Abstract
Background: Arsenic trioxide (As2O3) has been demonstrated to suppress tumorigenesis in human glioma. However, the exact molecular mechanisms by which As2O3 exerts its tumor suppressor functions are elusive. Therefore, it is warranted to explore the underlying mechanism of As2O3–mediated anti-tumor activity in glioma.
Methods: To achieve our goal, we used multiple approaches including MTT assay, apoptosis, Real-time RT-PCR, Western blotting, invasion assay, and gene transfection.
Results: We observed that A22O3 inhibited cell growth and induced apoptosis as well as suppressed migration and invasion in human glioma cells. Moreover, we found that As2O3 down-regulated miR-125b expression and subsequently up-regulated its target gene Bak1 expression. Furthermore, we identified that As2O3 exerts its anti-tumor activity partly through regulation of miR-125b.
Conclusions: Our present study suggests that As2O3 could be a potential therapeutic agent for treatment of human glioma.
Current Pharmaceutical Design
Title:Arsenic Trioxide Targets miR-125b in Glioma Cells
Volume: 20 Issue: 33
Author(s): Sulian Chen, Lihua Zhu, Jing Huang, Ying Cai, Xiaohui Lu, Qingling Yang, Qiong Wu, Changjie Chen and Zhiwei Wang
Affiliation:
Keywords: As2O3, glioma, invasion, miR-125b, Bak1.
Abstract: Background: Arsenic trioxide (As2O3) has been demonstrated to suppress tumorigenesis in human glioma. However, the exact molecular mechanisms by which As2O3 exerts its tumor suppressor functions are elusive. Therefore, it is warranted to explore the underlying mechanism of As2O3–mediated anti-tumor activity in glioma.
Methods: To achieve our goal, we used multiple approaches including MTT assay, apoptosis, Real-time RT-PCR, Western blotting, invasion assay, and gene transfection.
Results: We observed that A22O3 inhibited cell growth and induced apoptosis as well as suppressed migration and invasion in human glioma cells. Moreover, we found that As2O3 down-regulated miR-125b expression and subsequently up-regulated its target gene Bak1 expression. Furthermore, we identified that As2O3 exerts its anti-tumor activity partly through regulation of miR-125b.
Conclusions: Our present study suggests that As2O3 could be a potential therapeutic agent for treatment of human glioma.
Export Options
About this article
Cite this article as:
Chen Sulian, Zhu Lihua, Huang Jing, Cai Ying, Lu Xiaohui, Yang Qingling, Wu Qiong, Chen Changjie and Wang Zhiwei, Arsenic Trioxide Targets miR-125b in Glioma Cells, Current Pharmaceutical Design 2014; 20 (33) . https://dx.doi.org/10.2174/1381612820666140128204132
DOI https://dx.doi.org/10.2174/1381612820666140128204132 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
Food-derived bioactive peptides against chronic diseases
Chronic diseases, such as cardiovascular diseases and metabolic diseases, have become a great threat to the human health in recent decades due to the excessive food consumption and the prevalence of sedentary lifestyle. As a class of natural compounds, food-derived bioactive peptides have been demonstrated to possess great potential for ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Natural Products Targeting Autophagy via the PI3K/Akt/mTOR Pathway as Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Reality Check: Cancer Stem Cell Route to Cancer
Current Biotechnology Renal Cell Carcinoma Cancer Stem Cells as Therapeutic Targets
Current Signal Transduction Therapy Polymeric Nanocarriers and Nanoreactors: A Survey of Possible Therapeutic Applications
Current Pharmaceutical Design Sesterterpenoids with Anticancer Activity
Current Medicinal Chemistry Protein Lysine Methyltransferases Inhibitors
Current Medicinal Chemistry Oncolytic Viruses: Programmable Tumour Hunters
Current Gene Therapy Endocannabinoid Regulation of Matrix Metalloproteinases: Implications in Ischemic Stroke
Cardiovascular & Hematological Agents in Medicinal Chemistry Clear Cell Renal Cell Cancer Tumor-Propagating Cells: Molecular Characteristics
Current Signal Transduction Therapy Targeting Cancer with Epi-Drugs: A Precision Medicine Perspective
Current Pharmaceutical Biotechnology Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide
Current Medicinal Chemistry Bicycloheptylamine-Doxorubicin Conjugate: Synthesis and Anticancer Activities in σ2 Receptor-Expressing Cell Lines
Medicinal Chemistry MicroRNA Therapeutics: The Emerging Anticancer Strategies
Recent Patents on Anti-Cancer Drug Discovery Angiopoietin-2 Axis Inhibitors: Current Status and Future Considerations for Cancer Therapy
Current Angiogenesis (Discontinued) Coumarin-Derived Mannich Bases: A Review of Biological Activities
Letters in Organic Chemistry Xenobiotic Sulphation and its Variability During Inflammation: a Factor in Adverse Drug Reactions?
Current Drug Metabolism Comparison Between 18F-Dopa and 18F-Fet PET/CT in Patients with Suspicious Recurrent High Grade Glioma: A Literature Review and Our Experience
Current Radiopharmaceuticals Common Pathways in Health Benefit Properties of RSV in Cardiovascular Diseases, Cancers and Degenerative Pathologies
Current Pharmaceutical Biotechnology Patent Selections
Recent Patents on CNS Drug Discovery (Discontinued) Glioblastoma Stem-Like Cells – Isolation, Biology and Mechanisms of Chemotherapy Resistance
Current Signal Transduction Therapy