Transition Metal-Based Prodrugs for Anticancer Drug Delivery | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Transition Metal-Based Prodrugs for Anticancer Drug Delivery

Author(s): Ana M.F. Phillips* and Armando J.L. Pombeiro

Volume 26, Issue 41, 2019

Page: [7476 - 7519] Pages: 44

DOI: 10.2174/0929867326666181203141122

Price: $65

Open Access Journals Promotions 2
Abstract

Transition metal complexes, of which the platinum(II) complex cisplatin is an example, have been used in medicine to treat cancer for more than 40 years. Although many successes have been achieved, there are problems associated with the use of these drugs, such as side effects and drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to the tumour site unchanged and release the drug in its active form only there, is a strategy which is the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes, by differences in metabolic rates, etc., which characteristically distinguish cancer cells from normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex into a prodrug may also be used to improve its pharmacological properties. In some cases, the metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals. This review presents the recent developments in this area, including the types of complexes used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery to cells.

Keywords: Chemotherapy, bioreducible, caged drug, redox active, photoactive, pharmaceutical, hypoxia, metal complex.

[1]
Orvig, C.; Abrams, M.J. Medicinal inorganic chemistry: introduction. Chem. Rev., 1999, 99(9), 2201-2204.
[http://dx.doi.org/10.1021/cr980419w] [PMID: 11749478]
[2]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[3]
Lainé, A-L.; Passirani, C. Novel metal-based anticancer drugs: a new challenge in drug delivery. Curr. Opin. Pharmacol., 2012, 12(4), 420-426.
[http://dx.doi.org/10.1016/j.coph.2012.04.006] [PMID: 22609113]
[4]
Zhang, P.; Sadler, P.J. Redox-active metal complexes for anticancer therapy. Eur. J. Inorg. Chem., 2017, 2017(12), 1541-1548.
[http://dx.doi.org/10.1002/ejic.201600908]
[5]
Renfrew, A.K. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics, 2014, 6(8), 1324-1335.
[http://dx.doi.org/10.1039/C4MT00069B] [PMID: 24850462]
[6]
Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638)20130099
[http://dx.doi.org/10.1098/rstb.2013.0099] [PMID: 24493747]
[7]
Wagner, M.; Wiig, H. Tumor interstitial fluid formation, characterization, and clinical implications. Front. Oncol., 2015, 5, 115.
[http://dx.doi.org/10.3389/fonc.2015.00115] [PMID: 26075182]
[8]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[9]
Ishida, S.; Lee, J.; Thiele, D.J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA, 2002, 99(22), 14298-14302.
[http://dx.doi.org/10.1073/pnas.162491399] [PMID: 12370430]
[10]
van Rijt, S.H.; Sadler, P.J. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov. Today, 2009, 14(23-24), 1089-1097.
[http://dx.doi.org/10.1016/j.drudis.2009.09.003] [PMID: 19782150]
[11]
Bruno, P.M.; Liu, Y.; Park, G.Y.; Murai, J.; Koch, C.E.; Eisen, T.J.; Pritchard, J.R.; Pommier, Y.; Lippard, S.J.; Hemann, M.T. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat. Med., 2017, 23(4), 461-471.
[http://dx.doi.org/10.1038/nm.4291] [PMID: 28263311]
[12]
Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z-S. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[13]
Ang, W.H.; Casini, A.; Sava, G.; Dyson, P.J. Organometallic ruthenium-based antitumor compounds with novel modes of action. J. Organomet. Chem., 2011, 696, 989-998.
[http://dx.doi.org/10.1016/j.jorganchem.2010.11.009]
[14]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[15]
Tonge, P.J. Drug target kinetics in drug delivery. ACS Chem. Neurosci., 2018, 9(1), 29-39.
[http://dx.doi.org/10.1021/acschemneuro.7b00185] [PMID: 28640596]
[16]
Graf, N.; Lippard, S.J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev., 2012, 64(11), 993-1004.
[http://dx.doi.org/10.1016/j.addr.2012.01.007] [PMID: 22289471]
[17]
Carreau, A.; El Hafny-Rahbi, B.; Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med., 2011, 15(6), 1239-1253.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01258.x] [PMID: 21251211]
[18]
Guise, C.P.; Mowday, A.M.; Ashoorzadeh, A.; Yuan, R.; Lin, W-H.; Wu, D-H.; Smaill, J.B.; Patterson, A.V.; Ding, K. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer, 2014, 33(2), 80-86.
[http://dx.doi.org/10.5732/cjc.012.10285] [PMID: 23845143]
[19]
Østergaard, H.; Tachibana, C.; Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol., 2004, 166(3), 337-345.
[http://dx.doi.org/10.1083/jcb.200402120] [PMID: 15277542]
[20]
Reisner, E.; Arion, V.B.; Keppler, B.K.; Pombeiro, A.J.L. Electron-transfer activated metal-based anticancer drugs. Inorg. Chim. Acta, 2008, 361(6), 1569-1583.
[http://dx.doi.org/10.1016/j.ica.2006.12.005]
[21]
Simpson, P.V.; Schatzschneider, U. Release of Bioactive Molecules Using Metal Complexes. In: Inorganic Chemical Biology: Principles, Techniques and Applications, 1st ed; Gasser, G., Ed.; John Wiley & Sons: Chichester, 2014; pp. 309-339.
[http://dx.doi.org/10.1002/9781118682975.ch10]
[22]
Teicher, B.A.; Abrams, M.J.; Rosbe, K.W.; Herman, T.S. Cytotoxicity, radiosensitization, antitumor activity, and interaction with hyperthermia of a Co(III) mustard complex. Cancer Res., 1990, 50(21), 6971-6975.
[PMID: 2208163]
[23]
Hall, M.D.; Failes, T.W.; Yamamoto, N.; Hambley, T.W. Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. Dalton Trans., 2007, (36), 3983-3990.
[http://dx.doi.org/10.1039/b707121c] [PMID: 17828357]
[24]
Ware, D.C.; Palmer, B.D.; Wilson, W.R.; Denny, W.A. Hypoxia-selective antitumor agents. 7. Metal complexes of aliphatic mustards as a new class of hypoxia-selective cytotoxins. Synthesis and evaluation of cobalt(III) complexes of bidentate mustards. J. Med. Chem., 1993, 36(13), 1839-1846.
[http://dx.doi.org/10.1021/jm00065a006] [PMID: 8515422]
[25]
Failes, T.W.; Hambley, T.W. Models of hypoxia activated prodrugs: Co(III) complexes of hydroxamic acids. Dalton Trans., 2006, (15), 1895-1901.
[http://dx.doi.org/10.1039/b512322d] [PMID: 16585977]
[26]
Failes, T.W.; Cullinane, C.; Diakos, C.I.; Yamamoto, N.; Lyons, J.G.; Hambley, T.W. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: a potential hypoxia-activated prodrug. Chemistry, 2007, 13(10), 2974-2982.
[http://dx.doi.org/10.1002/chem.200601137] [PMID: 17171733]
[27]
Ahn, G-O.; Botting, K.J.; Patterson, A.V.; Ware, D.C.; Tercel, M.; Wilson, W.R. Radiolytic and cellular reduction of a novel hypoxia-activated cobalt(III) prodrug of a chloromethylbenzindoline DNA minor groove alkylator. Biochem. Pharmacol., 2006, 71(12), 1683-1694.
[http://dx.doi.org/10.1016/j.bcp.2006.03.007] [PMID: 16620789]
[28]
Boger, D.L.; Yun, W. CBI-TMI: synthesis and evaluation of a key analog of the duocarmycins. Validation of a direct relationship between chemical solvolytic stability and cytotoxic potency and confirmation of the structural features responsible for the distinguishing behavior of enantiomeric pairs of agents. J. Am. Chem. Soc., 1994, 116(18), 7996-8006.
[http://dx.doi.org/10.1021/ja00097a006]
[29]
Milbank, J.B.J.; Stevenson, R.J.; Ware, D.C.; Chang, J.Y.C.; Tercel, M.; Ahn, G-O.; Wilson, W.R.; Denny, W.A. Synthesis and evaluation of stable bidentate transition metal complexes of 1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) as hypoxia selective cytotoxins. J. Med. Chem., 2009, 52(21), 6822-6834.
[http://dx.doi.org/10.1021/jm9008746] [PMID: 19821576]
[30]
Ahn, G.O.; Ware, D.C.; Denny, W.A.; Wilson, W.R. Optimization of the auxiliary ligand shell of Cobalt(III)(8-hydroxyquinoline) complexes as model hypoxia-selective radiation-activated prodrugs. Radiat. Res., 2004, 162(3), 315-325.
[http://dx.doi.org/10.1667/RR3229] [PMID: 15333003]
[31]
Yamamoto, N.; Danos, S.; Bonnitcha, P.D.; Failes, T.W.; New, E.J.; Hambley, T.W. Cellular uptake and distribution of cobalt complexes of fluorescent ligands. J. Biol. Inorg. Chem., 2008, 13(6), 861-871.
[http://dx.doi.org/10.1007/s00775-008-0374-7] [PMID: 18418632]
[32]
Lu, G-L.; Stevenson, R.J.; Chang, J.Y-C.; Brothers, P.J.; Ware, D.C.; Wilson, W.R.; Denny, W.A.; Tercel, M. N-alkylated cyclen cobalt(III) complexes of 1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2,3-dihydro-1H-pyrrolo[3,2-f]quinolin-5-ol DNA alkylating agent as hypoxia-activated prodrugs. Bioorg. Med. Chem., 2011, 19(16), 4861-4867.
[http://dx.doi.org/10.1016/j.bmc.2011.06.076] [PMID: 21775153]
[33]
Chang, J.Y-C.; Lu, G-L.; Stevenson, R.J.; Brothers, P.J.; Clark, G.R.; Botting, K.J.; Ferry, D.M.; Tercel, M.; Wilson, W.R.; Denny, W.A.; Ware, D.C. Cross-bridged cyclen or cyclam Co(III) complexes containing cytotoxic ligands as hypoxia-activated prodrugs. Inorg. Chem., 2013, 52(13), 7688-7698.
[http://dx.doi.org/10.1021/ic4006967] [PMID: 23773210]
[34]
Renfrew, A.K.; Bryce, N.S.; Hambley, T.W. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chem. Sci. (Camb.), 2013, 4, 3731-3739.
[http://dx.doi.org/10.1039/c3sc51530c]
[35]
Pires, B.M.; Giacomin, L.C.; Castro, F.A.V. Cavalcanti, Ados.S.; Pereira, M.D.; Bortoluzzi, A.J.; Faria, R.B.; Scarpellini, M. Azido- and chlorido-cobalt complex as carrier-prototypes for antitumoral prodrugs. J. Inorg. Biochem., 2016, 157, 104-113.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.01.024] [PMID: 26881993]
[36]
Karnthaler-Benbakka, C.; Groza, D.; Kryeziu, K.; Pichler, V.; Roller, A.; Berger, W.; Heffeter, P.; Kowol, C.R. Tumor-targeting of EGFR inhibitors by hypoxia-mediated activation. Angew. Chem. Int. Ed. Engl., 2014, 53(47), 12930-12935.
[http://dx.doi.org/10.1002/anie.201403936] [PMID: 25079700]
[37]
Rossier, J.; Hauser, D.; Kottelat, E.; Rothen-Rutishauser, B.; Zobi, F. Organometallic cobalamin anticancer derivatives for targeted prodrug delivery via transcobalamin-mediated uptake. Dalton Trans., 2017, 46(7), 2159-2164.
[http://dx.doi.org/10.1039/C6DT04443C] [PMID: 28121320]
[38]
Fonseca, M.V.; Escalante-Semerena, J.C. Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2. J. Bacteriol., 2000, 182(15), 4304-4309.
[http://dx.doi.org/10.1128/JB.182.15.4304-4309.2000] [PMID: 10894741]
[39]
Ruiz-Sánchez, P.; Mundwiler, S.; Spingler, B.; Buan, N.R.; Escalante-Semerena, J.C.; Alberto, R. Syntheses and characterization of vitamin B12-Pt(II) conjugates and their adenosylation in an enzymatic assay. J. Biol. Inorg. Chem., 2008, 13(3), 335-347.
[http://dx.doi.org/10.1007/s00775-007-0329-4] [PMID: 18060564]
[40]
Smith, N.A.; Sadler, P.J. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2013, 371(1995), 20120519
[http://dx.doi.org/10.1098/rsta.2012.0519] [PMID: 23776303]
[41]
Chiang, L.; Jones, M.R.; Ferreira, C.L.; Storr, T. Multifunctional ligands in medicinal inorganic chemistry--current trends and future directions. Curr. Top. Med. Chem., 2012, 12(3), 122-144.
[http://dx.doi.org/10.2174/156802612799078973] [PMID: 22236159]
[42]
Allardyce, C.S.; Dyson, P.J. Metal-based drugs that break the rules. Dalton Trans., 2016, 45(8), 3201-3209.
[http://dx.doi.org/10.1039/C5DT03919C] [PMID: 26820398]
[43]
Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol., 2003, 7(4), 481-489.
[http://dx.doi.org/10.1016/S1367-5931(03)00081-4] [PMID: 12941423]
[44]
Holtkamp, H.U.; Hartinger, C.G. Advanced metallomics methods in anticancer metallodrug mode of action studies. Trends Analyt. Chem., 2018, 104, 110-117.
[http://dx.doi.org/10.1016/j.trac.2017.09.023]
[45]
Zayat, L.; Calero, C.; Alborés, P.; Baraldo, L.; Etchenique, R. A new strategy for neurochemical photodelivery: metal-ligand heterolytic cleavage. J. Am. Chem. Soc., 2003, 125(4), 882-883.
[http://dx.doi.org/10.1021/ja0278943] [PMID: 12537482]
[46]
Filevich, O.; Etchenique, R. RuBiGABA-2: a hydrophilic caged GABA with long wavelength sensitivity. Photochem. Photobiol. Sci., 2013, 12(9), 1565-1570.
[http://dx.doi.org/10.1039/c3pp25248e] [PMID: 23674097]
[47]
Garner, R.N.; Gallucci, J.C.; Dunbar, K.R.; Turro, C. [Ru(bpy)2(5-cyanouracil)2]2+ as a potential light-activated dual-action therapeutic agent. Inorg. Chem., 2011, 50(19), 9213-9215.
[http://dx.doi.org/10.1021/ic201615u] [PMID: 21879748]
[48]
Liu, Y.; Turner, D.B.; Singh, T.N.; Angeles-Boza, A.M.; Chouai, A.; Dunbar, K.R.; Turro, C. Ultrafast ligand exchange: detection of a pentacoordinate Ru(II) intermediate and product formation. J. Am. Chem. Soc., 2009, 131(1), 26-27.
[http://dx.doi.org/10.1021/ja806860w] [PMID: 19072048]
[49]
Pinnick, D.V.; Durham, B. Photosubstitution reactions of Ru(bpy)2XYn+ complexes. Inorg. Chem., 1984, 23(10), 1440-1445.
[http://dx.doi.org/10.1021/ic00178a028]
[50]
Cruz, A.J.; Kirgan, R.; Siam, K.; Heiland, P.; Rillema, D.P. Photochemical and photophysical properties of ruthenium(II) bis-bipyridine bis-nitrile complexes. Photolability. Inorg. Chim. Acta, 2010, 363(11), 2496-2505.
[http://dx.doi.org/10.1016/j.ica.2010.04.014]
[51]
Respondek, T.; Garner, R.N.; Herroon, M.K.; Podgorski, I.; Turro, C.; Kodanko, J.J. Light activation of a cysteine protease inhibitor: caging of a peptidomimetic nitrile with Ru(II)(bpy)2. J. Am. Chem. Soc., 2011, 133(43), 17164-17167.
[http://dx.doi.org/10.1021/ja208084s] [PMID: 21973207]
[52]
Palermo, C.; Joyce, J.A. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci., 2008, 29(1), 22-28.
[http://dx.doi.org/10.1016/j.tips.2007.10.011] [PMID: 18037508]
[53]
Sgambellone, M.A.; David, A.; Garner, R.N.; Dunbar, K.R.; Turro, C. Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. J. Am. Chem. Soc., 2013, 135(30), 11274-11282.
[http://dx.doi.org/10.1021/ja4045604] [PMID: 23819591]
[54]
Sharma, R.; Knoll, J.D.; Martin, P.D.; Podgorski, I.; Turro, C.; Kodanko, J.J. Ruthenium tris(2-pyridylmethyl)amine as an effective photocaging group for nitriles. Inorg. Chem., 2014, 53(7), 3272-3274.
[http://dx.doi.org/10.1021/ic500299s] [PMID: 24661182]
[55]
Altmann, E.; Aichholz, R.; Betschart, C.; Buhl, T.; Green, J.; Lattmann, R.; Missbach, M. Dipeptide nitrile inhibitors of cathepsin K. Bioorg. Med. Chem. Lett., 2006, 16(9), 2549-2554.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.104] [PMID: 16480867]
[56]
Hidayatullah, A.N.; Wachter, E.; Heidary, D.K.; Parkin, S.; Glazer, E.C. Photoactive Ru(II) complexes with dioxinophenanthroline ligands are potent cytotoxic agents. Inorg. Chem., 2014, 53(19), 10030-10032.
[http://dx.doi.org/10.1021/ic5017164] [PMID: 25198057]
[57]
Joshi, T.; Pierroz, V.; Mari, C.; Gemperle, L.; Ferrari, S.; Gasser, G. A bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angew. Chem. Int. Ed. Engl., 2014, 53(11), 2960-2963.
[http://dx.doi.org/10.1002/anie.201309576] [PMID: 24500767]
[58]
Mari, C.; Pierroz, V.; Leonidova, A.; Ferrari, S.; Gasser, G. Towards selective light-activated RuII-based prodrug candidates. Eur. J. Inorg. Chem., 2015, 2015(23), 3879-3891.
[http://dx.doi.org/10.1002/ejic.201500602]
[59]
Dcona, M.M.; Mitra, D.; Goehe, R.W.; Gewirtz, D.A.; Lebman, D.A.; Hartman, M.C.T. Photocaged permeability: a new strategy for controlled drug release. Chem. Commun. (Camb.), 2012, 48(39), 4755-4757.
[http://dx.doi.org/10.1039/c2cc30819c] [PMID: 22473358]
[60]
Lin, W.; Peng, D.; Wang, B.; Long, L.; Guo, C.; Yuan, J. A model for light-triggered anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur. J. Org. Chem., 2008, 2008(5), 793-796.
[http://dx.doi.org/10.1002/ejoc.200700972]
[61]
Hufziger, K.T.; Thowfeik, F.S.; Charboneau, D.J.; Nieto, I.; Dougherty, W.G.; Kassel, W.S.; Dudley, T.J.; Merino, E.J.; Papish, E.T.; Paul, J.J. Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release. J. Inorg. Biochem., 2014, 130, 103-111.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.008] [PMID: 24184694]
[62]
Qu, F.; Park, S.; Martinez, K.; Gray, J.L.; Thowfeik, F.S.; Lundeen, J.A.; Kuhn, A.E.; Charboneau, D.J.; Gerlach, D.L.; Lockart, M.M.; Law, J.A.; Jernigan, K.L.; Chambers, N.; Zeller, M.; Piro, N.A.; Kassel, W.S.; Schmehl, R.H.; Paul, J.J.; Merino, E.J.; Kim, Y.; Papish, E.T. Ruthenium complexes are pH-activated metallo prodrugs (pHAMPs) with light-triggered selective toxicity toward cancer cells. Inorg. Chem., 2017, 56(13), 7519-7532.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01065] [PMID: 28636344]
[63]
Karaoun, N.; Renfrew, A.K. A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging. Chem. Commun. (Camb.), 2015, 51(74), 14038-14041.
[http://dx.doi.org/10.1039/C5CC05172J] [PMID: 26248575]
[64]
Goldbach, R.E.; Rodriguez-Garcia, I.; van Lenthe, J.H.; Siegler, M.A.; Bonnet, S. N-acetylmethionine and biotin as photocleavable protective groups for ruthenium polypyridyl complexes. Chemistry, 2011, 17(36), 9924-9929.
[http://dx.doi.org/10.1002/chem.201101541] [PMID: 21796695]
[65]
Hecker, C.R.; Fanwick, P.E.; McMillin, D.R. Evidence for dissociative photosubstitution reactions of [Ru(trpy)(bpy)(NCCH3)]2+. Crystal and molecular structure of [Ru(trpy)(bpy)(py)](PF6)2•(CH3)2CO. Inorg. Chem., 1991, 30(4), 659-666.
[http://dx.doi.org/10.1021/ic00004a013]
[66]
van Rixel, V.H.S.; Busemann, A.; Göttle, A.J.; Bonnet, S. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes? J. Inorg. Biochem., 2015, 150, 174-181.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.05.010] [PMID: 26187140]
[67]
Lameijer, L.N.; Hopkins, S.L.; Brevé, T.G.; Askes, S.H.C.; Bonnet, S. D- versus L-glucose conjugation: mitochondrial targeting of a light-activated dual-mode-of-action ruthenium-based anticancer prodrug. Chemistry, 2016, 22(51), 18484-18491.
[http://dx.doi.org/10.1002/chem.201603066] [PMID: 27859843]
[68]
Zamora, A.; Denning, C.A.; Heidary, D.K.; Wachter, E.; Nease, L.A.; Ruiz, J.; Glazer, E.C. Ruthenium-containing P450 inhibitors for dual enzyme inhibition and DNA damage. Dalton Trans., 2017, 46(7), 2165-2173.
[http://dx.doi.org/10.1039/C6DT04405K] [PMID: 28121322]
[69]
McFadyen, M.C.E.; Melvin, W.T.; Murray, G.I. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol. Cancer Ther., 2004, 3(3), 363-371.
[PMID: 15026557]
[70]
Omura, T. Mitochondrial P450s. Chem. Biol. Interact., 2006, 163(1-2), 86-93.
[http://dx.doi.org/10.1016/j.cbi.2006.06.008] [PMID: 16884708]
[71]
Bruno, R.D.; Njar, V.C.O. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg. Med. Chem., 2007, 15(15), 5047-5060.
[http://dx.doi.org/10.1016/j.bmc.2007.05.046] [PMID: 17544277]
[72]
Nieman, L.K. Medical therapy of Cushing’s disease. Pituitary, 2002, 5(2), 77-82.
[http://dx.doi.org/10.1023/A:1022308429992] [PMID: 12675504]
[73]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]
[74]
Havrylyuk, D.; Heidary, D.K.; Nease, L.; Parkin, S.; Glazer, E.C. Photochemical properties and structure–activity relationships of RuII complexes with pyridylbenzazole ligands as promising anticancer agents. Eur. J. Inorg. Chem., 2017, 2017(12), 1687-1694.
[http://dx.doi.org/10.1002/ejic.201601450] [PMID: 29200939]
[75]
Wei, J.; Renfrew, A.K. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent. J. Inorg. Biochem., 2018, 179, 146-153.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.018] [PMID: 29180165]
[76]
Gibson, D. Platinum(iv) anticancer prodrugs - hypotheses and facts. Dalton Trans., 2016, 45(33), 12983-12991.
[http://dx.doi.org/10.1039/C6DT01414C] [PMID: 27214873]
[77]
Kenny, R.G.; Chuah, S.W.; Crawford, A.; Marmion, C.J. Platinum(IV) prodrugs - a step closer to Ehrlich’s vision? Eur. J. Inorg. Chem., 2017, 2017(12), 1596-1612.
[http://dx.doi.org/10.1002/ejic.201601278]
[78]
Gibbons, G.R.; Wyrick, S.; Chaney, S.G. Rapid reduction of tetrachloro(D,L-trans)1,2-diaminocyclohexan-eplatinum(IV) (tetraplatin) in RPMI 1640 tissue culture medium. Cancer Res., 1989, 49(6), 1402-1407.
[PMID: 2924297]
[79]
Pendyala, L.; Cowens, J.W.; Chheda, G.B.; Dutta, S.P.; Creaven, P.J. Identification of cis-dichloro-bis-isopropylamine platinum(II) as a major metabolite of iproplatin in humans. Cancer Res., 1988, 48(12), 3533-3536.
[PMID: 3370646]
[80]
Pendyala, L.; Arakali, A.V.; Sansone, P.; Cowens, J.W.; Creaven, P.J. DNA binding of iproplatin and its divalent metabolite cis-dichloro-bis-isopropylamine platinum (II). Cancer Chemother. Pharmacol., 1990, 27(3), 248-250.
[http://dx.doi.org/10.1007/BF00685722] [PMID: 2265462]
[81]
Kelland, L.R.; Abel, G.; McKeage, M.J.; Jones, M.; Goddard, P.M.; Valenti, M.; Murrer, B.A.; Harrap, K.R. Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res., 1993, 53(11), 2581-2586.
[PMID: 8388318]
[82]
Bhargava, A.; Vaishampayan, U.N. Satraplatin: leading the new generation of oral platinum agents. Expert Opin. Investig. Drugs, 2009, 18(11), 1787-1797.
[http://dx.doi.org/10.1517/13543780903362437] [PMID: 19888874]
[83]
Kelland, L.R. An update on satraplatin: the first orally available platinum anticancer drug. Expert Opin. Investig. Drugs, 2000, 9(6), 1373-1382.
[http://dx.doi.org/10.1517/13543784.9.6.1373] [PMID: 11060749]
[84]
Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehmé, A.; Christen, R.D.; Howell, S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res., 1996, 56(21), 4881-4886.
[PMID: 8895738]
[85]
Raynaud, F.I.; Mistry, P.; Donaghue, A.; Poon, G.K.; Kelland, L.R.; Barnard, C.F.J.; Murrer, B.A.; Harrap, K.R. Biotransformation of the platinum drug JM216 following oral administration to cancer patients. Cancer Chemother. Pharmacol., 1996, 38(2), 155-162.
[http://dx.doi.org/10.1007/s002800050464] [PMID: 8616906]
[86]
Hall, M.D.; Hambley, T.W. Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev., 2002, 232(1-2), 49-67.
[http://dx.doi.org/10.1016/S0010-8545(02)00026-7]
[87]
Ang, W.H.; Pilet, S.; Scopelliti, R.; Bussy, F.; Juillerat-Jeanneret, L.; Dyson, P.J. Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: influence of the ligands on drug efficacies and uptake. J. Med. Chem., 2005, 48(25), 8060-8069.
[http://dx.doi.org/10.1021/jm0506468] [PMID: 16335930]
[88]
Chin, C.F.; Tian, Q.; Setyawati, M.I.; Fang, W.; Tan, E.S.Q.; Leong, D.T.T.; Ang, W.H. Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. J. Med. Chem., 2012, 55(17), 7571-7582.
[http://dx.doi.org/10.1021/jm300580y] [PMID: 22876932]
[89]
Höfer, D.; Varbanov, H.P.; Legin, A.; Jakupec, M.A.; Roller, A.; Galanski, M.; Keppler, B.K. Tetracarboxylatoplatinum(IV) complexes featuring monodentate leaving groups - A rational approach toward exploiting the platinum(IV) prodrug strategy. J. Inorg. Biochem., 2015, 153, 259-271.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.08.018] [PMID: 26365319]
[90]
Choi, S.; Filotto, C.; Bisanzo, M.; Delaney, S.; Lagasee, D.; Whitworth, J.L.; Jusko, A.; Li, C.; Wood, N.A.; Willingham, J.; Schwenker, A.; Spaulding, K. Reduction and anticancer activity of platinum(IV) complexes. Inorg. Chem., 1998, 37(10), 2500-2504.
[http://dx.doi.org/10.1021/ic971047x]
[91]
Varbanov, H.P.; Valiahdi, S.M.; Kowol, C.R.; Jakupec, M.A.; Galanski, M.; Keppler, B.K. Novel tetracarboxylatoplatinum(IV) complexes as carboplatin prodrugs. Dalton Trans., 2012, 41(47), 14404-14415.
[http://dx.doi.org/10.1039/c2dt31366a] [PMID: 22886297]
[92]
Zhang, J.Z.; Wexselblatt, E.; Hambley, T.W.; Gibson, D. Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. Chem. Commun. (Camb.), 2012, 48(6), 847-849.
[http://dx.doi.org/10.1039/C1CC16647F] [PMID: 22124352]
[93]
Chen, C.K.J.; Zhang, J.Z.; Aitken, J.B.; Hambley, T.W. Influence of equatorial and axial carboxylato ligands on the kinetic inertness of platinum(IV) complexes in the presence of ascorbate and cysteine and within DLD-1 cancer cells. J. Med. Chem., 2013, 56(21), 8757-8764.
[http://dx.doi.org/10.1021/jm401218n] [PMID: 24107138]
[94]
Margiotta, N.; Savino, S.; Marzano, C.; Pacifico, C.; Hoeschele, J.D.; Gandin, V.; Natile, G. Cytotoxicity-boosting of kiteplatin by Pt(IV) prodrugs with axial benzoate ligands. J. Inorg. Biochem., 2016, 160, 85-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.11.028] [PMID: 26775068]
[95]
Tolan, D.; Gandin, V.; Morrison, L.; El-Nahas, A.; Marzano, C.; Montagner, D.; Erxleben, A. Oxidative stress induced by Pt(IV) pro-drugs based on the cisplatin scaffold and indole carboxylic acids in axial position. Nature Scientific Reports, 6, 29367.
[http://dx.doi.org/10.1038/srep29367]
[96]
Barbara, C.; Orlandi, P.; Bocci, G.; Fioravanti, A.; Di Paolo, A.; Natale, G.; Del Tacca, M.; Danesi, R. In vitro and in vivo antitumour effects of novel, orally active bile acid-conjugated platinum complexes on rat hepatoma. Eur. J. Pharmacol., 2006, 549(1-3), 27-34.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.015] [PMID: 16978599]
[97]
Mackay, F.S.; Woods, J.A.; Heringová, P.; Kaspárková, J.; Pizarro, A.M.; Moggach, S.A.; Parsons, S.; Brabec, V.; Sadler, P.J. A potent cytotoxic photoactivated platinum complex. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20743-20748.
[http://dx.doi.org/10.1073/pnas.0707742105] [PMID: 18093923]
[98]
Zhao, Y.; Woods, J.A.; Farrer, N.J.; Robinson, K.S.; Pracharova, J.; Kasparkova, J.; Novakova, O.; Li, H.; Salassa, L.; Pizarro, A.M.; Clarkson, G.J.; Song, L.; Brabec, V.; Sadler, P.J. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chemistry, 2013, 19(29), 9578-9591.
[http://dx.doi.org/10.1002/chem.201300374] [PMID: 23733242]
[99]
Mukhopadhyay, S.; Barnés, C.M.; Haskel, A.; Short, S.M.; Barnes, K.R.; Lippard, S.J. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug. Chem., 2008, 19(1), 39-49.
[http://dx.doi.org/10.1021/bc070031k] [PMID: 17845003]
[100]
Brooks, P.C.; Clark, R.A.F.; Cheresh, D.A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994, 264(5158), 569-571.
[http://dx.doi.org/10.1126/science.7512751] [PMID: 7512751]
[101]
Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; Ashmun, R.A.; Shapiro, L.H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res., 2000, 60(3), 722-727.
[PMID: 10676659]
[102]
Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer, 2002, 2(2), 83-90.
[http://dx.doi.org/10.1038/nrc724] [PMID: 12635171]
[103]
Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: more than meets the eye. Blood, 2008, 112(7), 2628-2635.
[http://dx.doi.org/10.1182/blood-2008-04-150862] [PMID: 18574027]
[104]
Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S.L.; Jonczyk, A.; Kessler, H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc., 1996, 118(32), 7461-7472.
[http://dx.doi.org/10.1021/ja9603721]
[105]
Haubner, R.; Finsinger, D.; Kessler, H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew. Chem. Int. Ed. Engl., 1997, 36(13-14), 1374-1389.
[http://dx.doi.org/10.1002/anie.199713741]
[106]
Reshetnikov, V.; Daum, S.; Mokhir, A. Cancer-specific, intracellular, reductive activation of anticancer PtIV prodrugs. Chemistry, 2017, 23(24), 5678-5681.
[http://dx.doi.org/10.1002/chem.201701192] [PMID: 28319647]
[107]
Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, 51(3), 794-798.
[PMID: 1846317]
[108]
Muhammad, N.; Sadia, N.; Zhu, C.; Luo, C.; Guo, Z.; Wang, X. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells. Chem. Commun. (Camb.), 2017, 53(72), 9971-9974.
[http://dx.doi.org/10.1039/C7CC05311H] [PMID: 28831477]
[109]
Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug. Chem., 2010, 21(5), 979-987.
[http://dx.doi.org/10.1021/bc9005656] [PMID: 20429547]
[110]
Barnes, K.R.; Kutikov, A.; Lippard, S.J. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol., 2004, 11(4), 557-564.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.024] [PMID: 15123250]
[111]
Dhar, S.; Lippard, S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22199-22204.
[http://dx.doi.org/10.1073/pnas.0912276106] [PMID: 20007777]
[112]
Stacpoole, P.W.; Nagaraja, N.V.; Hutson, A.D. Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol., 2003, 43(7), 683-691.
[http://dx.doi.org/10.1177/0091270003254637] [PMID: 12856382]
[113]
Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C.J.; Andrade, M.A.; Thebaud, B.; Michelakis, E.D. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 2007, 11(1), 37-51.
[http://dx.doi.org/10.1016/j.ccr.2006.10.020] [PMID: 17222789]
[114]
Xue, X.; You, S.; Zhang, Q.; Wu, Y.; Zou, G-Z.; Wang, P.C.; Zhao, Y.L.; Xu, Y.; Jia, L.; Zhang, X.; Liang, X-J. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm., 2012, 9(3), 634-644.
[http://dx.doi.org/10.1021/mp200571k] [PMID: 22289032]
[115]
Wexselblatt, E.; Yavin, E.; Gibson, D. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew. Chem. Int. Ed. Engl., 2013, 52(23), 6059-6062.
[http://dx.doi.org/10.1002/anie.201300640] [PMID: 23686723]
[116]
Ang, W.H.; Khalaila, I.; Allardyce, C.S.; Juillerat-Jeanneret, L.; Dyson, P.J. Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J. Am. Chem. Soc., 2005, 127(5), 1382-1383.
[http://dx.doi.org/10.1021/ja0432618] [PMID: 15686364]
[117]
Niitsu, Y.; Takahashi, Y.; Ban, N.; Takayama, T.; Saito, T.; Katahira, T.; Umetsu, Y.; Nakajima, T.; Ohi, M.; Kuga, T.; Sakamaki, S.; Matsunaga, T.; Hirayama, Y.; Kuroda, H.; Homma, H.; Kato, J.; Kogawa, K. A proof of glutathione S-transferase-pi-related multidrug resistance by transfer of antisense gene to cancer cells and sense gene to bone marrow stem cell. Chem. Biol. Interact., 1998, 111-112, 325-332.
[http://dx.doi.org/10.1016/S0009-2797(97)00169-5] [PMID: 9679563]
[118]
Yang, J.; Sun, X.; Mao, W.; Sui, M.; Tang, J.; Shen, Y. Conjugate of Pt(IV)-histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharm., 2012, 9(10), 2793-2800.
[http://dx.doi.org/10.1021/mp200597r] [PMID: 22953987]
[119]
Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L.A. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev., 2008, 34(3), 206-222.
[http://dx.doi.org/10.1016/j.ctrv.2007.11.003] [PMID: 18226465]
[120]
Venkataramani, V.; Rossner, C.; Iffland, L.; Schweyer, S.; Tamboli, I.Y.; Walter, J.; Wirths, O.; Bayer, T.A. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-molecular pharmaceutics. Mol. Pharm., 2012, 9, 2793-2800.
[121]
Patrick, G.L. An Introduction to Medicinal Chemistry, 4th ed; Oxford University Press: Oxford, 2009.
[122]
Kasparkova, J.; Kostrhunova, H.; Novakova, O.; Křikavová, R.; Vančo, J.; Trávníček, Z.; Brabec, V. A photoactivatable platinum(IV) complex targeting genomic DNA and histone deacetylases. Angew. Chem. Int. Ed. Engl., 2015, 54(48), 14478-14482.
[http://dx.doi.org/10.1002/anie.201506533] [PMID: 26458068]
[123]
Xu, Z.; Hu, W.; Wang, Z.; Gou, S. Platinum(IV) prodrugs multiply targeting genomic DNA, histone deacetylases and PARP-1. Eur. J. Med. Chem., 2017, 141, 211-220.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.074] [PMID: 29031068]
[124]
Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol., 2008, 26(22), 3785-3790.
[http://dx.doi.org/10.1200/JCO.2008.16.0812] [PMID: 18591545]
[125]
Gandhi, V.B.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Park, C.; Giranda, V.L.; Penning, T.D.; Zhu, G.D. Discovery and SAR of substituted 3-oxoisoindoline-4-carboxamides as potent inhibitors of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem. Lett., 2010, 20(3), 1023-1026.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.042] [PMID: 20045315]
[126]
Tang, C.; Li, C.; Zhang, S.; Hu, Z.; Wu, J.; Dong, C.; Huang, J.; Zhou, H.B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J. Med. Chem., 2015, 58(11), 4550-4572.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00099] [PMID: 25993269]
[127]
Gabano, E.; Ravera, M.; Zanellato, I.; Tinello, S.; Gallina, A.; Rangone, B.; Gandin, V.; Marzano, C.; Bottone, M.G.; Osella, D. An unsymmetric cisplatin-based Pt(iv) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Trans., 2017, 46(41), 14174-14185.
[http://dx.doi.org/10.1039/C7DT02928D] [PMID: 28984330]
[128]
Leng, Y.; Marinova, Z.; Reis-Fernandes, M.A.; Nau, H.; Chuang, D-M. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci. Lett., 2010, 476(3), 127-132.
[http://dx.doi.org/10.1016/j.neulet.2010.04.013] [PMID: 20394799]
[129]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Wang, H. Anticancer platinum(IV) prodrugs containing monoaminophosphonate ester as a targeting group inhibit matrix metalloproteinases and reverse multidrug resistance. Bioconjug. Chem., 2017, 28(4), 1305-1323.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00117] [PMID: 28276682]
[130]
Faisca Phillips, A.M.M. Synthesis and Applications of Pharmacologically Relevant Phosphonates and Phosphinates. In: Organic and Medicinal Chemistry; Banik, B.K., Ed.; Nova Science Publishers: New York, 2019; Vol. 2, pp. 249-319.
[131]
Bhattacharya, A.K.; Raut, D.S.; Rana, K.C.; Polanki, I.K.; Khan, M.S.; Iram, S. Diversity-oriented synthesis of α-aminophosphonates: a new class of potential anticancer agents. Eur. J. Med. Chem., 2013, 66, 146-152.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.036] [PMID: 23792352]
[132]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Platinum(IV) complexes conjugated with phenstatin analogue as inhibitors of microtubule polymerization and reverser of multidrug resistance. Bioorg. Med. Chem., 2017, 25(17), 4686-4700.
[http://dx.doi.org/10.1016/j.bmc.2017.07.011] [PMID: 28728896]
[133]
Le Broc-Ryckewaert, D.; Pommery, N.; Pommery, J.; Ghinet, A.; Farce, A.; Wiart, J.F.; Gautret, P.; Rigo, B.; Hénichart, J.P. In vitro metabolism of phenstatin: potential pharmacological consequences. Drug Metab. Lett., 2011, 5(3), 209-215.
[http://dx.doi.org/10.2174/187231211796904973] [PMID: 21679150]
[134]
Trifan, O.C.; Hla, T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Mol. Med., 2003, 7(3), 207-222.
[http://dx.doi.org/10.1111/j.1582-4934.2003.tb00222.x] [PMID: 14594546]
[135]
Rothwell, P.M.; Fowkes, F.G.R.; Belch, J.F.F.; Ogawa, H.; Warlow, C.P.; Meade, T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 2011, 377(9759), 31-41.
[http://dx.doi.org/10.1016/S0140-6736(10)62110-1] [PMID: 21144578]
[136]
Ghosh, N.; Chaki, R.; Mandal, V.; Mandal, S.C. COX-2 as a target for cancer chemotherapy. Pharmacol. Rep., 2010, 62(2), 233-244.
[http://dx.doi.org/10.1016/S1734-1140(10)70262-0] [PMID: 20508278]
[137]
Pathak, R.K.; Marrache, S.; Choi, J.H.; Berding, T.B.; Dhar, S. The prodrug platin-A: simultaneous release of cisplatin and aspirin. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1963-1967.
[http://dx.doi.org/10.1002/anie.201308899] [PMID: 24453035]
[138]
Cheng, Q.; Shi, H.; Wang, H.; Min, Y.; Wang, J.; Liu, Y. The ligation of aspirin to cisplatin demonstrates significant synergistic effects on tumor cells. Chem. Commun. (Camb.), 2014, 50(56), 7427-7430.
[http://dx.doi.org/10.1039/C4CC00419A] [PMID: 24777030]
[139]
Kaiser, J. Will an aspirin a day keep cancer away? Science, 2012, 337(6101), 1471-1473.
[http://dx.doi.org/10.1126/science.337.6101.1471] [PMID: 22997320]
[140]
Algra, A.M.; Rothwell, P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol., 2012, 13(5), 518-527.
[http://dx.doi.org/10.1016/S1470-2045(12)70112-2] [PMID: 22440112]
[141]
Neumann, W.; Crews, B.C.; Marnett, L.J.; Hey-Hawkins, E. Conjugates of cisplatin and cyclooxygenase inhibitors as potent antitumor agents overcoming cisplatin resistance. ChemMedChem, 2014, 9(6), 1150-1153.
[http://dx.doi.org/10.1002/cmdc.201402074] [PMID: 24801194]
[142]
Neumann, W.; Crews, B.C.; Sárosi, M.B.; Daniel, C.M.; Ghebreselasie, K.; Scholz, M.S.; Marnett, L.J.; Hey-Hawkins, E. Conjugation of cisplatin analogues and cyclooxygenase inhibitors to overcome cisplatin resistance. ChemMedChem, 2015, 10(1), 183-192.
[http://dx.doi.org/10.1002/cmdc.201402353] [PMID: 25318459]
[143]
Chen, F.; Qin, X.; Xu, G.; Gou, S.; Jin, X. Reversal of cisplatin resistance in human gastric cancer cells by a wogonin-conjugated Pt(IV) prodrug via attenuating Casein Kinase 2-mediated Nuclear Factor-κB pathways. Biochem. Pharmacol., 2017, 135, 50-68.
[http://dx.doi.org/10.1016/j.bcp.2017.03.004] [PMID: 28288821]
[144]
Tai, M.C.; Tsang, S.Y.; Chang, L.Y.; Xue, H. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev., 2005, 11(2), 141-150.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00266.x] [PMID: 16007236]
[145]
Hu, W.; Fang, L.; Hua, W.; Gou, S. Biotin-Pt (IV)-indomethacin hybrid: A targeting anticancer prodrug providing enhanced cancer cellular uptake and reversing cisplatin resistance. J. Inorg. Biochem., 2017, 175, 47-57.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.07.002] [PMID: 28700961]
[146]
Qin, X.; Fang, L.; Chen, F.; Gou, S. Conjugation of platinum(IV) complexes with chlorambucil to overcome cisplatin resistance via a “joint action” mode toward DNA. Eur. J. Med. Chem., 2017, 137, 167-175.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.056] [PMID: 28586717]
[147]
Faguet, G.B. Chronic lymphocytic leukemia: an updated review. J. Clin. Oncol., 1994, 12(9), 1974-1990.
[http://dx.doi.org/10.1200/JCO.1994.12.9.1974] [PMID: 8083719]
[148]
Bank, B.B.; Kanganis, D.; Liebes, L.F.; Silber, R. Chlorambucil pharmacokinetics and DNA binding in chronic lymphocytic leukemia lymphocytes. Cancer Res., 1989, 49(3), 554-559.
[PMID: 2910477]
[149]
Petruzzella, E.; Sirota, R.; Solazzo, I.; Gandin, V.; Gibson, D.; Gibson, D. Triple action Pt(iv) derivatives of cisplatin: a new class of potent anticancer agents that overcome resistance. Chem. Sci. (Camb.), 2018, 9(18), 4299-4307.
[http://dx.doi.org/10.1039/C8SC00428E] [PMID: 29780561]
[150]
Kunz-Schughart, L.A.; Freyer, J.P.; Hofstaedter, F.; Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen., 2004, 9(4), 273-285.
[http://dx.doi.org/10.1177/1087057104265040] [PMID: 15191644]
[151]
Petruzzella, E.; Braude, J.P.; Aldrich-Wright, J.R.; Gandin, V.; Gibson, D. A quadruple-action platinum(IV) prodrug with anticancer activity against KRAS mutated cancer cell lines. Angew. Chem. Int. Ed. Engl., 2017, 56(38), 11539-11544.
[http://dx.doi.org/10.1002/anie.201706739] [PMID: 28759160]
[152]
Fisher, D.M.; Bednarski, P.J.; Grünert, R.; Turner, P.; Fenton, R.R.; Aldrich-Wright, J.R. Chiral platinum(II) metallointercalators with potent in vitro cytotoxic activity. ChemMedChem, 2007, 2(4), 488-495.
[http://dx.doi.org/10.1002/cmdc.200600211] [PMID: 17340669]
[153]
Harper, B.W.J.; Petruzzella, E.; Sirota, R.; Faccioli, F.F.; Aldrich-Wright, J.R.; Gandin, V.; Gibson, D. Synthesis, characterization and in vitro and in vivo anticancer activity of Pt(iv) derivatives of [Pt(1S,2S-DACH)(5,6-dimethyl-1,10-phenanthroline). Dalton Trans., 2017, 46(21), 7005-7019.
[http://dx.doi.org/10.1039/C7DT01054K] [PMID: 28513693]
[154]
Ernst, R.J.; Song, H.; Barton, J.K. DNA mismatch binding and antiproliferative activity of rhodium metalloinsertors. J. Am. Chem. Soc., 2009, 131(6), 2359-2366.
[http://dx.doi.org/10.1021/ja8081044] [PMID: 19175313]
[155]
Ansari, K.I.; Kasiri, S.; Grant, J.D.; Mandal, S.S. Fe(III)-salen and salphen complexes induce caspase activation and apoptosis in human cells. J. Biomol. Screen., 2011, 16(1), 26-35.
[http://dx.doi.org/10.1177/1087057110385227] [PMID: 21045212]
[156]
Meier-Menches, S.M.; Gerner, C.; Berger, W.; Hartinger, C.G.; Keppler, B.K. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem. Soc. Rev., 2018, 47(3), 909-928.
[http://dx.doi.org/10.1039/C7CS00332C] [PMID: 29170783]
[157]
Shnyder, S.D.; Fu, Y.; Habtemariam, A.; van Rijt, S.H.; Cooper, P.A.; Loadmana, P.M.; Sadler, P.J. Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex. MedChemComm, 2011, 2(7), 666-668.
[http://dx.doi.org/10.1039/c1md00075f]
[158]
Romero-Canelón, I.; Salassa, L.; Sadler, P.J. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J. Med. Chem., 2013, 56(3), 1291-1300.
[http://dx.doi.org/10.1021/jm3017442] [PMID: 23368735]
[159]
Schäfer, S.; Sheldrick, W.S. Coligand tuning of the DNA binding properties of half-sandwich organometallic intercalators: Influence of polypyridyl (pp) and monodentate ligands (L= Cl, (NH2)2CS, (NMe2)2CS) on the intercalation of (η5-pentamethylcyclopentadienyl)-iridium(III)-dipyrido-quinox-aline and -dipyridophenazine complexes. J. Organomet. Chem., 2007, 692(6), 1300-1309.
[http://dx.doi.org/10.1016/j.jorganchem.2006.10.033]
[160]
Ali Nazif, M.; Bangert, J-A.; Ott, I.; Gust, R.; Stoll, R.; Sheldrick, W.S. Dinuclear organoiridium(III) mono- and bis-intercalators with rigid bridging ligands: synthesis, cytotoxicity and DNA binding. J. Inorg. Biochem., 2009, 103(10), 1405-1414.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.08.003] [PMID: 19744736]
[161]
Liu, Z.; Romero-Canelón, I.; Habtemariam, A.; Clarkson, G.J.; Sadler, P.J. Potent half-sandwich iridium(III) anticancer complexes containing C∧N-chelated and pyridine ligands. Organometallics, 2014, 33(19), 5324-5333.
[http://dx.doi.org/10.1021/om500644f] [PMID: 25328266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy