Abstract
Background and Objective: Multiple drug resistance (MDR) to chemotherapeutic agents often leads to a failure to respond to chemotherapy. We utilized an in vitro chemosensitivity test to identify sensitive and effective chemotherapeutic drugs and further elucidated the correlation between the in vivo chemosensitivity and clinical outcomes.
Methods: Here, we evaluated the in vitro chemosensitivity and MDR of 120 lung cancer patients to eight singledrug chemotherapies and of 291 lung cancer patients to seven chemotherapy regimens using an ATP-based tumor chemosensitivity assay (ATP-TCA). Additionally, the chemosensitivity profiles of lung adenocarcinoma patients (284 cases) and lung squamous cell carcinoma patients (90 cases) to these single-drug and chemotherapy regimens were compared. Furthermore, the correlations between the chemosensitivity and clinical outcomes were investigated in 16 stage III squamous cell carcinoma patients.
Results and Conclusion: PTX (51.7%), TXT (43.3%), GEM (12.5%), PTX+DDP (62.5%), TXT+L-OHP (54.3%) and VP-16+DDP (16.2%) had the highest in vitro chemosensitivity rates. Approximately 31.7% of patients developed resistance to all eight single-drug chemotherapies, and 25.8% of patients displayed resistance to all seven chemotherapy regimens. In addition, lung squamous cell carcinoma was significantly more sensitive to GEM and MTA+DDP than lung adenocarcinoma (P<0.05). Further analysis showed that patients with higher drug sensitivity tended to have longer disease-free survival (18 months vs. 8.5 months) than patients displaying drug resistance (P<0.05). These results suggest that the implementation of in vitro drug susceptibility testing before chemotherapy can effectively prevent the occurrence of primary drug resistance and inappropriate drug treatment.
Keywords: Lung cancer, chemotherapy, ATP-based tumor chemosensitivity assay, in vitro chemosensitivity, clinical outcomes, MDR, lung squamous cell carcinoma.