.; Pandit, J.; Varghese, A.H.; Shanker, S.; Song, C.; Sukuru, S.C.; Farley, K.A.; Wagenaar, M.M.; Shapiro, M.J.; Musto, S.; Lam, M.H.; Loganzo, F.; O’Donnell, C.J. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J. Med. Chem., 2014, 57(24), 10527-10543.
[http://dx.doi.org/10.1021/jm501649k] [PMID: 25431858]
[111]
Gajula, P.K.; Asthana, J.; Panda, D.; Chakraborty, T.K. A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death. J. Med. Chem., 2013, 56(6), 2235-2245.
[http://dx.doi.org/10.1021/jm3009629] [PMID: 23445405]
[112]
Pettit, G.R.; Hogan, F.; Toms, S. Antineoplastic agents. 592. Highly effective cancer cell growth inhibitory structural modifications of dolastatin 10. J. Nat. Prod., 2011, 74(5), 962-968.
[http://dx.doi.org/10.1021/np1007334] [PMID: 21534541]
[113]
Suenaga, K.; Kajiwara, S.; Kuribayashi, S.; Handa, T.; Kigoshi, H. Synthesis and cytotoxicity of aurilide analogs. Bioorg. Med. Chem. Lett., 2008, 18(14), 3902-3905.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.035] [PMID: 18583129]
[114]
Sato, S.; Murata, A.; Orihara, T.; Shirakawa, T.; Suenaga, K.; Kigoshi, H.; Uesugi, M. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem. Biol., 2011, 18(1), 131-139.
[http://dx.doi.org/10.1016/j.chembiol.2010.10.017] [PMID: 21276946]
[115]
Semenzato, M.; Cogliati, S.; Scorrano, L. Prohibitin(g) cancer: aurilide and killing by Opa1-dependent cristae remodeling. Chem. Biol., 2011, 18(1), 8-9.
[http://dx.doi.org/10.1016/j.chembiol.2011.01.001] [PMID: 21276934]
[116]
Shilabin, A.G.; Hamann, M.T. In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg. Med. Chem., 2011, 19(22), 6628-6632.
[http://dx.doi.org/10.1016/j.bmc.2011.06.050] [PMID: 21839640]
[117]
Cruz, L.J.; Luque-Ortega, J.R.; Rivas, L.; Albericio, F. Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents. Mol. Pharm., 2009, 6(3), 813-824.
[http://dx.doi.org/10.1021/mp8001039] [PMID: 19317431]
[118]
Hosta, L.; Pla-Roca, M.; Arbiol, J.; López-Iglesias, C.; Samitier, J.; Cruz, L.J.; Kogan, M.J.; Albericio, F. Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjug. Chem., 2009, 20(1), 138-146.
[http://dx.doi.org/10.1021/bc800362j] [PMID: 19072538]
[119]
García-Rocha, M.; Bonay, P.; Avila, J. The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Lett., 1996, 99(1), 43-50.
[http://dx.doi.org/10.1016/0304-3835(95)04036-6] [PMID: 8564928]
[120]
Janmaat, M.L.; Rodriguez, J.A.; Jimeno, J.; Kruyt, F.A.E.; Giaccone, G.; Kahalalide, F. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol. Pharmacol., 2005, 68(2), 502-510.
[http://dx.doi.org/10.1124/mol.105.011361] [PMID: 15908515]
[121]
Wesson, K.J.; Hamann, M.T. Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod., 1996, 59(6), 629-631.
[http://dx.doi.org/10.1021/np960153t] [PMID: 8786369]
[122]
Bhatnagar, I.; Kim, S.K. Marine antitumor drugs: status, shortfalls and strategies. Mar. Drugs, 2010, 8(10), 2702-2720.
[http://dx.doi.org/10.3390/md8102702] [PMID: 21116415]
[123]
Hanash, S.; Taguchi, A. The grand challenge to decipher the cancer proteome. Nat. Rev. Cancer, 2010, 10(9), 652-660.
[http://dx.doi.org/10.1038/nrc2918] [PMID: 20733593]
[124]
Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides, 2014, 57, 67-77.
[http://dx.doi.org/10.1016/j.peptides.2014.04.019] [PMID: 24793775]
[125]
Angeletti, L.R.; Agrimi, U.; Curia, C.; French, D.; Mariani-Costantini, R. Healing rituals and sacred serpents. Lancet, 1992, 340(8813), 223-225.
[http://dx.doi.org/10.1016/0140-6736(92)90480-Q] [PMID: 1353146]
[126]
Oelkrug, C.; Hartke, M.; Schubert, A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res., 2015, 35(2), 635-643.
[PMID: 25667440]
[127]
Conlon, J.M.; Demandt, A.; Nielsen, P.F.; Leprince, J.; Vaudry, H.; Woodhams, D.C. The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides, 2009, 30(6), 1069-1073.
[http://dx.doi.org/10.1016/j.peptides.2009.03.004] [PMID: 19463738]
[128]
Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 2013, 44(2), 715-723.
[http://dx.doi.org/10.1007/s00726-012-1395-7] [PMID: 22965637]
[129]
Conlon, J.M.; Galadari, S.; Raza, H.; Condamine, E. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem. Biol. Drug Des., 2008, 72(1), 58-64.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00671.x] [PMID: 18554256]
[130]
Rozek, T.; Wegener, K.L.; Bowie, J.H.; Olver, I.N.; Carver, J.A.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur. J. Biochem., 2000, 267(17), 5330-5341.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01536.x] [PMID: 10951191]
[131]
van Zoggel, H.; Hamma-Kourbali, Y.; Galanth, C.; Ladram, A.; Nicolas, P.; Courty, J.; Amiche, M.; Delbé, J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids, 2012, 42(1), 385-395.
[http://dx.doi.org/10.1007/s00726-010-0815-9] [PMID: 21132338]
[132]
Shi, D.; Hou, X.; Wang, L.; Gao, Y.; Wu, D.; Xi, X.; Zhou, M.; Kwok, H.F.; Duan, J.; Chen, T.; Shaw, C. Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of Pachymedusa dacnicolor. Toxins (Basel), 2016, 8(5), 144.
[http://dx.doi.org/10.3390/toxins8050144] [PMID: 27187467]
[133]
Conlon, J.M.; Woodhams, D.C.; Raza, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Rollins-Smith, L.A. Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon, 2007, 50(4), 498-506.
[http://dx.doi.org/10.1016/j.toxicon.2007.04.017] [PMID: 17561225]
[134]
Wan, Y.; Ma, C.; Zhou, M.; Xi, X.; Li, L.; Wu, D.; Wang, L.; Lin, C.; Lopez, J.C.; Chen, T.; Shaw, C. Phylloseptin-PBa--A Novel Broad-Spectrum Antimicrobial Peptide from the Skin Secretion of the Peruvian Purple-Sided Leaf Frog (Phyllomedusa baltea) Which Exhibits Cancer Cell Cytotoxicity. Toxins (Basel), 2015, 7(12), 5182-5193.
[http://dx.doi.org/10.3390/toxins7124878] [PMID: 26633506]
[135]
Ohsaki, Y.; Gazdar, A.F.; Chen, H.C.; Johnson, B.E. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res., 1992, 52(13), 3534-3538.
[PMID: 1319823]
[136]
Lehmann, J.; Retz, M.; Sidhu, S.S.; Suttmann, H.; Sell, M.; Paulsen, F.; Harder, J.; Unteregger, G.; Stöckle, M. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol., 2006, 50(1), 141-147.
[http://dx.doi.org/10.1016/j.eururo.2005.12.043] [PMID: 16476519]
[137]
Baker, M.A.; Maloy, W.L.; Zasloff, M.; Jacob, L.S. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res., 1993, 53(13), 3052-3057.
[PMID: 8319212]
[138]
Koszałka, P.; Kamysz, E.; Wejda, M.; Kamysz, W.; Bigda, J. Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim. Pol., 2011, 58(1), 111-117.
[http://dx.doi.org/10.18388/abp.2011_2293] [PMID: 21403917]
[139]
Miyazaki, Y.; Aoki, M.; Yano, Y.; Matsuzaki, K. Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry, 2012, 51(51), 10229-10235.
[http://dx.doi.org/10.1021/bi301470h] [PMID: 23194027]
[140]
Libério, M.S.; Joanitti, G.A.; Azevedo, R.B.; Cilli, E.M.; Zanotta, L.C.; Nascimento, A.C.; Sousa, M.V.; Pires Júnior, O.R.; Fontes, W.; Castro, M.S. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids, 2011, 40(1), 51-59.
[http://dx.doi.org/10.1007/s00726-009-0384-y] [PMID: 20012549]
[141]
Attoub, S.; Arafat, H.; Mechkarska, M.; Conlon, J.M. Anti-tumor activities of the host-defense peptide hymenochirin-1B. Regul. Pept., 2013, 187, 51-56.
[http://dx.doi.org/10.1016/j.regpep.2013.10.006] [PMID: 24185042]
[142]
Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Esculentin-2CHa: a host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides, 2013, 39, 95-102.
[http://dx.doi.org/10.1016/j.peptides.2012.11.004] [PMID: 23159562]
[143]
Merchant, M.E.; Roche, C.; Elsey, R.M.; Prudhomme, J. Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2003, 136(3), 505-513.
[http://dx.doi.org/10.1016/S1096-4959(03)00256-2] [PMID: 14602158]
[144]
Merchant, M.E.; Pallansch, M.; Paulman, R.L.; Wells, J.B.; Nalca, A.; Ptak, R. Antiviral activity of serum from the American alligator (Alligator mississippiensis). Antiviral Res., 2005, 66(1), 35-38.
[http://dx.doi.org/10.1016/j.antiviral.2004.12.007] [PMID: 15781130]
[145]
Merchant, M.E.; Leger, N.; Jerkins, E.; Mills, K.; Pallansch, M.B.; Paulman, R.L.; Ptak, R.G. Broad spectrum antimicrobial activity of leukocyte extracts from the American alligator (Alligator mississippiensis). Vet. Immunol. Immunopathol., 2006, 110(3-4), 221-228.
[http://dx.doi.org/10.1016/j.vetimm.2005.10.001] [PMID: 16298430]
[146]
Merchant, M.E.; Roche, C.M.; Thibodeaux, D.; Elsey, R.M. Identification of alternative pathway serum complement activity in the blood of the American alligator (Alligator mississippiensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2005, 141(3), 281-288.
[http://dx.doi.org/10.1016/j.cbpc.2005.03.009] [PMID: 15921941]
[147]
Theansungnoen, T.; Maijaroen, S.; Jangpromma, N.; Yaraksa, N.; Daduang, S.; Temsiripong, T.; Daduang, J.; Klaynongsruang, S. Cationic antimicrobial peptides derived from crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J., 2016, 35(3), 202-211.
[http://dx.doi.org/10.1007/s10930-016-9662-1] [PMID: 27129462]
[148]
He, S.; Mao, X.; Zhang, T.; Guo, X.; Ge, Y.; Ma, C.; Zhang, X. Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J. Microencapsul., 2016, 33(4), 344-354.
[http://dx.doi.org/10.1080/02652048.2016.1194904] [PMID: 27292913]
[149]
DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol., 1993, 264(2 Pt 1), C361-C369.
[http://dx.doi.org/10.1152/ajpcell.1993.264.2.C361] [PMID: 8383429]
[150]
Dardevet, L.; Rani, D.; Aziz, T.A.; Bazin, I.; Sabatier, J-M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel), 2015, 7(4), 1079-1101.
[http://dx.doi.org/10.3390/toxins7041079] [PMID: 25826056]
[151]
Mamelak, A.N.; Jacoby, D.B. Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin. Drug Deliv., 2007, 4(2), 175-186.
[http://dx.doi.org/10.1517/17425247.4.2.175] [PMID: 17335414]
[152]
Veiseh, O.; Gunn, J.W.; Kievit, F.M.; Sun, C.; Fang, C.; Lee, J.S.H.; Zhang, M. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small, 2009, 5(2), 256-264.
[http://dx.doi.org/10.1002/smll.200800646] [PMID: 19089837]
[153]
Deshane, J.; Garner, C.C.; Sontheimer, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem., 2003, 278(6), 4135-4144.
[http://dx.doi.org/10.1074/jbc.M205662200] [PMID: 12454020]
[154]
Soroceanu, L.; Manning, T.J., Jr; Sontheimer, H. Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers. J. Neurosci., 1999, 19(14), 5942-5954.
[http://dx.doi.org/10.1523/JNEUROSCI.19-14-05942.1999] [PMID: 10407033]
[155]
Lui, V.C.H.; Lung, S.S.S.; Pu, J.K.S.; Hung, K.N.; Leung, G.K.K. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res., 2010, 30(11), 4515-4524.
[PMID: 21115901]
[156]
Sontheimer, H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. (Maywood), 2008, 233(7), 779-791.
[http://dx.doi.org/10.3181/0711-MR-308] [PMID: 18445774]
[157]
Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie, 2013, 95(9), 1784-1794.
[http://dx.doi.org/10.1016/j.biochi.2013.06.003] [PMID: 23770440]
[158]
Ali, S.A.; Alam, M.; Abbasi, A.; Undheim, E.A.; Fry, B.G.; Kalbacher, H.; Voelter, W. Structure-activity relationship of chlorotoxin-like peptides. Toxins (Basel), 2016, 8(2), 36.
[http://dx.doi.org/10.3390/toxins8020036] [PMID: 26848686]
[159]
Kuhn-Nentwig, L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci., 2003, 60(12), 2651-2668.
[http://dx.doi.org/10.1007/s00018-003-3106-8] [PMID: 14685689]
[160]
Vorontsova, O.V.; Egorova, N.S.; Arseniev, A.S.; Feofanov, A.V. Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie, 2011, 93(2), 227-241.
[http://dx.doi.org/10.1016/j.biochi.2010.09.016] [PMID: 20887768]
[161]
Liu, Z.; Deng, M.; Xiang, J.; Ma, H.; Hu, W.; Zhao, Y.; Li, D.W-C.; Liang, S. A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr. Mol. Med., 2012, 12(10), 1350-1360.
[http://dx.doi.org/10.2174/156652412803833643] [PMID: 22882120]
[162]
Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel), 2015, 7(4), 1126-1150.
[http://dx.doi.org/10.3390/toxins7041126] [PMID: 25835385]
[163]
Havas, L.J. Effect of bee venom on colchicine-induced tumours. Nature, 1950, 166(4222), 567-568.
[http://dx.doi.org/10.1038/166567a0] [PMID: 14780150]
[164]
Jo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol., 2012, 258(1), 72-81.
[http://dx.doi.org/10.1016/j.taap.2011.10.009] [PMID: 22027265]
[165]
Wang, C.; Chen, T.; Zhang, N.; Yang, M.; Li, B.; Lü, X.; Cao, X.; Ling, C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J. Biol. Chem., 2009, 284(6), 3804-3813.
[http://dx.doi.org/10.1074/jbc.M807191200] [PMID: 19074436]
[166]
Park, M.H.; Choi, M.S.; Kwak, D.H.; Oh, K-W.; Yoon, D.Y.; Han, S.B.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate, 2011, 71(8), 801-812.
[http://dx.doi.org/10.1002/pros.21296] [PMID: 21456063]
[167]
Park, J.H.; Jeong, Y-J.; Park, K-K.; Cho, H-J.; Chung, I-K.; Min, K-S.; Kim, M.; Lee, K-G.; Yeo, J-H.; Park, K-K.; Chang, Y.C. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol. Cells, 2010, 29(2), 209-215.
[http://dx.doi.org/10.1007/s10059-010-0028-9] [PMID: 20082219]
[168]
Gajski, G.; Garaj-Vrhovac, V. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[http://dx.doi.org/10.1016/j.etap.2013.06.009] [PMID: 23892471]
[169]
Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327.
[http://dx.doi.org/10.1002/wnan.126] [PMID: 21225660]
[170]
Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842.
[http://dx.doi.org/10.1172/JCI38842] [PMID: 19726870]
[171]
Vyas, V.K.; Brahmbhatt, K.; Bhatt, H.; Parmar, U. Therapeutic potential of snake venom in cancer therapy: Current perspectives. Asian Pac. J. Trop. Biomed., 2013, 3(2), 156-162.
[http://dx.doi.org/10.1016/S2221-1691(13)60042-8] [PMID: 23593597]
[172]
Kerkis, I.; Hayashi, M.A.F.; Prieto da Silva, A.R.B.; Pereira, A.; De Sá Júnior, P.L.; Zaharenko, A.J.; Rádis-Baptista, G.; Kerkis, A.; Yamane, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Res. Int., 2014, 2014675985
[http://dx.doi.org/10.1155/2014/675985] [PMID: 24551848]
[173]
Pereira, A.; Kerkis, A.; Hayashi, M.A.; Pereira, A.S.; Silva, F.S.; Oliveira, E.B.; Prieto da Silva, A.R.; Yamane, T.; Rádis-Baptista, G.; Kerkis, I. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin. Investig. Drugs, 2011, 20(9), 1189-1200.
[http://dx.doi.org/10.1517/13543784.2011.602064] [PMID: 21834748]
[174]
León, G.; Sánchez, L.; Hernández, A.; Villalta, M.; Herrera, M.; Segura, A.; Estrada, R.; Gutiérrez, J.M. Immune response towards snake venoms. Inflamm. Allergy Drug Targets, 2011, 10(5), 381-398.
[http://dx.doi.org/10.2174/187152811797200605] [PMID: 21824081]
[175]
Wang, H.; Ke, M.; Tian, Y.; Wang, J.; Li, B.; Wang, Y.; Dou, J.; Zhou, C. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur. J. Pharmacol., 2013, 707(1-3), 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.028] [PMID: 23541725]
[176]
Naumann, G.B.; Silva, L.F.; Silva, L.; Faria, G.; Richardson, M.; Evangelista, K.; Kohlhoff, M.; Gontijo, C.M.F.; Navdaev, A.; de Rezende, F.F.; Eble, J.A.; Sanchez, E.F. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim. Biophys. Acta, 2011, 1810(7), 683-694.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.003] [PMID: 21539897]
[177]
Jang, A.; Jo, C.; Kang, K-S.; Lee, M. Antimicrobial and Human Cancer Cell Cytotoxic Effect of Synthetic Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides. Food Chem., 2008, 107(1), 327-336.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.036]
[178]
Su, L.; Xu, G.; Shen, J.; Tuo, Y.; Zhang, X.; Jia, S.; Chen, Z.; Su, X. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol. Rep., 2010, 23(1), 3-9.
[PMID: 19956858]
[179]
Yu, L.; Yang, L.; An, W.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J. Cell. Biochem., 2014, 115(4), 697-711.
[http://dx.doi.org/10.1002/jcb.24711] [PMID: 24214799]
[180]
Su, L.Y.; Shi, Y.X.; Yan, M.R.; Xi, Y.; Su, X.L. Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol. Sin., 2015, 36(12), 1514-1519.
[http://dx.doi.org/10.1038/aps.2015.80] [PMID: 26592508]
[181]
Park, Y.W.; Nam, M.S. Bioactive Peptides in Milk and Dairy Products: A Review. Han-gug Chugsan Sigpum Hag-hoeji, 2015, 35(6), 831-840.
[http://dx.doi.org/10.5851/kosfa.2015.35.6.831] [PMID: 26877644]
[182]
Roy, M.K.; Watanabe, Y.; Tamai, Y. Induction of apoptosis in HL-60 cells by skimmed milk digested with a proteolytic enzyme from the yeast Saccharomyces cerevisiae. J. Biosci. Bioeng., 1999, 88(4), 426-432.
[http://dx.doi.org/10.1016/S1389-1723(99)80221-7] [PMID: 16232639]
[183]
Meisel, H.; FitzGerald, R.J. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des., 2003, 9(16), 1289-1295.
[http://dx.doi.org/10.2174/1381612033454847] [PMID: 12769737]
[184]
Naghibi, F.; Irani, M.; Hassanpour, A.; Pirani, A.; Hamzeloo-Moghadam, M. Cytotoxic Effects of Selective Species of Caryophyllaceae in Iran. Res. J. Pharmacogn., 2014, 1(2), 29-32.
[185]
HoushdarTehrani. M. H.; Bamoniri, A.; Mirjalili, B. B. F.; Gholibeikian, M. Synthesis of Linear and Cyclic Disulfide Heptapeptides of Longicalycinin A and Evaluation of Toxicity on Cancerous Cells HepG2 and HT-29. Iran. J. Pharm. Res. IJPR, 2018, 17(3), 956-963.
[186]
Mandal, A.K.; Hines, J.; Kuramochi, K.; Crews, C.M. Developing microcolin A analogs as biological probes. Bioorg. Med. Chem. Lett., 2005, 15(18), 4043-4047.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.020] [PMID: 15993592]
[187]
Beidler, D.R.; Ahuja, D.; Wicha, M.S.; Toogood, P.L. Inhibition of protein synthesis by didemnin B is not sufficient to induce apoptosis in human mammary carcinoma (MCF7) cells. Biochem. Pharmacol., 1999, 58(6), 1067-1074.
[http://dx.doi.org/10.1016/S0006-2952(99)00193-8] [PMID: 10509759]
[188]
Siddiq, A.; Dembitsky, V. Acetylenic anticancer agents. Anticancer. Agents Med. Chem., 2008, 8(2), 132-170.
[http://dx.doi.org/10.2174/187152008783497073] [PMID: 18288919]
[189]
Kang, H.K.; Choi, M.C.; Seo, C.H.; Park, Y. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int. J. Mol. Sci., 2018, 19(3)E919
[http://dx.doi.org/10.3390/ijms19030919] [PMID: 29558431]
[190]
MacDonald, R.S.; Thornton, W.H., Jr; Marshall, R.T. A cell culture model to identify biologically active peptides generated by bacterial hydrolysis of casein. J. Dairy Sci., 1994, 77(5), 1167-1175.
[http://dx.doi.org/10.3168/jds.S0022-0302(94)77054-5] [PMID: 8046061]
[191]
Ganjam, L.S.; Thornton, W.H., Jr; Marshall, R.T.; MacDonald, R.S. Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. J. Dairy Sci., 1997, 80(10), 2325-2329.
[http://dx.doi.org/10.3168/jds.S0022-0302(97)76183-6] [PMID: 9361204]
[192]
Sánchez-Gómez, S.; Ferrer-Espada, R.; Stewart, P.S.; Pitts, B.; Lohner, K.; Martínez de Tejada, G. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol., 2015, 15(1), 137.
[http://dx.doi.org/10.1186/s12866-015-0473-x] [PMID: 26149536]
[193]
Yin, C.; Wong, J.H.; Ng, T.B. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr. Mol. Med., 2014, 14(9), 1139-1154.
[http://dx.doi.org/10.2174/1566524014666141015151749] [PMID: 25324002]
[194]
Mader, J.S.; Salsman, J.; Conrad, D.M.; Hoskin, D.W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther., 2005, 4(4), 612-624.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0077] [PMID: 15827335]
[195]
Eliassen, L.T.; Berge, G.; Leknessund, A.; Wikman, M.; Lindin, I.; Løkke, C.; Ponthan, F.; Johnsen, J.I.; Sveinbjørnsson, B.; Kogner, P.; Flaegstad, T.; Rekdal, Ø. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int. J. Cancer, 2006, 119(3), 493-500.
[http://dx.doi.org/10.1002/ijc.21886] [PMID: 16572423]
[196]
Yin, C.M.; Wong, J.H.; Xia, J.; Ng, T.B. Studies on anticancer activities of lactoferrin and lactoferricin. Curr. Protein Pept. Sci., 2013, 14(6), 492-503.
[http://dx.doi.org/10.2174/13892037113149990066] [PMID: 23968351]
[197]
Bosso, M.; Ständker, L.; Kirchhoff, F.; Münch, J. Exploiting the human peptidome for novel antimicrobial and anticancer agents. Bioorg. Med. Chem., 2018, 26(10), 2719-2726.
[http://dx.doi.org/10.1016/j.bmc.2017.10.038] [PMID: 29122440]
[198]
Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; Patchett, A.; Monaghan, R.; Currie, S.; Stapley, E.; Albers-Schonberg, G.; Hensens, O.; Hirshfield, J.; Hoogsteen, K.; Liesch, J.; Springer, J. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA, 1980, 77(7), 3957-3961.
[http://dx.doi.org/10.1073/pnas.77.7.3957] [PMID: 6933445]
[199]
Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs, 2006, 15(8), 933-946.
[http://dx.doi.org/10.1517/13543784.15.8.933] [PMID: 16859395]
[200]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[201]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[202]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[203]
Liu, S.; Yang, H.; Wan, L.; Cheng, J.; Lu, X. Penetratin-Mediated Delivery Enhances the Antitumour Activity of the Cationic Antimicrobial Peptide Magainin II. Cancer Biother. Radiopharm., 2013.
[http://dx.doi.org/10.1089/cbr.2012.1328]
[204]
Chuang, C-M.; Monie, A.; Wu, A.; Mao, C-P.; Hung, C-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum. Gene Ther., 2009, 20(4), 303-313.
[http://dx.doi.org/10.1089/hum.2008.124] [PMID: 19272013]
[205]
Mulder, K.C.L.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front. Microbiol., 2013, 4(October), 321.
[http://dx.doi.org/10.3389/fmicb.2013.00321] [PMID: 24198814]
[206]
Aplidin - Dexamethasone in Relapsed/Refractory Myeloma - Tabular View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT01102426?term=Aplidine&cond=Cancer&phase=23&rank=1 (accessed Dec 2, 2018).
[207]
Dolastatin 10 in Treating Patients With Indolent Lymphoma, Waldenstrom’s Macroglobulinemia, or Chronic Lymphocytic Leukemia - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00005579?term=Dolastatin+10&cond=Cancer&phase=123&draw=1&rank=6 (accessed Dec 2, 2018).
[208]
A Study of Brentuximab Vedotin in Participants With Relapsed or Refractory Hodgkin Lymphoma - Full Text View- ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01990534?term=auristatin&cond=Cancer&phase=3&draw=1&rank=1 (accessed Dec 2, 2018).
[209]
Study of Multiplexed Heptapeptides for Detection of Neoplasia in the Esophagus - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03589443?term=Heptapeptide&cond=Cancer&phase=0&rank=2 (accessed Dec 3, 2018).
[210]
ANG1005 in Leptomeningeal Disease From Breast Cancer - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03613181?term=NCT03613181&rank=1 (accessed Dec 3, 2018).
[211]
Depsipeptide (Romidepsin) in Treating Patients With Metastatic or Unresectable Soft Tissue Sarcoma - Full TextView- ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00112463?term=Depsipeptide&rslt=With&cond=Cancer&phase=1&rank=4 (accessed Dec 3, 2018).
[212]
Pharmacodynamics, Safety/Tolerability and Efficacy of Topical Omiganan in Patients With uVIN - Tabular View- ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT02596074?term=CLS-001&cond=CANCER&rank=1 (accessed Dec 3, 2018).
[213]
Phase 1 Study of GRN-1201 in HLA-A*02 Subjects With Resected Melanoma - Tabular View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT02696356?term=GRN-1201&cond=Cancer&rank=2 (accessed Dec 3, 2018).
[214]
Clinical Study of WT2725 in Patients With Advanced Malignancies - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01621542?term=WT-2725&cond=Cancer&rank=1 (accessed Dec 3, 2018).
[215]
Dose-escalation Study of LTX-315 in Patients With a Transdermally Accessible Tumour - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01058616?term=LTX-315&cond=Cancer&rank=2 (accessed Dec 3, 2018).
[216]
Papo, N.; Shai, Y. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci., 2005, 62(7-8), 784-790.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403]
[217]
Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids, 2012, 2012967347
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[218]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[219]
Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J., 2006, (16), 945-960.
[http://dx.doi.org/10.1016/j.idairyj.2005.10.012]
[220]
Kaur, H. Aarti Garg; G.P.S. Raghava. PEPstr: A de Novo Method for Tertiary Structure Prediction of Small Bioactive Peptides. Protein Pept. Lett., 2007, 14(7), 626-631.
[PMID: 17897087] [http://dx.doi.org/DOI 10.2174/092986607781483859]
[221]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[222]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Front. Pharmacol., 2017, 7(7), 526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[223]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[224]
Agyei, D.; Tan, K.X.; Pan, S.; Udenigwe, C.C.; Danquah, M.K. Peptides for Biopharmaceutical Applications. In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Curtin Research Publications, Elsevier Ltd., 2017.
[225]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[226]
Danquah, M.K.; Agyei, D. Pharmaceutical applications of bioactive peptides. OA Biotechnol., Dec 2012, 1, 1-7.
[227]
Narayana, J.L.; Huang, H-N.; Wu, C-J.; Chen, J-Y. Efficacy of the Antimicrobial Peptide TP4 against <I>Helicobacter Pylori</I> Infection: <I>in Vitro</I> Membrane Perturbation <I>Via</I> Micellization and <I>in Vivo </I> Suppression of host immune responses in a Mouse model. Oncotarget, 2015, 6, 12936-12954.
[PMID: 26002554]
[228]
Shoombuatong, W.; Schaduangrat, N.; Nantasenamat, C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J., 2018, 17(17), 734-752.
[PMID: 30190664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy