[1]
Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third national health and nutrition examination survey. JAMA, 2002, 287(3), 356-359.
[2]
Hijazi, Z.; Oldgren, J.; Siegbahn, A.; Granger, C.B.; Wallentin, L. Biomarkers in atrial fibrillation: A clinical review. Eur. Heart J., 2013, 34(20), 1475-1480.
[3]
Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; Lekakis, J.; Mikhailidis, D.P.; Naka, K.K.; Protogerou, A.D.; Rizzoni, D.; Schmidt-Trucksäss, A.; Van Bortel, L.; Weber, T.; Yamashina, A.; Zimlichman, R.; Boutouyrie, P.; Cockcroft, J.; O’Rourke, M.; Park, J.B.; Schillaci, G.; Sillesen, H.; Townsend, R.R. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European society of cardiology working group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis, 2015, 241(2), 507-532.
[4]
Antman, E.M.; Tanasijevic, M.J.; Thompson, B.; Schactman, M.; McCabe, C.H.; Cannon, C.P.; Fischer, G.A.; Fung, A.Y.; Thompson, C.; Wybenga, D.; Braunwald, E. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N. Engl. J. Med., 1996, 335(18), 1342-1349.
[5]
Katus, H.A.; Remppis, A.; Neumann, F.J.; Scheffold, T.; Diederich, K.W.; Vinar, G.; Noe, A.; Matern, G.; Kuebler, W. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation, 1991, 83(3), 902-912.
[6]
James, S.K.; Armstrong, P.; Barnathan, E.; Califf, R.; Lindahl, B.; Siegbahn, A.; Simoons, M.L.; Topol, E.J.; Venge, P.; Wallentin, L. Troponin and C-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome: a GUSTO-IV substudy. J. Am. Coll. Cardiol., 2003, 41(6), 916-924.
[7]
Lindahl, B.; Toss, H.; Siegbahn, A.; Venge, P.; Wallentin, L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. N. Engl. J. Med., 2000, 343(16), 1139-1147.
[8]
Horwich, T.B.; Patel, J.; MacLellan, W.R.; Fonarow, G.C. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation, 2003, 108(7), 833-838.
[9]
Omland, T.; de Lemos, J.A.; Sabatine, M.S.; Christophi, C.A.; Rice, M.M.; Jablonski, K.A.; Tjora, S.; Domanski, M.J.; Gersh, B.J.; Rouleau, J.L.; Pfeffer, M.A.; Braunwald, E. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med., 2009, 361(26), 2538-2547.
[10]
Zethelius, B.; Johnston, N.; Venge, P. Troponin I as a predictor of coronary heart disease and mortality in 70-year-old men: a community-based cohort study. Circulation, 2006, 113(8), 1071-1078.
[11]
Pervanidou, P.; Akalestos, A.; Bastaki, D.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G. Increased circulating high-sensitivity troponin T concentrations in children and adolescents with obesity and the metabolic syndrome: A marker for early cardiac damage? Metabolism, 2013, 62(4), 527-531.
[12]
Siervo, M.; Ruggiero, D.; Sorice, R.; Nutile, T.; Aversano, M.; Stephan, B.C.; Ciullo, M. Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome. J. Intern. Med., 2010, 268(4), 338-347.
[13]
Wallace, T.W.; Abdullah, S.M.; Drazner, M.H.; Das, S.R.; Khera, A.; McGuire, D.K.; Wians, F.; Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A. Prevalence and determinants of troponin T elevation in the general population. Circulation, 2006, 113(16), 1958-1965.
[14]
Nattel, S. Defining “culprit mechanisms” in arrhythmogenic cardiac remodeling. Circ. Res., 2004, 94(11), 1403-1405.
[15]
Spach, M.S.; Boineau, J.P. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections. Pacing Clin. Electrophysiol., 1997, 20(2 Pt 2), 397-413.
[16]
Burstein, B.; Nattel, S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol., 2008, 51(8), 802-809.
[17]
Everett, T.H., IV; Olgin, J.E. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm, 2007, 4(3)(Suppl.), S24-S27.
[18]
Kostin, S.; Klein, G.; Szalay, Z.; Hein, S.; Bauer, E.P.; Schaper, J. Structural correlate of atrial fibrillation in human patients. Cardiovasc. Res., 2002, 54(2), 361-379.
[19]
Anné, W.; Willems, R.; Roskams, T.; Sergeant, P.; Herijgers, P.; Holemans, P.; Ector, H.; Heidbüchel, H. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovasc. Res., 2005, 67(4), 655-666.
[20]
Luo, M.H.; Li, Y.S.; Yang, K.P. Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology, 2006, 107(4), 248-253.
[21]
Pham, T.D.; Fenoglio, J.J., Jr Right atrial ultrastructural in chronic rheumatic heart disease. Int. J. Cardiol., 1982, 1(3-4), 289-304.
[22]
Ohtani, K.; Yutani, C.; Nagata, S.; Koretsune, Y.; Hori, M.; Kamada, T. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol., 1995, 25(5), 1162-1169.
[23]
Lie, J.T.; Hammond, P.I. Pathology of the senescent heart: anatomic observations on 237 autopsy studies of patients 90 to 105 years old. Mayo Clin. Proc., 1988, 63(6), 552-564.
[24]
Bugnicourt, J-M.; Rogez, V.; Guillaumont, M.P.; Rogez, J.C.; Canaple, S.; Godefroy, O. Troponin levels help predict new-onset atrial fibrillation in ischaemic stroke patients: a retrospective study. Eur. Neurol., 2010, 63(1), 24-28.
[25]
Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; Wallentin, L. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: A Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation, 2012, 125(13), 1605-1616.
[26]
Kumagai, K.; Nakashima, H.; Urata, H.; Gondo, N.; Arakawa, K.; Saku, K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol., 2003, 41(12), 2197-2204.
[27]
Lee, K.W.; Everett, T.H., IV; Rahmutula, D.; Guerra, J.M.; Wilson, E.; Ding, C.; Olgin, J.E. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation, 2006, 114(16), 1703-1712.
[28]
Li, D.; Shinagawa, K.; Pang, L.; Leung, T.K.; Cardin, S.; Wang, Z.; Nattel, S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation, 2001, 104(21), 2608-2614.
[29]
Milliez, P.; Deangelis, N.; Rucker-Martin, C.; Leenhardt, A.; Vicaut, E.; Robidel, E.; Beaufils, P.; Delcayre, C.; Hatem, S.N. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur. Heart J., 2005, 26(20), 2193-2199.
[30]
Sakabe, M.; Fujiki, A.; Nishida, K.; Sugao, M.; Nagasawa, H.; Tsuneda, T.; Mizumaki, K.; Inoue, H. Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J. Cardiovasc. Pharmacol., 2004, 43(6), 851-859.
[31]
Sakabe, M.; Shiroshita-Takeshita, A.; Maguy, A.; Dumesnil, C.; Nigam, A.; Leung, T.K.; Nattel, S. Omega-3 polyunsaturated fatty acids prevent atrial fibrillation associated with heart failure but not atrial tachycardia remodeling. Circulation, 2007, 116(19), 2101-2109.
[32]
Shiroshita-Takeshita, A.; Brundel, B.J.; Burstein, B.; Leung, T.K.; Mitamura, H.; Ogawa, S.; Nattel, S. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc. Res., 2007, 74(1), 75-84.
[33]
Hussein, A.A.; Bartz, T.M.; Gottdiener, J.S. Serial measures of cardiac troponin T levels by a highly sensitive assay and incident atrial fibrillation in a prospective cohort of ambulatory older adults. Heart Rhythm, 2015, 12(5), 879-885.
[34]
Wallentin, L.; Hijazi, Z.; Siegbahn, A.; Schollin, M.; Alexander, J.H.; Atar, D. on behalf of the ARISTOTLE Investigators. High sensitivity troponin-T for risk stratification in atrial fibrillation during treatment with apixaban or warfarin. European Heart J., 2012. 33 (Abstract Supplement 53).
[35]
Daniels, L.B.; Maisel, A.S. Natriuretic peptides. J. Am. Coll. Cardiol., 2007, 50(25), 2357-2368.
[36]
Johnston, N.; Jernberg, T.; Lindahl, B.; Lindbäck, J.; Stridsberg, M.; Larsson, A.; Venge, P.; Wallentin, L. Biochemical indicators of cardiac and renal function in a healthy elderly population. Clin. Biochem., 2004, 37(3), 210-216.
[37]
Redfield, M.M.; Rodeheffer, R.J.; Jacobsen, S.J.; Mahoney, D.W.; Bailey, K.R.; Burnett, J.C., Jr Plasma brain natriuretic peptide concentration: impact of age and gender. J. Am. Coll. Cardiol., 2002, 40(5), 976-982.
[38]
Silvet, H.; Young-Xu, Y.; Walleigh, D.; Ravid, S. Brain natriuretic peptide is elevated in outpatients with atrial fibrillation. Am. J. Cardiol., 2003, 92(9), 1124-1127.
[39]
Olsen, M.H.; Hansen, T.W.; Christensen, M.K.; Gustafsson, F.; Rasmussen, S.; Wachtell, K.; Borch-Johnsen, K.; Ibsen, H.; Jørgensen, T.; Hildebrandt, P. N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension, 2005, 46(4), 660-666.
[40]
Clerico, A.; Giannoni, A.; Vittorini, S.; Emdin, M. The paradox of low BNP levels in obesity. Heart Fail. Rev., 2012, Jan 17(1), 81-96.
[41]
Boerrigter, G.; Burnett, J.C., Jr Recent advances in natriuretic peptides in congestive heart failure. Expert Opin. Investig. Drugs, 2004, 13(6), 643-652.
[42]
Garbers, D.L.; Chrisman, T.D.; Wiegn, P.; Katafuchi, T.; Albanesi, J.P.; Bielinski, V.; Barylko, B.; Redfield, M.M.; Burnett, J.C., Jr Membrane guanylyl cyclase receptors: An update. Trends Endocrinol. Metab., 2006, 17(6), 251-258.
[43]
Sengenès, C.; Berlan, M.; De Glisezinski, I.; Lafontan, M.; Galitzky, J. Natriuretic peptides: A new lipolytic pathway in human adipocytes. FASEB J., 2000, 14(10), 1345-1351.
[44]
Addisu, A.; Gower, W.R., Jr; Landon, C.S.; Dietz, J.R. B-type natriuretic peptide decreases gastric emptying and absorption. Exp. Biol. Med. (Maywood), 2008, 233(4), 475-482.
[45]
Taylor, J.A.; Christenson, R.H.; Rao, K.; Jorge, M.; Gottlieb, S.S. B-type natriuretic peptide and N-terminal pro B-type natriuretic peptide are depressed in obesity despite higher left ventricular end diastolic pressures. Am. Heart J., 2006, 152(6), 1071-1076.
[46]
Hanna, N.; Cardin, S.; Leung, T.K.; Nattel, S. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc. Res., 2004, 63(2), 236-244.
[47]
Li, D.; Fareh, S.; Leung, T.K.; Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: Atrial remodeling of a different sort. Circulation, 1999, 100(1), 87-95.
[48]
Ellinor, P.T.; Low, A.F.; Patton, K.K.; Shea, M.A.; Macrae, C.A. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J. Am. Coll. Cardiol., 2005, 45(1), 82-86.
[49]
Shelton, R.J.; Clark, A.L.; Goode, K.; Rigby, A.S.; Cleland, J.G. The diagnostic utility of N-terminal pro-B-type natriuretic peptide for the detection of major structural heart disease in patients with atrial fibrillation. Eur. Heart J., 2006, 27(19), 2353-2361.
[50]
Silvet, H.; Young-Xu, Y.; Walleigh, D.; Ravid, S. Brain natriuretic peptide is elevated in outpatients with atrial fibrillation. Am. J. Cardiol., 2003, 92(9), 1124-1127.
[51]
Shibazaki, K.; Kimura, K.; Fujii, S.; Sakai, K.; Iguchi, Y. Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. Am. J. Cardiol., 2012, 109(9), 1303-1307.
[52]
Suissa, L.; Bresch, S.; Lachaud, S.; Mahagne, M.H. Brain natriuretic peptide: a relevant marker to rule out delayed atrial fibrillation in stroke patient. J. Stroke Cerebrovasc. Dis., 2012.
[53]
Jourdain, P.; Bellorini, M.; Funck, F.; Fulla, Y.; Guillard, N.; Loiret, J.; Thebault, B.; Sadeg, N.; Desnos, M. Short-term effects of sinus rhythm restoration in patients with lone atrial fibrillation: a hormonal study. Eur. J. Heart Fail., 2002, 4(3), 263-267.
[54]
Wozakowska-Kapłon, B. Effect of sinus rhythm restoration on plasma brain natriuretic peptide in patients with atrial fibrillation. Am. J. Cardiol., 2004, 93(12), 1555-1558.
[55]
Yamada, T.; Murakami, Y.; Okada, T.; Okamoto, M.; Shimizu, T.; Toyama, J.; Yoshida, Y.; Tsuboi, N.; Ito, T.; Muto, M.; Kondo, T.; Inden, Y.; Hirai, M.; Murohara, T. Plasma atrial natriuretic Peptide and brain natriuretic peptide levels after radiofrequency catheter ablation of atrial fibrillation. Am. J. Cardiol., 2006, 97(12), 1741-1744.
[56]
Beck-da-Silva, L.; de Bold, A.; Fraser, M.; Williams, K.; Haddad, H. Brain natriuretic peptide predicts successful cardioversion in patients with atrial fibrillation and maintenance of sinus rhythm. Can. J. Cardiol., 2004, 20(12), 1245-1248.
[57]
Freynhofer, M.K.; Jarai, R.; Höchtl, T.; Bruno, V.; Vogel, B.; Aydinkoc, K.; Nürnberg, M.; Wojta, J.; Huber, K. Predictive value of plasma Nt-proBNP and body mass index for recurrence of atrial fibrillation after cardioversion. Int. J. Cardiol., 2011, 149(2), 257-259.
[58]
Lellouche, N.; Berthier, R.; Mekontso-Dessap, A.; Braconnier, F.; Monin, J.L.; Duval, A.M.; Dubois-Randé, J.L.; Guéret, P.; Garot, J. Usefulness of plasma B-type natriuretic peptide in predicting recurrence of atrial fibrillation one year after external cardioversion. Am. J. Cardiol., 2005, 95(11), 1380-1382.
[59]
Patton, K.K.; Ellinor, P.T.; Heckbert, S.R.; Christenson, R.H.; DeFilippi, C.; Gottdiener, J.S.; Kronmal, R.A. N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: The cardiovascular health study. Circulation, 2009, 120(18), 1768-1774.
[60]
Hijazi, Z.; Wallentin, L.; Siegbahn, A.; Andersson, U.; Christersson, C.; Ezekowitz, J.; Gersh, B.J.; Hanna, M.; Hohnloser, S.; Horowitz, J.; Huber, K.; Hylek, E.H.; Lopes, E.D.; McMurray, J.J.V.; Granger, C.B. NT-proBNP for risk stratification in atrial fibrillation during treatment with apixaban or warfarin. Eur. Heart J., 2012, 33.
[61]
Hijazi, Z.; Wallentin, L.; Siegbahn, A.; Andersson, U.; Christersson, C.; Ezekowitz, J.; Gersh, B.J.; Hanna, M.; Hohnloser, S.; Horowitz, J.; Huber, K.; Hylek, E.H.; Lopes, E.D.; McMurray, J.J.V.; Granger, C.B. NT-proBNP for risk stratification in atrial fibrillation during treatment with apixaban or warfarin. Eur. Heart J., 2012. 33. (Abstract Supplement, 51).
[62]
Wisse, B.E. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol., 2004, 15(11), 2792-2800.
[63]
Wolf, G.; Hamann, A.; Han, D.C.; Helmchen, U.; Thaiss, F.; Ziyadeh, F.N.; Stahl, R.A. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int., 1999, 56(3), 860-872.
[64]
Hall, J.E.; Brands, M.W.; Henegar, J.R. Mechanisms of hypertension and kidney disease in obesity. Ann. N. Y. Acad. Sci., 1999, 892, 91-107.
[65]
Hoehner, C.M.; Greenlund, K.J.; Rith-Najarian, S.; Casper, M.L.; McClellan, W.M. Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The inter-tribal heart project. J. Am. Soc. Nephrol., 2002, 13(6), 1626-1634.
[66]
Chen, J.; Muntner, P.; Hamm, L.L.; Jones, D.W.; Batuman, V.; Fonseca, V.; Whelton, P.K.; He, J. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med., 2004, 140(3), 167-174.
[67]
Parikh, N.I.; Hwang, S-J.; Larson, M.G.; Meigs, J.B.; Levy, D.; Fox, C.S. Cardiovascular disease risk factors in chronic kidney disease: Overall burden and rates of treatment and control. Arch. Intern. Med., 2006, 166(17), 1884-1891.
[68]
Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; Parfrey, P.; Pfeffer, M.; Raij, L.; Spinosa, D.J.; Wilson, P.W. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the american heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation, 2003, 108(17), 2154-2169.
[69]
Vaziri, S.M.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation, 1994, 89(2), 724-730.
[70]
Siragy, H.M.; Carey, R.M. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am. J. Nephrol., 2010, 31(6), 541-550.
[71]
Li, D.; Shinagawa, K.; Pang, L.; Leung, T.K.; Cardin, S.; Wang, Z.; Nattel, S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation, 2001, 104(21), 2608-2614.
[72]
Wolf, G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int., 2006, 70(11), 1914-1919.
[73]
Wachtell, K.; Lehto, M.; Gerdts, E.; Olsen, M.H.; Hornestam, B.; Dahlöf, B.; Ibsen, H.; Julius, S.; Kjeldsen, S.E.; Lindholm, L.H.; Nieminen, M.S.; Devereux, R.B. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: The Losartan Intervention for End Point Reduction in Hypertension (LIFE) study. J. Am. Coll. Cardiol., 2005, 45(5), 712-719.
[74]
Haywood, L.J.; Ford, C.E.; Crow, R.S.; Davis, B.R.; Massie, B.M.; Einhorn, P.T.; Williard, A. for the ALLHAT Collaborative Research Group. Atrial fibrillation at baseline and during follow-up in ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial). J. Am. Coll. Cardiol., 2009, 54(22), 2023-2031.
[75]
Astor, B.C.; Coresh, J.; Heiss, G.; Pettitt, D.; Sarnak, M.J. Kidney function and anemia as risk factors for coronary heart disease and mortality: the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J., 2006, 151(2), 492-500.
[76]
Kottgen, A.; Russell, S.D.; Loehr, L.R.; Crainiceanu, C.M.; Rosamond, W.D.; Chang, P.P.; Chambless, L.E.; Coresh, J. Reduced kidney function as a risk factor for incident heart failure: The atherosclerosis risk in communities (ARIC) study. J. Am. Soc. Nephrol., 2007, 18(4), 1307-1315.
[77]
Schlaich, MP; Socratous, F; Hennebry, S; Eikelis, N; Lambert, EA; Straznicky, N; Esler, MD; Lambert, GW
[78]
Schlaich, M.P.; Socratous, F.; Hennebry, S.; Eikelis, N.; Lambert, E.A.; Straznicky, N.; Esler, M.D.; Lambert, G.W. Sympathetic activation in chronic renal failure. J. Am. Soc. Nephrol., 2009, 20(5), 933-939.
[79]
Go, A.S.; Fang, M.C.; Udaltsova, N.; Chang, Y.; Pomernacki,
N.K.; Borowsky, L.; Singer, D.E. Impact of proteinuria
and glomerular filtration rate on risk of thromboembolism
in atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Circulation,, 2009, 119(10), 1363-1369.
[80]
Hohnloser, S.H.; Hijazi, Z.; Thomas, L.; Alexander, J.H.; Amerena, J.; Hanna, M.; Keltai, M.; Lanas, F.; Lopes, R.D.; Lopez-Sendon, J.; Granger, C.B.; Wallentin, L. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur. Heart J., 2012, 33(22), 2821-2830.
[81]
Piccini, J.P.; Hernandez, A.F.; Zhao, X.; Patel, M.R.; Lewis, W.R.; Peterson, E.D.; Fonarow, G.C. Quality of care for atrial fibrillation among patients hospitalized for heart failure. J. Am. Coll. Cardiol., 2009, 54(14), 1280-1289.
[82]
Reinecke, H.; Brand, E.; Mesters, R.; Schäbitz, W.R.; Fisher, M.; Pavenstädt, H.; Breithardt, G. Dilemmas in the management of atrial fibrillation in chronic kidney disease. J. Am. Soc. Nephrol., 2009, 20(4), 705-711.
[83]
Abrahamson, M.; Olafsson, I.; Palsdottir, A.; Ulvsbäck, M.; Lundwall, A.; Jensson, O.; Grubb, A. Structure and expression of the human cystatin C gene. Biochem. J., 1990, 268(2), 287-294.
[84]
Laterza, O.F.; Price, C.P.; Scott, M.G. Cystatin C: an improved estimator of glomerular filtration rate? Clin. Chem., 2002, 48(5), 699-707.
[85]
Newman, D.J.; Thakkar, H.; Edwards, R.G.; Wilkie, M.; White, T.; Grubb, A.O.; Price, C.P. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int., 1995, 47(1), 312-318.
[86]
Servais, A.; Giral, P.; Bernard, M.; Bruckert, E.; Deray, G.; Isnard Bagnis, C. Is serum cystatin-C a reliable marker for metabolic syndrome? Am. J. Med., 2008, 121(5), 426-432.
[87]
Vigil, L.; Lopez, M.; Condés, E.; Varela, M.; Lorence, D.; Garcia-Carretero, R.; Ruiz, J. Cystatin C is associated with the metabolic syndrome and other cardiovascular risk factors in a hypertensive population. J. Am. Soc. Hypertens., 2009, 3(3), 201-209.
[88]
Young, J.A.; Hwang, S.J.; Sarnak, M.J. Associationofvisceral and subcutaneous adiposity with kidney function. Clin. J. Am. Soc. Nephrol., 2008, 3, 1786-1791.
[89]
Fried, L.F.; Lee, J.S.; Shlipak, M.; Chertow, G.M.; Green, C.; Ding, J.; Harris, T.; Newman, A.B. Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J. Am. Geriatr. Soc., 2006, 54(5), 750-756.
[90]
Magnusson, M.; Hedblad, B.; Engström, G.; Persson, M.; Nilsson, P.; Melander, O. High levels of cystatin C predict the metabolic syndrome: the prospective Malmö Diet and Cancer Study. J. Intern. Med., 2013, 274(2), 192-199.
[91]
Dubin, R.; Cushman, M.; Folsom, A.R.; Fried, L.F.; Palmas, W.; Peralta, C.A.; Wassel, C.; Shlipak, M.G. Kidney function and multiple hemostatic markers: cross sectional associations in the multi-ethnic study of atherosclerosis. BMC Nephrol., 2011, 12, 3.
[92]
Imai, A.; Komatsu, S.; Ohara, T.; Kamata, T.; Yoshida, J.; Miyaji, K.; Shimizu, Y.; Takewa, M.; Hirayama, A.; Deshpande, G.A.; Takahashi, O.; Kodama, K. Serum cystatin C is associated with early stage coronary atherosclerotic plaque morphology on multidetector computed tomography. Atherosclerosis, 2011, 218(2), 350-355.
[93]
Knight, E.L.; Verhave, J.C.; Spiegelman, D.; Hillege, H.L.; de Zeeuw, D.; Curhan, G.C.; de Jong, P.E. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int., 2004, 65(4), 1416-1421.
[94]
Wang, J.; Sim, A.S.; Wang, X.L.; Salonikas, C.; Moriatis, M.; Naidoo, D.; Wilcken, D.E. Relations between markers of renal function, coronary risk factors and the occurrence and severity of coronary artery disease. Atherosclerosis, 2008, 197(2), 853-859.
[95]
Alonso, A.; Lopez, F.L.; Matsushita, K.; Loehr, L.R.; Agarwal, S.K.; Chen, L.Y.; Soliman, E.Z.; Astor, B.C.; Coresh, J. Chronic kidney disease is associated with the incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation, 2011, 123(25), 2946-2953.
[96]
McManus, D.D.; Corteville, D.C.; Shlipak, M.G. Relation of kidney function and albuminuria with atrial fibrillation (from the heart and soul study). Am. J. Cardiol., 2009, 104(11), 1551-1155.
[97]
Smith, J.G.; Platonov, P.G.; Hedblad, B.; Engström, G.; Melander, O. Atrial fibrillation in the malmö diet and cancer study: A study of occurrence, risk factors and diagnostic validity. Eur. J. Epidemiol., 2010, 25(2), 95-102.
[98]
Liu, P.; Jiang, Y.; Meng, J. Clinical association of cystatin C and atrial fibrillation in Chinese elderly. Int. J. Gerontol., 2015, 3, 146-150.
[99]
Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Siegbahn, A.; Yusuf, S.; Wallentin, L. Cystatin C is prognostic for
stroke, death and bleeding during anticoagulation of atrial
fibrillation-a RELY substudy. Circulation 2011; (Abstract
supplement AHA 124: A12492)., 2011.
[100]
Fichtlscherer, S.; Zeiher, A.M. Endothelial dysfunction in acute coronary syndromes: Association with elevated C-reactive protein levels. Ann. Med., 2000, 32(8), 515-518.
[101]
Kishimoto, T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res. Ther., 2006, 8(Suppl. 2), S2.
[102]
Libby, P.; Ridker, P.M. Novel inflammatory markers of coronary risk: theory versus practice. Circulation, 1999, 100(11), 1148-1150.
[103]
Blake, G.J.; Ridker, P.M. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J. Am. Coll. Cardiol., 2003, 41(4)(Suppl. S), 37S-42S.
[104]
Boos, C.J.; Anderson, R.A.; Lip, G.Y. Is atrial fibrillation an inflammatory disorder? Eur. Heart J., 2006, 27(2), 136-149.
[105]
Aroor, A.R.; McKarns, S.; Demarco, V.G.; Jia, G.; Sowers, J.R. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism, 2013, 62(11), 1543-1552.
[106]
Indulekha, K.; Surendar, J.; Mohan, V. High sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J. Diabetes Sci. Technol., 2011, 5(4), 982-988.
[107]
Chedraui, P.; Escobar, G.S.; Pérez-López, F.R.; Palla, G.; Montt-Guevara, M.; Cecchi, E.; Genazzani, A.R.; Simoncini, T. Angiogenesis, inflammation and endothelial function in postmenopausal women screened for the metabolic syndrome. Maturitas, 2014, 77(4), 370-374.
[108]
Sugiura, K.; Tamakoshi, K.; Yatsuya, H.; Otsuka, R.; Wada, K.; Matsushita, K.; Kondo, T.; Hotta, Y.; Mitsuhashi, H.; Murohara, T.; Toyoshima, H. Contribution of adipocytokines to low-grade inflammatory state as expressed by circulating C-reactive protein in Japanese men: Comparison of leptin and adiponectin. Int. J. Cardiol., 2008, 130(2), 159-164.
[109]
Marcus, G.M.; Smith, L.M.; Ordovas, K.; Scheinman, M.M.; Kim, A.M.; Badhwar, N.; Lee, R.J.; Tseng, Z.H.; Lee, B.K.; Olgin, J.E. Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm, 2010, 7(2), 149-154.
[110]
Chang, S.N.; Tsai, C.T.; Wu, C.K.; Lee, J.K.; Lai, L.P.; Huang, S.W.; Huang, L.Y.; Tseng, C.D.; Lin, J.L.; Chiang, F.T.; Hwang, J.J. A functional variant in the promoter region regulates the C-reactive protein gene and is a potential candidate for increased risk of atrial fibrillation. J. Intern. Med., 2012, 272(3), 305-315.
[111]
Narducci, M.L.; Pelargonio, G.; Dello Russo, A.; Casella, M.; Biasucci, L.M.; La Torre, G.; Pazzano, V.; Santangeli, P.; Baldi, A.; Liuzzo, G.; Tondo, C.; Natale, A.; Crea, F. Role of tissue C-reactive protein in atrial cardiomyocytes of patients undergoing catheter ablation of atrial fibrillation: pathogenetic implications. Europace, 2011, 13(8), 1133-1140.
[112]
Marott, S.C.; Nordestgaard, B.G.; Zacho, J.; Friberg, J.; Jensen, G.B.; Tybjaerg-Hansen, A.; Benn, M. Does elevated C-reactive protein increase atrial fibrillation risk? A Mendelian randomization of 47,000 individuals from the general population. J. Am. Coll. Cardiol., 2010, 56(10), 789-795.
[113]
Psychari, S.N.; Apostolou, T.S.; Sinos, L.; Hamodraka, E.; Liakos, G.; Kremastinos, D.T. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. Am. J. Cardiol., 2005, 95(6), 764-767.
[114]
Luckett, L.R.; Gallucci, R.M. Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. Br. J. Dermatol., 2007, 156(6), 1163-1171.
[115]
Marcus, G.M.; Whooley, M.A.; Glidden, D.V.; Pawlikowska, L.; Zaroff, J.G.; Olgin, J.E. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: Data from the heart and soul study. Am. Heart J., 2008, 155(2), 303-309.
[116]
Kaireviciute, D.; Blann, A.D.; Balakrishnan, B.; Lane, D.A.; Patel, J.V.; Uzdavinys, G.; Norkunas, G.; Kalinauskas, G.; Sirvydis, V.; Aidietis, A.; Lip, G.Y. Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thromb. Haemost., 2010, 104(1), 122-127.
[117]
Conway, D.S.; Therkelsen, S.K.; Bruunsgaard, H.; Krabbe, K.S.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients with persistent atrial fibrillation treated with electrical cardioversion. Scand. J. Clin. Lab. Invest., 2009, 69(3), 425-432.
[118]
Henningsen, K.M.; Nilsson, B.; Bruunsgaard, H.; Chen, X.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients undergoing radiofrequency catheter ablation for atrial fibrillation. Scand. Cardiovasc. J., 2009, 43(5), 285-291.
[119]
Loricchio, M.L.; Cianfrocca, C.; Pasceri, V.; Bianconi, L.; Auriti, A.; Calo, L.; Lamberti, F.; Castro, A.; Pandozi, C.; Palamara, A.; Santini, M. Relation of C-reactive protein to long-term risk of recurrence of atrial fibrillation after electrical cardioversion. Am. J. Cardiol., 2007, 99(10), 1421-1424.
[120]
Conway, D.S.; Buggins, P.; Hughes, E.; Lip, G.Y. Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein in atrial fibrillation. Am. Heart J., 2004, 148(3), 462-466.
[121]
Lip, G.Y.; Patel, J.V.; Hughes, E.; Hart, R.G. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke, 2007, 38(4), 1229-1237.
[122]
Roldán, V.; Marín, F.; Díaz, J.; Gallego, P.; Jover, E.; Romera, M.; Manzano-Fernández, S.; Casas, T.; Valdés, M.; Vicente, V.; Lip, G.Y. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J. Thromb. Haemost., 2012, 10(8), 1500-1507.
[123]
Aulin, J.K.E.M.; Andersson, U.; Connolly, S.J.; Huber, K.; Reilly, P.A.; Siegbahn, A.; Wallentin, L.; Yusuf, S.; Oldgren, J. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. J. Am. Coll. Cardiol., 2011, 57, E91.