Advances and Application of DNA-functionalized Nanoparticles | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances and Application of DNA-functionalized Nanoparticles

Author(s): Xun Zhang , Fei Wang, Jin-Liang Sheng* and Min-Xuan Sun*

Volume 26, Issue 40, 2019

Page: [7147 - 7165] Pages: 19

DOI: 10.2174/0929867325666180501103620

Price: $65

Open Access Journals Promotions 2
Abstract

DNA-functionalized nanoparticle (DfNP) technology, the integration of DNA with nanotechnology, has emerged over recent decades as a promising biofunctionalization tool in the light of biotechnological approaches. The development of DfNPs has exhibited significant potential for several biological and biomedical applications. In this review, we focus on the mechanism of a series of DNA-NP nanocomposites and highlight the superstructures of DNA-based NPs. We also summarize the applications of these nanocomposites in cell imaging, cancer therapy and bioanalytical detection.

Keywords: DNA, nanoparticle, cancer therapy and imaging, bioanalysis, biofunctionalization, biomedical applications.

[1]
Oh, J.H.; Park, D.H.; Joo, J.H.; Lee, J.S. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal. Bioanal. Chem., 2015, 407(29), 8627-8645.
[http://dx.doi.org/10.1007/s00216-015-8981-y] [PMID: 26329278]
[2]
Samanta, A.; Medintz, I.L. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8(17), 9037-9095.
[http://dx.doi.org/10.1039/C5NR08465B] [PMID: 27080924]
[3]
Bose, R.J.; Lee, S.H.; Park, H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov. Today, 2016, 21(8), 1303-1312.
[http://dx.doi.org/10.1016/j.drudis.2016.06.005] [PMID: 27297732]
[4]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[5]
Avvakumova, S.; Colombo, M.; Tortora, P.; Prosperi, D. Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol., 2014, 32(1), 11-20.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.006] [PMID: 24182737]
[6]
Seeman, N.C. DNA in a material world. Nature, 2003, 421(6921), 427-431.
[http://dx.doi.org/10.1038/nature01406] [PMID: 12540916]
[7]
Bhatt, N.; Huang, P.J.; Dave, N.; Liu, J. Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents. Langmuir, 2011, 27(10), 6132-6137.
[http://dx.doi.org/10.1021/la200241d] [PMID: 21513322]
[8]
Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano, 2016, 10(11), 10245-10257.
[http://dx.doi.org/10.1021/acsnano.6b05760] [PMID: 27791364]
[9]
Wang, H.B.; Li, Y.; Bai, H.Y.; Liu, Y.M. DNA-templated Au nanoclusters and MnO2, sheets: a label-free and universal fluorescence biosensing platform. Sens. Actuators B Chem., 2018, 259(15), 204-210.
[http://dx.doi.org/10.1016/j.snb.2017.12.048]
[10]
Li, Z.; Liu, R.; Xing, G.; Wang, T.; Liu, S. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens. Bioelectron., 2017, 96(15), 44-48.
[http://dx.doi.org/10.1016/j.bios.2017.01.005] [PMID: 28460331]
[11]
Zhu, X.L.; Shi, H.; Shen, Y.L.; Zhang, B.; Zhao, J.; Li, G.X. A green method of staining DNA in polyacrylamide gel electrophoresis based on fluorescent copper nanoclusters synthesized in situ. Nano Res., 2015, 8(8), 2714-2720.
[http://dx.doi.org/10.1007/s12274-015-0778-y]
[12]
Alivisatos, A.P.; Johnsson, K.P.; Peng, X.; Wilson, T.E.; Loweth, C.J.; Bruchez, M.P., Jr; Schultz, P.G. Organization of ‘nanocrystal molecules’ using DNA. Nature, 1996, 382(6592), 609-611.
[http://dx.doi.org/10.1038/382609a0] [PMID: 8757130]
[13]
Su, Q.; Nöll, G. Influence of the thiol anchor on the orientation of surface-grafted dsDNA assemblies. Chemistry, 2017, 23(3), 696-702.
[http://dx.doi.org/10.1002/chem.201604652] [PMID: 27747950]
[14]
Ford, W.E.; Harnack, O.; Yasuda, A.; Wessels, J.M. Platinated DNA as precursors to templated chains of metal nanoparticles. Adv. Mater., 2001, 13(23), 1793-1797.
[http://dx.doi.org/10.1002/1521-4095(200112)13:23<1793:AID-ADMA1793>3.0.CO;2-V]
[15]
Bhatia, D.; Arumugam, S.; Nasilowski, M.; Joshi, H.; Wunder, C.; Chambon, V.; Prakash, V.; Grazon, C.; Nadal, B.; Maiti, P.K.; Johannes, L.; Dubertret, B.; Krishnan, Y. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol., 2016, 11(12), 1112-1119.
[http://dx.doi.org/10.1038/nnano.2016.150] [PMID: 27548358]
[16]
Zhao, W.; Chiuman, W.; Lam, J.C.; McManus, S.A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M.A.; Li, Y. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc., 2008, 130(11), 3610-3618.
[http://dx.doi.org/10.1021/ja710241b] [PMID: 18293985]
[17]
Yeh, H.C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H.A. DNA--silver nanocluster probe that fluoresces upon hybridization. Nano Lett., 2010, 10(8), 3106-3110.
[http://dx.doi.org/10.1021/nl101773c] [PMID: 20698624]
[18]
Wang, L.; Shi, F.; Li, Y.; Su, X. An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters. Sens. Actuators B Chem., 2016, 222, 945-951.
[http://dx.doi.org/10.1016/j.snb.2015.09.024]
[19]
Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc., 2004, 126(16), 5207-5212.
[http://dx.doi.org/10.1021/ja031931o] [PMID: 15099104]
[20]
Vosch, T.; Antoku, Y.; Hsiang, J.C.; Richards, C.I.; Gonzalez, J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12616-12621.
[http://dx.doi.org/10.1073/pnas.0610677104] [PMID: 17519337]
[21]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[22]
Takezawa, Y.; Shionoya, M. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. Acc. Chem. Res., 2012, 45(12), 2066-2076.
[http://dx.doi.org/10.1021/ar200313h] [PMID: 22452649]
[23]
Subramanian, R.H.; Smith, S.J.; Alberstein, R.G.; Bailey, J.B.; Zhang, L.; Cardone, G.; Suominen, L.; Chami, M.; Stahlberg, H.; Baker, T.S.; Tezcan, F.A. Self-assembly of a designed nucleoprotein architecture through multimodal interactions. ACS Cent. Sci., 2018, 4(11), 1578-1586.
[http://dx.doi.org/10.1021/acscentsci.8b00745] [PMID: 30555911]
[24]
Chou, L.Y.T.; Song, F.; Chan, W.C.W. Engineering the structure and properties of DNA-nanoparticle superstructures using polyvalent counterions. J. Am. Chem. Soc., 2016, 138(13), 4565-4572.
[http://dx.doi.org/10.1021/jacs.6b00751] [PMID: 26942662]
[25]
Vidal, B.C., Jr; Deivaraj, T.C.; Yang, J.; Too, H.P.; Chow, G.M.; Gane, L.M.; Lee, J.Y. Stability and hybridization-driven aggregation of silver nanoparticle-oligonucleotide conjugates. New J. Chem., 2005, 29(6), 812-816.
[http://dx.doi.org/10.1039/b417683a]
[26]
Zhang, H.; Lv, J.; Jia, Z. Efficient fluorescence resonance energy transfer between quantum dots and gold nanoparticles based on porous silicon photonic crystal for dna detection. Sensors (Basel), 2017, 17(5), 1078-1090.
[http://dx.doi.org/10.3390/s17051078] [PMID: 28489033]
[27]
Zhang, T.; Liedl, T. DNA-based assembly of quantum dots into dimers and helices. Nanomaterials, 2019, 9(3), 339.
[http://dx.doi.org/10.3390/nano9030339] [PMID: 30832359]
[28]
Sun, E.Z.; Liu, A.A.; Zhang, Z.L.; Liu, S.L.; Tian, Z.Q.; Pang, D.W. Real-time dissection of distinct dynamin-dependent endocytic routes of influenza a virus by quantum dot-based single-virus tracking. ACS Nano, 2017, 11(5), 4395-4406.
[http://dx.doi.org/10.1021/acsnano.6b07853] [PMID: 28355058]
[29]
Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z.P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X.E.; Cui, Z. Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages. ACS Nano, 2017, 11(4), 3890-3903.
[http://dx.doi.org/10.1021/acsnano.7b00275] [PMID: 28371581]
[30]
Shamsipur, M.; Nasirian, V.; Mansouri, K.; Barati, A.; Veisi-Raygani, A.; Kashanian, S. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal., 2017, 136(20), 140-147.
[http://dx.doi.org/10.1016/j.jpba.2017.01.002] [PMID: 28081500]
[31]
Walling, M.A.; Novak, J.A.; Shepard, J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci., 2009, 10(2), 441-491.
[http://dx.doi.org/10.3390/ijms10020441] [PMID: 19333416]
[32]
Chinnathambi, S.; Abu, N.; Hanagata, N. Biocompatible CdSe/ZnS quantum dot micelles for long-term cell imaging without alteration to the native structure of the blood plasma protein human serum albumin. RSC Advances, 2017, 7(7), 2392-2402.
[http://dx.doi.org/10.1039/C6RA26592H]
[33]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[34]
Wang, Z.; He, H.; Slough, W.; Pandey, R.; Karna, S.P. Nature of interaction between semiconducting nanostructures and biomolecules: chalcogenide QDs and BNNT with DNA molecules. J. Phys. Chem. C, 2015, 119(46), 25965-25973.
[http://dx.doi.org/10.1021/acs.jpcc.5b08084]
[35]
Wang, G.; Li, Z.; Ma, N. Next-generation DNA-functionalized quantum dots as biological sensors. ACS Chem. Biol., 2017, 13(7), 1705-1713.
[http://dx.doi.org/10.1021/acschembio.7b00887] [PMID: 29257662]
[36]
Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Upconversion processes: versatile biological applications and biosafety. Nanoscale, 2017, 9(34), 12248-12282.
[http://dx.doi.org/10.1039/c7nr01836c] [PMID: 28829477]
[37]
Li, R.; Ji, Z.; Dong, J.; Chang, C.H.; Wang, X.; Sun, B.; Wang, M.; Liao, Y.P.; Zink, J.I.; Nel, A.E.; Xia, T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano, 2015, 9(3), 3293-3306.
[http://dx.doi.org/10.1021/acsnano.5b00439] [PMID: 25727446]
[38]
Chatterjee, D.K.; Rufaihah, A.J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, 29(7), 937-943.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.051] [PMID: 18061257]
[39]
Li, R.; Ji, Z.; Chang, C.H.; Dunphy, D.R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong, J.; Lin, S.; Wang, M.; Liao, Y.P.; Brinker, C.J.; Nel, A.; Xia, T. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 2014, 8(2), 1771-1783.
[http://dx.doi.org/10.1021/nn406166n] [PMID: 24417322]
[40]
Tian, J.; Zeng, X.; Xie, X.; Han, S.; Liew, O.W.; Chen, Y.T.; Wang, L.; Liu, X. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles. J. Am. Chem. Soc., 2015, 137(20), 6550-6558.
[http://dx.doi.org/10.1021/jacs.5b00981] [PMID: 25923914]
[41]
Liu, B.; Chen, Y.; Li, C.; He, F.; Hou, Z.; Huang, S. Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv. Funct. Mater., 2015, 25(29), 4717-4729.
[http://dx.doi.org/10.1002/adfm.201501582]
[42]
Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev., 2015, 44(6), 1509-1525.
[http://dx.doi.org/10.1039/C4CS00175C] [PMID: 25113504]
[43]
Liu, J.; Bu, W.; Zhang, S.; Chen, F.; Xing, H.; Pan, L.; Zhou, L.; Peng, W.; Shi, J. Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry, 2012, 18(8), 2335-2341.
[http://dx.doi.org/10.1002/chem.201102599] [PMID: 22252972]
[44]
Li, L.L.; Wu, P.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc., 2013, 135(7), 2411-2414.
[http://dx.doi.org/10.1021/ja310432u] [PMID: 23356394]
[45]
Lu, J.; Chen, Y.; Liu, D.; Ren, W.; Lu, Y.; Shi, Y.; Piper, J.; Paulsen, I.; Jin, D. One-step protein conjugation to upconversion nanoparticles. Anal. Chem., 2015, 87(20), 10406-10413.
[http://dx.doi.org/10.1021/acs.analchem.5b02523] [PMID: 26429146]
[46]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta, 2017, 987(22), 25-37.
[http://dx.doi.org/10.1016/j.aca.2017.07.071] [PMID: 28916037]
[47]
Zhou, W.; Zhou, Y.; Wu, J.; Liu, Z.; Zhao, H.; Liu, J.; Ding, J. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J. Drug Target., 2014, 22(1), 57-66.
[http://dx.doi.org/10.3109/1061186X.2013.839683] [PMID: 24156476]
[48]
Ding, F.; Gao, Y.; He, X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg. Med. Chem. Lett., 2017, 27(18), 4256-4269.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.032] [PMID: 28803753]
[49]
Luzzati, V.; Masson, F.; Lerman, L.S. Interaction of DNA and proflavine: a small-angle x-ray scattering study. J. Mol. Biol., 1961, 3(5), 634-639.
[http://dx.doi.org/10.1016/S0022-2836(61)80026-0] [PMID: 14467543]
[50]
Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110] [PMID: 23630258]
[51]
Zhang, Y.; Hong, H.; Cai, W. Tumor-targeted drug delivery with aptamers. Curr. Med. Chem., 2011, 18(27), 4185-4194.
[http://dx.doi.org/10.2174/092986711797189547] [PMID: 21838687]
[52]
Wang, Z.; Lu, Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem., 2009, 19(13), 1788-1798.
[http://dx.doi.org/10.1039/b813939c] [PMID: 24307758]
[53]
Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P.W.; Langer, R.; Farokhzad, O.C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett., 2007, 7(10), 3065-3070.
[http://dx.doi.org/10.1021/nl071546n] [PMID: 17854227]
[54]
Wang, G.; Wang, Y.; Chen, L.; Choo, J. Nanomaterial-assisted aptamers for optical sensing. Biosens. Bioelectron., 2010, 25(8), 1859-1868.
[http://dx.doi.org/10.1016/j.bios.2009.11.012] [PMID: 20129770]
[55]
Natfji, A.A.; Ravishankar, D.; Osborn, H.M.I.; Greco, F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci., 2017, 106(11), 3179-3187.
[http://dx.doi.org/10.1016/j.xphs.2017.06.019] [PMID: 28669714]
[56]
Fortin, D. The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr. Cancer Drug Targets, 2012, 12(3), 247-259.
[http://dx.doi.org/10.2174/156800912799277511] [PMID: 22229251]
[57]
Monaco, I.; Camorani, S.; Colecchia, D.; Locatelli, E.; Calandro, P.; Oudin, A.; Niclou, S.; Arra, C.; Chiariello, M.; Cerchia, L.; Comes Franchini, M. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier. J. Med. Chem., 2017, 60(10), 4510-4516.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00527] [PMID: 28471660]
[58]
Hu, X.; Wang, Y.; Tan, Y.; Wang, J.; Liu, H.; Wang, Y.; Yang, S.; Shi, M.; Zhao, S.; Zhang, Y.; Yuan, Q. A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv. Mater., 2017, 29(15)1605235
[http://dx.doi.org/10.1002/adma.201605235] [PMID: 28185322]
[59]
Huang, J.; Yang, X.; He, X.; Wang, K.; Liu, J.; Shi, H.; Wang, Q.; Guo, Q.P.; He, D.G. Design and bioanalytical applications of DNA hairpin-based fluorescent probes. Trends Analyt. Chem., 2014, 53, 11-20.
[http://dx.doi.org/10.1016/j.trac.2013.08.007]
[60]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 113(4), 2842-2862.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[61]
von Roemeling, C.; Jiang, W.; Chan, C.K.; Weissman, I.L.; Kim, B.Y.S. Breaking down the darriers to precision cancer nanomedicine. Trends Biotechnol., 2017, 35(2), 159-171.
[http://dx.doi.org/10.1016/j.tibtech.2016.07.006] [PMID: 27492049]
[62]
Han, L.; Zhang, Y.; Zhang, Y.; Shu, Y.; Chen, X.W.; Wang, J.H. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017, 171(171), 32-38.
[http://dx.doi.org/10.1016/j.talanta.2017.04.056] [PMID: 28551145]
[63]
Sanna Angotzi, M.; Musinu, A.; Mameli, V.; Ardu, A.; Cara, C.; Niznansky, D.; Xin, H.L.; Cannas, C. Spinel ferrite core-shell nanostructures by a versatile solvothermal seed-mediated growth approach and study of their nanointerfaces. ACS Nano, 2017, 11(8), 7889-7900.
[http://dx.doi.org/10.1021/acsnano.7b02349] [PMID: 28735529]
[64]
Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu(2-x) S core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc., 2013, 135(23), 8571-8577.
[http://dx.doi.org/10.1021/ja4013497] [PMID: 23687972]
[65]
Li, F.; Lu, J.; Kong, X.; Hyeon, T.; Ling, D. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater., 2017, 29(14)1605897
[http://dx.doi.org/10.1002/adma.201605897] [PMID: 28224677]
[66]
Chauhan, V.P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M.G.; Jain, R.K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl., 2011, 50(48), 11417-11420.
[http://dx.doi.org/10.1002/anie.201104449] [PMID: 22113800]
[67]
Dai, Q.; Walkey, C.; Chan, W.C. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. Engl., 2014, 53(20), 5093-5096.
[http://dx.doi.org/10.1002/anie.201309464] [PMID: 24700480]
[68]
Ohta, S.; Glancy, D.; Chan, W.C. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351(6275), 841-845.
[http://dx.doi.org/10.1126/science.aad4925] [PMID: 26912892]
[69]
Raeesi, V.; Chou, L.Y.; Chan, W.C. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures. Adv. Mater., 2016, 28(38), 8511-8518.
[http://dx.doi.org/10.1002/adma.201600773] [PMID: 27501857]
[70]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[71]
Uprety, B.; Jensen, J.; Aryal, B.R.; Davis, R.C.; Woolley, A.T.; Harb, J.N. Directional growth of DNA-functionalized nanorods to enable continuous, site-specific metallization of DNA origami templates. Langmuir, 2017, 33(39), 10143-10152.
[http://dx.doi.org/10.1021/acs.langmuir.7b01659] [PMID: 28876958]
[72]
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev., 2017, 117(20), 12584-12640.
[http://dx.doi.org/10.1021/acs.chemrev.6b00825] [PMID: 28605177]
[73]
Numajiri, K.; Yamazaki, T.; Kimura, M.; Kuzuya, A.; Komiyama, M. Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. J. Am. Chem. Soc., 2010, 132(29), 9937-9939.
[http://dx.doi.org/10.1021/ja104702q] [PMID: 20590144]
[74]
Pal, S.; Deng, Z.; Ding, B.; Yan, H.; Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2700-2704.
[http://dx.doi.org/10.1002/anie.201000330] [PMID: 20235262]
[75]
Stephanopoulos, N.; Liu, M.; Tong, G.J.; Li, Z.; Liu, Y.; Yan, H.; Francis, M.B. Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. Nano Lett., 2010, 10(7), 2714-2720.
[http://dx.doi.org/10.1021/nl1018468] [PMID: 20575574]
[76]
Maune, H.T.; Han, S.P.; Barish, R.D.; Bockrath, M.; Goddard, W.A., III; Rothemund, P.W.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol., 2010, 5(1), 61-66.
[http://dx.doi.org/10.1038/nnano.2009.311] [PMID: 19898497]
[77]
Castro, C.E.; Dietz, H.; Högberg, B. DNA origami devices for molecular-scale precision measurements. MRS Bull., 2017, 42(12), 925-929.
[http://dx.doi.org/10.1557/mrs.2017.273]
[78]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[79]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[80]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[81]
Yun, S.H.; Sjj, K. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 2017, 1, pii: 0008.
[http://dx.doi.org/10.1038/s41551-016-0008] [PMID: 28649464]
[82]
Alvarado, A.G.; Ortega, A.; Ceja, I.; Arellano, M.; Puig, J.E. Synthesis, characterization, and drug delivery from pH- and thermoresponsive Poly(N-Isopropylacrylamide)/chito-san core/shell nanocomposites made by semicontinuous heterophase polymerization. J. Nanomater., 2017, 2017(6796412), 1-7.
[http://dx.doi.org/10.1155/2017/6796412]
[83]
Wang, H.; Yi, J.; Mukherjee, S.; Banerjee, P.; Zhou, S. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale, 2014, 6(21), 13001-13011.
[http://dx.doi.org/10.1039/C4NR03748K] [PMID: 25243783]
[84]
De Geest, B.G.; Skirtach, A.G.; Mamedov, A.A.; Antipov, A.A.; Kotov, N.A.; De Smedt, S.C.; Sukhorukov, G.B. Ultrasound-triggered release from multilayered capsules. Small, 2007, 3(5), 804-808.
[http://dx.doi.org/10.1002/smll.200600441] [PMID: 17385759]
[85]
Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E.M.; Frieder, J.; Wu, J.; Farokhzad, O.C. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11853-11857.
[http://dx.doi.org/10.1002/anie.201204018] [PMID: 23081716]
[86]
Kuo, T.R.; Hovhannisyan, V.A.; Chao, Y.C.; Chao, S.L.; Chiang, S.J.; Lin, S.J.; Dong, C.Y.; Chen, C.C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation. J. Am. Chem. Soc., 2010, 132(40), 14163-14171.
[http://dx.doi.org/10.1021/ja105360z] [PMID: 20857981]
[87]
Lee, J.H.; Jeong, H.S.; Dong, H.L.; Beack, S.; Kim, T.; Lee, G.H. Targeted hyaluronate-hollow gold nanosphere conjugate for anti-obesity photothermal lipolysis. ACS Biomater. Sci. Eng., 2017, 3(12), 3646-3653.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00549]
[88]
Poudel, B.K.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Pathak, S.; Oh, K.T.; Jeong, J.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf. B Biointerfaces, 2017, 160, 73-83.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.010] [PMID: 28917152]
[89]
Chen, Y.J.; Huang, X. DNA sequencing by denaturation: principle and thermodynamic simulations. Anal. Biochem., 2009, 384(1), 170-179.
[http://dx.doi.org/10.1016/j.ab.2008.09.048] [PMID: 18930015]
[90]
Chaires, J.B.; Herrera, J.E.; Waring, M.J. Preferential binding of daunomycin to 5‘ATCG and 5’ATGC sequences revealed by footprinting titration experiments. Biochemistry, 1990, 29(26), 6145-6153.
[http://dx.doi.org/10.1021/bi00478a006] [PMID: 2207063]
[91]
Zhang, D.; Zheng, A.; Li, J.; Wu, M.; Cai, Z.; Wu, L.; Wei, Z.; Yang, H.; Liu, X.; Liu, J. Tumor microenvironment activable self-assembled DNA hybrids for pH and redox dual-responsive chemotherapy/PDT treatment of hepatocellular carcinoma. Adv. Sci. (Weinh.), 2017, 4(4)1600460
[http://dx.doi.org/10.1002/advs.201600460] [PMID: 28435778]
[92]
Huang, Y.F.; Sefah, K.; Bamrungsap, S.; Chang, H.T.; Tan, W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008, 24(20), 11860-11865.
[http://dx.doi.org/10.1021/la801969c] [PMID: 18817428]
[93]
Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6), 5070-5077.
[http://dx.doi.org/10.1021/nn300694v] [PMID: 22631052]
[94]
Sun, Q.; You, Q.; Pang, X.; Tan, X.; Wang, J.; Liu, L.; Guo, F.; Tan, F.; Li, N. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials, 2017, 122, 188-200.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.021] [PMID: 28131043]
[95]
Qiu, W.X.; Liu, L.H.; Li, S.Y.; Lei, Q.; Luo, G.F.; Zhang, X.Z. ACPI conjugated gold nanorods as nanoplatform for dual image guided activatable photodynamic and photothermal combined therapy in vivo. Small, 2017, 13(18)1603956
[http://dx.doi.org/10.1002/smll.201603956] [PMID: 28266809]
[96]
Zhu, X.; Huang, H.; Zhang, Y.; Zhang, H.; Hou, L.; Zhang, Z. Cit/CuS@Fe3O4-based and enzyme-responsive magnetic nanoparticles for tumor chemotherapy, photothermal, and photodynamic therapy. J. Biomater. Appl., 2017, 31(7), 1010-1025.
[http://dx.doi.org/10.1177/0885328216676159] [PMID: 28178904]
[97]
Wegner, K.D.; Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834.
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[98]
Liu, J.N.; Bu, W.; Shi, J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev., 2017, 117(9), 6160-6224.
[http://dx.doi.org/10.1021/acs.chemrev.6b00525] [PMID: 28426202]
[99]
Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 2010, 7(8), 603-614.
[http://dx.doi.org/10.1038/nmeth.1483] [PMID: 20676081]
[100]
Li, L.; Hao, P.; Wei, P.; Fu, L.; Ai, X.; Zhang, J.; Zhou, J. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification. Biomaterials, 2017, 136, 43-55.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.006] [PMID: 28511143]
[101]
Zhang, C.; Macfarlane, R.J.; Young, K.L.; Choi, C.H.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C.A. A general approach to DNA-programmable atom equivalents. Nat. Mater., 2013, 12(8), 741-746.
[http://dx.doi.org/10.1038/nmat3647] [PMID: 23685863]
[102]
Han, S.; Samanta, A.; Xie, X.; Huang, L.; Peng, J.; Park, S.J.; Teh, D.B.L.; Choi, Y.; Chang, Y.T.; All, A.H.; Yang, Y.; Xing, B.; Liu, X. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv. Mater., 2017, 29(18)1700244
[http://dx.doi.org/10.1002/adma.201700244] [PMID: 28295739]
[103]
Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-Gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007.
[http://dx.doi.org/10.1002/adma.201601710] [PMID: 27679425]
[104]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V.; Govindhan, M.; Manickam, S.; Vellaichamy, G. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103(30), 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[105]
Xu, W.; Xie, X.; Li, D.; Yang, Z.; Li, T.; Liu, X. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Small, 2012, 8(12), 1846-1850.
[http://dx.doi.org/10.1002/smll.201200263] [PMID: 22461378]
[106]
Zhang, J.Z. Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett., 2010, 1(4), 191-230.
[http://dx.doi.org/10.1021/jz900366c]
[107]
Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329), 1078-1081.
[http://dx.doi.org/10.1126/science.277.5329.1078] [PMID: 9262471]
[108]
Xu, W.; Xue, X.; Li, T.; Zeng, H.; Liu, X. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. Engl., 2009, 48(37), 6849-6852.
[http://dx.doi.org/10.1002/anie.200901772] [PMID: 19479915]
[109]
Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Mikrochim. Acta, 2017, 184(15), 1-20.
[http://dx.doi.org/10.1007/s00604-017-2143-1]
[110]
Zhang, J.; Song, S.; Wang, L.; Pan, D.; Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc., 2007, 2(11), 2888-2895.
[http://dx.doi.org/10.1038/nprot.2007.419] [PMID: 18007624]
[111]
Zhao, W.W.; Wang, J.; Xu, J.J.; Chen, H.Y. Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chem. Commun. (Camb.), 2011, 47(39), 10990-10992.
[http://dx.doi.org/10.1039/c1cc13952e] [PMID: 21909528]
[112]
Zhao, W.W.; Yu, P.P.; Shan, Y.; Wang, J.; Xu, J.J.; Chen, H.Y. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal. Chem., 2012, 84(14), 5892-5897.
[http://dx.doi.org/10.1021/ac300127s] [PMID: 22765356]
[113]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical DNA biosensors. Chem. Rev., 2014, 114(15), 7421-7441.
[http://dx.doi.org/10.1021/cr500100j] [PMID: 24932760]
[114]
Yang, D.; Tang, Y.; Guo, Z.; Chen, X.; Miao, P. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy. Mol. Biosyst., 2017, 13(10), 1936-1939.
[http://dx.doi.org/10.1039/C7MB00458C] [PMID: 28796267]
[115]
Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 2015, 15(5), 10481-10510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[116]
Sun, F.; Ella-Menye, J.R.; Galvan, D.D.; Bai, T.; Hung, H.C.; Chou, Y.N.; Zhang, P.; Jiang, S.; Yu, Q. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano, 2015, 9(3), 2668-2676.
[http://dx.doi.org/10.1021/nn506447k] [PMID: 25738888]
[117]
Zhang, D.; Lu, Y.; Zhang, Q.; Liu, L.; Li, S.; Yao, Y. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sens. Actuators B Chem., 2016, 222, 994-1002.
[http://dx.doi.org/10.1016/j.snb.2015.09.041]
[118]
Ma, Z.Y.; Ruan, Y.F.; Xu, F.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Protein binding bends the gold nanoparticle capped DNA sequence: toward novel energy-transfer-based photoelectrochemical protein detection. Anal. Chem., 2016, 88(7), 3864-3871.
[http://dx.doi.org/10.1021/acs.analchem.6b00012] [PMID: 26967949]
[119]
Xu, F.; Zhu, Y.C.; Ma, Z.Y.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chem. Commun. (Camb.), 2016, 52(14), 3034-3037.
[http://dx.doi.org/10.1039/C5CC09963C] [PMID: 26790604]
[120]
Song, S.; Lu, Y.; Li, X.; Cao, S.; Pei, Y.; Aastrup, T.; Pei, Z. Optimization of 3D surfaces of dextran with different molecule weights for real-time detection of biomolecular interactions by a QCM biosensor. Polymers (Basel), 2017, 9(9), 409-422.
[http://dx.doi.org/10.3390/polym9090409] [PMID: 30965713]
[121]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[122]
Hu, L.; Hu, S.; Guo, L.; Shen, C.; Yang, M.; Rasooly, A. DNA generated electric current biosensor. Anal. Chem., 2017, 89(4), 2547-2552.
[http://dx.doi.org/10.1021/acs.analchem.6b04756] [PMID: 28219246]
[123]
Jepsen, M.L.; Harmsen, C.; Godbole, A.A.; Nagaraja, V.; Knudsen, B.R.; Ho, Y.P. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor. Nanoscale, 2016, 8(1), 358-364.
[http://dx.doi.org/10.1039/C5NR06326D] [PMID: 26616006]
[124]
Ma, Z.Y.; Xu, F.; Qin, Y.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Invoking direct exciton-plasmon interactions by catalytic ag deposition on au nanoparticles: novel photoelectrochemical bioanalysis with high efficiency. Anal. Chem., 2016, 88(8), 4183-4187.
[http://dx.doi.org/10.1021/acs.analchem.6b00503] [PMID: 27023112]
[125]
Zhou, L.; Shen, Q.; Zhao, P.; Xiang, B.; Nie, Z.; Huang, Y.; Yao, S. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide. Methods, 2013, 64(3), 299-304.
[http://dx.doi.org/10.1016/j.ymeth.2013.09.001] [PMID: 24051334]
[126]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev., 2008, 108(5), 1517-1549.
[http://dx.doi.org/10.1021/cr078203u] [PMID: 18426241]
[127]
Wang, H.; Xu, W.; Zhang, H.; Li, D.; Yang, Z.; Xie, X.; Li, T.; Liu, X. EcoRI-modified gold nanoparticles for dual-mode colorimetric detection of magnesium and pyrophosphate ions. Small, 2011, 7(14), 1987-1992.
[http://dx.doi.org/10.1002/smll.201100470] [PMID: 21671433]
[128]
Miao, P.; Tang, Y.; Wang, L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces, 2017, 9(4), 3940-3947.
[http://dx.doi.org/10.1021/acsami.6b14247] [PMID: 28079364]
[129]
Zeng, L.; Miller, E.W.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc., 2006, 128(1), 10-11.
[http://dx.doi.org/10.1021/ja055064u] [PMID: 16390096]
[130]
Yao, J.; Zhang, K.; Zhu, H.; Ma, F.; Sun, M.; Yu, H.; Sun, J.; Wang, S. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal. Chem., 2013, 85(13), 6461-6468.
[http://dx.doi.org/10.1021/ac401011r] [PMID: 23745782]
[131]
Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta, 2012, 84(12), 49-61.
[http://dx.doi.org/10.1016/j.electacta.2012.04.044]
[132]
Mirzaei, M.; Behzadi, M.; Abadi, N.M.; Beizaei, A. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater., 2011, 186(2-3), 1739-1743.
[http://dx.doi.org/10.1016/j.jhazmat.2010.12.080] [PMID: 21232852]
[133]
Soto-Alvaredo, J.; Montes-Bayón, M.; Bettmer, J. Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Anal. Chem., 2013, 85(3), 1316-1321.
[http://dx.doi.org/10.1021/ac302851d] [PMID: 23305255]
[134]
Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc., 2007, 129(2), 244-245.
[http://dx.doi.org/10.1021/ja065552h] [PMID: 17212382]
[135]
Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. (Camb.), 2008, 39(39), 4825-4827.
[http://dx.doi.org/10.1039/b808686a] [PMID: 18830506]
[136]
Lin, M.; Song, P.; Zhou, G.; Zuo, X.; Aldalbahi, A.; Lou, X.; Shi, J.; Fan, C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc., 2016, 11(7), 1244-1263.
[http://dx.doi.org/10.1038/nprot.2016.071] [PMID: 27310264]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy