%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: paper.dvi
%%Pages: 4
%%PageOrder: Ascend
%%BoundingBox: 0 0 612 792
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -t letter paper -Z -D 600 -o paper.ps
%DVIPSParameters: dpi=600, compressed
%DVIPSSource: TeX output 2002.06.20:1030
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end
%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
%%EndProcSet
TeXDict begin 40258431 52099146 1000 600 600 (paper.dvi)
@start
%DVIPSBitmapFont: Fa cmr6 6 5
/Fa 5 53 df<13FF000313C0380781E0380F00F0001E137848133CA248131EA400F8131F
AD0078131EA2007C133E003C133CA26C13786C13F0380781E03803FFC0C6130018227DA0
1E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212217AA01E>II<13FF000313C0380F03E0381C00F014F8003E13FC147CA2
001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF00A2380003E0EB00F01478147C14
3E143F1230127812FCA2143E48137E0060137C003813F8381E03F0380FFFC00001130018
227DA01E>I<14E01301A213031307A2130D131D13391331136113E113C1EA01811203EA
07011206120C121C12181230127012E0B6FCA2380001E0A6EB03F0EB3FFFA218227DA11E
>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi9 9 4
/Fb 4 120 df<14FE903807FF8090381F03C090387C01E03801F800485A485A485A485A
1401D83F0013C01403007EEB0F80ECFE00387FFFF8B5128000FCC8FCA45AA415186C1438
007C147015E0003CEB01C0003EEB07806CEB1E00380F80FC3803FFE0C690C7FC1D227DA0
24>101 DI<01F0130ED803FC131FD8071EEB3F80EA0E1F121C0038EB80
1F0030140F013F130700701300006014035BD8E07E14001240EA00FE495B000114065BA2
150E0003140C5B151C15181538491330157015606D13E04A5A0001495A6D48C7FC3800FC
1EEB3FF8EB07E021227EA025>118 D<01F01507D803FC903903800F80D8071E903907C0
1FC0D80E1F130F121C00380180140F0030021F1307013FEC800300701300006016014913
3FD8E07E168000401500EA00FE494913030001170049137EA203FE5B00031606495B170E
170CA24B131C4915186D15384A6C5B17600001010314E03B00F8077E01C0903A7C0E3F07
8090273FFC0FFEC7FC903907F001F832227EA037>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc lasy10 10 1
/Fc 1 51 df<003FB712FEB9FCA300F0C9120FB3B3A4B9FCA4303079B43E>50
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmsy10 10 6
/Fd 6 104 df<007FB81280B912C0A26C17803204799641>0 D<15301578B3A6007FB812
F8B912FCA26C17F8C80078C8FCB3A3007FB812F8B912FCA26C17F836367BB641>6
D20 D<126012F812FEEA7F80EA3FE0EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE90
3800FF80EC3FE0EC0FF8EC03FE913800FF80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE
0FF8EE03FE933800FF80EF3FC0171FEF7F80933801FF00EE07FCEE1FF0EE7FC04B48C7FC
ED07FCED1FF0ED7FC04A48C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB7FC048
48CAFCEA07FCEA1FF0EA7FC048CBFC12FC1270CCFCAE007FB81280B912C0A26C17803244
79B441>I102 D<12FCEAFFC0EA07F0EA01FCEA007E
7F80131F80130FB3A7801307806D7E6D7EEB007EEC1FF0EC07F8EC1FF0EC7E00495A495A
495A5C130F5CB3A7131F5C133F91C7FC137E485AEA07F0EAFFC000FCC8FC1D537ABD2A>
I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmr7 7 9
/Fe 9 62 df<140EB3A2B812E0A3C7000EC8FCB3A22B2B7DA333>43
D48 D<13381378EA01F8121F12FE12E01200B3AB487EB512F8A215267BA521
>I<13FF000313E0380E03F0381800F848137C48137E00787F12FC6CEB1F80A4127CC7FC
15005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870018013E0EA0180390300
030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0380F01F8381C007C
0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E03801FF8091C7FC38
0001E06D7E147C80143F801580A21238127C12FEA21500485B0078133E00705B6C5B381F
01F03807FFC0C690C7FC19277DA521>I<1438A2147814F81301A2130313071306130C13
1C131813301370136013C012011380EA03005A120E120C121C5A12305A12E0B612E0A2C7
EAF800A7497E90383FFFE0A21B277EA621>I<0018130C001F137CEBFFF85C5C1480D819
FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F0018133EC7FC80A21580A2
1230127C12FCA3150012F00060133E127000305B001C5B380F03E03803FFC0C648C7FC19
277DA521>II61 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ff msbm10 10 1
/Ff 1 83 df<007FB612E0B712FE6C6F7E2703C01E0313E0000190393C00F3F00238EB70
F8EE783CEE381E83EE3C07161C18801703A617071800EE3C0FEE380E173EEE78FCEEF7F8
92380FFFE0023FB5128004FCC7FC16B8913838F03CED701CED781EED380EED3C0FED1C07
031E7FED0E03030F7FED0701EE81E0ED0380707E030113701778EEE0380300133C707EEE
700EEE780F9338380780EE3C03041C13C093381E01E00003013C90380E00F0007FB539F0
0FFFFEB67F6C8137397DB836>82 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fg cmmi7 7 3
/Fg 3 116 df<130E131F5BA2133E131C90C7FCA7EA03E0487EEA0C78EA187C1230A212
605B12C0A2EA01F0A3485AA2485AA2EBC180EA0F81A2381F0300A213066C5A131CEA07F0
6C5A11287DA617>105 D<3807803E390FE0FF803818F3C13930F703C0EBFE073860FC0F
13F8158039C1F0070091C7FC1201A2485AA4485AA4485AA448C8FCA2120E1A1B7D991F>
114 DI E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fh cmmi10 10 16
/Fh 16 120 df<121C127FEAFF80A5EA7F00121C0909798817>58
D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A
12600A19798817>I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A2
15C01407A21580140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303
A2495AA25C130FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A2
5B1207A25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A
>61 D<0103B7FC4916E018F8903B0007F80007FE4BEB00FFF03F80020FED1FC0180F4B15
E0F007F0021F1503A24B15F81801143F19FC5DA2147FA292C8FCA25C18035CA2130119F8
4A1507A2130319F04A150FA2010717E0181F4A16C0A2010FEE3F80A24AED7F00187E011F
16FE4D5A4A5D4D5A013F4B5A4D5A4A4A5A057FC7FC017F15FEEE03FC91C7EA0FF049EC7F
C0B8C8FC16FC16C03E397DB845>68 D<0103B812F05BA290260007F8C7123F4B1407F003
E0020F150118005DA2141FA25D19C0143FA24B1330A2027F1470190092C7126017E05C16
014A495A160F49B6FCA25F9138FC000F01031407A24A6DC8FCA201075C18034A13066001
0F160693C7FC4A150E180C011F161C18184A1538A2013F5E18F04A4A5AA2017F15074D5A
91C8123F49913803FF80B9FCA295C7FC3C397DB83D>I<0103B812E05BA290260007F8C7
123F4B140FF003C0140F18015DA2141FA25D1980143FA25D1760027F14E095C7FC92C75A
A24A1301A24A495A16070101141F91B6FC94C8FCA2903903FC001F824A130EA21307A24A
130CA2010F141CA24A90C9FCA2131FA25CA2133FA25CA2137FA291CBFC497EB612C0A33B
397DB835>II<267FFFFC91383FFFC0B55DA20003
90C83807FC006C48ED03E06060000094C7FC5F17065FA25F6D5DA26D5D17E05F4C5AA24C
C8FC6E1306A2013F5C161C16185EA25E6E5BA2011F495A150393C9FC1506A25D6E5AA201
0F5B157015605DA2ECE18002E3CAFC14F3EB07F614FE5C5CA25C5CA26D5AA25C91CBFC3A
3B7CB830>86 D101 D<16F8ED03FEED0F8792381F0F80ED3E3F167F157CA215FC
1700161C4A48C7FCA414035DA414075DA20107B512F0A39026000FE0C7FC5DA4141F5DA4
143F92C8FCA45C147EA514FE5CA413015CA4495AA45C1307A25C121E123F387F8F80A200
FF90C9FC131E12FEEA7C3CEA7878EA1FF0EA07C0294C7CBA29>II<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F00
0E1380121C121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A25B
12035BA20007131813E01438000F133013C01470EB806014E014C01381EB838038078700
EA03FEEA00F815397EB71D>105 D<90390F8003F090391FE00FFC903939F03C1F903A70
F8700F80903AE0FDE007C09038C0FF80030013E00001491303018015F05CEA038113015C
A2D800031407A25CA20107140FA24A14E0A2010F141F17C05CEE3F80131FEE7F004A137E
16FE013F5C6E485A4B5A6E485A90397F700F80DA383FC7FC90387E1FFCEC07E001FEC9FC
A25BA21201A25BA21203A25B1207B512C0A32C3583A42A>112 D<14FF010313C090380F
80F090383E00380178131C153C4913FC0001130113E0A33903F000F06D13007F3801FFE0
14FC14FF6C14806D13C0011F13E013039038003FF014071403001E1301127FA24814E0A3
48EB03C012F800E0EB07800070EB0F006C133E001E13F83807FFE0000190C7FC1E267CA4
27>115 D<01F8EB03C0D803FEEB07E0D8070F130F000E018013F0121C12180038140700
301403D8701F130112601500D8E03F14E000C090C7FC5BEA007E16C013FE5B1501000115
805B150316001203495B1506150E150C151C151815385D00015C6D485A6C6C485AD97E0F
C7FCEB1FFEEB07F024267EA428>118 D<01F816F0D803FE9138E001F8D8070F903801F0
03000ED9800314FC121C12180038020713010030EDE000D8701F167C1260030F143CD8E0
3F163800C001005B5BD8007E131F183001FE5C5B033F1470000117604991C7FCA218E000
034A14C049137E17011880170318005F03FE1306170E000101015C01F801BF5B3B00FC03
9F8070903A7E0F0FC0E0903A1FFC03FFC0902703F0007FC7FC36267EA43B>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fi cmbx12 12 32
/Fi 32 122 df12 D46 D49
DII<163FA25E5E5D5DA25D5D5D5D
A25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB01F0EB03E013
0714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12FCB91280A5C8
000F90C7FCAC027FB61280A531417DC038>I65 DIII71
D77
D83 D<003FBA12E0A59026FE000F
EB8003D87FE09338003FF049171F90C71607A2007E1803007C1801A300781800A400F819
F8481978A5C81700B3B3A20107B8FCA545437CC24E>III<903801FFE0011F13FE017F6D7E48
B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7
FCA40203B5FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A5B12
7F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86C
ECE01FC66CEB8007D90FFCC9FC322F7DAD36>97 D99 DIIII<
137C48B4FC4813804813C0A24813E0A56C13C0A26C13806C1300EA007C90C7FCAAEB7FC0
EA7FFFA512037EB3AFB6FCA518467CC520>105 D108 D<90397F8007FEB590383FFF8092B512E0028114F8913987F03F
FC91388F801F000390399F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083B512FE
A5372D7CAC3E>110 DI<90
397FC00FF8B590B57E02C314E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07FF
6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C13
E06E15C06E5B6E4913806E4913006E495A9139DFC07FFC02CFB512F002C314C002C091C7
FCED1FF092C9FCADB67EA536407DAC3E>I<90387F807FB53881FFE0028313F0028F13F8
ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35C
B3A5B612E0A5272D7DAC2E>114 D<90391FFC038090B51287000314FF120F381FF00338
3FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF014FF6C
14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F0143FA26C
141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC5CD8F0
3F13E026E007FEC7FC232F7CAD2C>III121 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fj cmss9 9 38
/Fj 38 122 df40
D<12F8127C7E7E6C7E7F12076C7E7F12017F6C7EA2137C137E133E133FA27F1480A3130F
14C0A5130714E0B014C0130FA51480131FA314005BA2133E137E137C13FCA2485A5B1203
5B485A120F5B48C7FC123E5A5A134A7CB71E>I45
D<12FEA70707798615>I<13035B131F137FEA07FFB5FCA313BFEAF83F1200B3B2007FB5
1280A519337AB226>49 DI52
D54
DI66 D70 DI<12FEB3B3
ABB612FEA51F3479B32A>76 D78
D80 D82 D97 D<12FCB2EB03F8EB1FFEEB7FFF00FDB51280B612C09038E0
7FE0EB801F90380007F04813034814F81401A215FC1400A9EC01F8A3EC03F06C13076CEB
0FE0EB801F9038E07FC090B5128000FD140000FC5BEB3FFC380007E01E357AB328>II<15FCB2EB3F80EBFFF0000313FC4813FE4813FFEBF81F381FE0
07383FC001138048C7FC127EA35AA9127EA3007F1301EA3F801403381FE007380FF81F90
B5FC6C13FC6C13F8C613E090383F80001E357DB328>III<90391FC00F8090387FF0FF90B612C05A5A
2607F07FC7FC390FC01F80EB800FA248486C7EA76C6C485AA2EBC01F2607F07FC7FCEBFF
FE485B5C6D5A381F1FC090C9FCA36C7EEBFFFE6CEBFFE015F8001F80488090388003FF00
7EC77E81481580151FA46C143F007FEC7F006C6C13FEEBF0076CB55A000714F06C5CC614
80D90FF8C7FC22337EA126>I<12FCB2EB07F0EB3FFE497E90B51280B6FC9038E07FC0EB
801F9038000FE0A2481307A35AB3A41B347AB328>I<12FEA71200AC127EB3AF07347BB3
13>I<12FCB3B3B006347AB313>108 DIIII114
DII<00FCEB07E0B3A7140F141F6C
133F6C13FF6CB5FC14F76C13E76C1307D807F8C7FC1B227AA028>I<00FC143F007E143E
157E127F6C14FCA27F001FEB01F8A2390FC003F0A33907E007E0A2D803F013C0140FA2D8
01F81380141FA2D800FC13005CEB7C3E137E147EEB3E7CA3EB1F7814F86D5AA320217FA0
23>I<00FCD907F0EB1F807E007E010FEC3F008115786C011F143E177EEC1E7C261F803E
147C033C13FC153E000F013C5CD9C07C1301151E151F2607E0785C02F81303ED0F830003
5EEBF0F001F114870001913807C7C014E0A201FBEB03CF00005E02C013EF1501017B92C7
FCD97F8013FFA2013F6D5A91C7FC31217FA034>I<007E143F6C5C6C6C13FE6D5B6C6C48
5A0007495A6C6C485A3801F80FD800FC5B90387E1F80D97F3FC7FCEB3F7E6D5A6D5A1307
6D5AA2497E497E131FEB3F3EEB3E1F017C7F9038FC0FC048486C7E48486C7EEA07E06E7E
48486C7E4848137E48C7127F48EC3F8000FEEC1FC0222180A023>I<00FE143F007E147E
A27E15FC7F001FEB01F813C0120FEC03F0EA07E015E0EBF007120315C03801F80F158012
00EBFC1F1500137CEB7E3E133EA2EB1F3C147CEB0F78A36D5AA26D5AA35C13075CA2130F
91C7FC5B131EEA203EEA387CEA3FFC5BA25BEA0FC020317FA023>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fk cmcsc10 10 5
/Fk 5 122 df101 D110 DI<017F13603901FFE0E0380780F9380E001F4813074813
0312780070130100F01300A315607EA26C14007E127F13C0EA3FFEEBFFE06C13F8000713
FE6C7FC61480010F13C01300EC0FE01407EC03F01401A212C01400A37E15E06C1301A26C
EB03C06CEB0780B4EB0F0038F3E01E38E0FFF838C01FE01C2D7BAB26>115
D121
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fl cmtt8 8 21
/Fl 21 120 df<123E127FEAFF80A5EA7F00123E0909738823>46
D50 D64 D<3803FF80000F13E04813F8487F80EB80FFEC3F80381F001FC7FC140F
14FF137F0003B5FC120F5A387FF00F130012FCA25A141F7E6C133F387F81FF90B512FC6C
14FE7E000713C73901FE01FC1F1D7D9C23>97 D
IIII<
EC01F090383F07FC9038FFDFFE000313FF5A48147E381FE1FE9038807E18393F003F00A2
003E7FA4003F5BA2381F807EEBE1FE6CB45A485B5C001E13C0013FC7FC90C8FC121F1340
380FFFFCECFF804814C04814F0397E0007F8007C130048147CA248143CA36C147C6C14FC
007FEB03F8EBE01F6CB512F0000F14C06C14800001EBFE0038003FF01F2E7E9D23>103
DI<133813FEA5133890C7FCA6EA7FFC487EA3
127FEA003EB3387FFFFEB6FCA36C13FE182A7AA923>I<14E0EB03F8A5EB00E01400A638
03FFF04813F8A37EC7FCB3AB13011238387C03F012FEEB0FE0B5FC14C06C13006C5AEA0F
F815397DA923>I108 D<397E1F01F039FF7FC7FC9038FFEFFE14FF6C80390FE1FE1FEBC1FC01C07FEB
80F8A2EB00F0AE3A7FE3FE3FE026FFF3FF13F0A3267FE3FE13E0241D819C23>I<38FF81
FCEBC7FF01DF138090B512C0A23907FE0FE0EBF807EBF00313E0A313C0AD39FFFE1FFF5C
A380201D7F9C23>I<133F3801FFE0487F487F487F381FC0FE383F807F383E001F007E14
80007C130F00FC14C0481307A66C130FA2007C1480007E131F6CEB3F006D5A381FE1FE6C
B45A6C5B6C5B6C5BD8003FC7FC1A1D7C9C23>I<38FF81FCEBC7FF01DF13C090B512E015
F03907FE0FF8EBF8039038F001FCEBE000A249137EA2153EA5157E7F15FC7F14019038F8
03F89038FE0FF090B5FC15E001DF138001CF1300EBC3F801C0C7FCAAEAFFFEA51F2C7F9C
23>I<397FF00FE039FFF87FF8ECFFFC13FB6CB5FCC613F8ECC078EC800091C7FC5BA25B
A35BAA387FFFFCB57EA36C5B1E1D7E9C23>114 D<137013F8A7007FB51280B612C0A36C
1480D800F8C7FCACEC01C0EC03E0A3EBFC07140F9038FE1FC0EB7FFF158090383FFE00EB
0FFCEB07F01B257EA423>116 D<39FF807FC001C013E0A400071303B01407140FEBE03F
90B6FC7EA2C613F3EB3FC1201D7F9C23>I<397FF00FFE39FFF81FFFA3397FF00FFE001F
C712F86C14F0A57F390783E1E0EB87F1A3EB8FF90003EB79C013CFA2EBDF7BA2EBDE3B00
011480EBFE3FA2EBFC1FA23900F80F00201D7F9C23>119 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fm cmr8 8 44
/Fm 44 122 df<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A
5A126009157A8714>44 DI<123C127E12FFA4127E123C08087A
8714>I48 D<130C133C137CEA03FC12FFEAFC7C1200B3B113
FE387FFFFEA2172C7AAB23>III57 D<4A7E4A7EA34A7EA24A7EA3EC1BF81419A2EC30FCA2EC70FEEC
607EA24A7EA349486C7EA2010380EC000FA201066D7EA3496D7EA2011FB57EA290381800
01496D7EA349147EA201E0147F4980A20001ED1F801203000716C0D80FF0EC3FE0D8FFFC
0103B5FCA2302F7EAE35>65 D67 D69 D71 D73 D76 DIIII82 D<90383F80303901FFF0703807C07C390F000EF0001E130748130348130114
00127000F01470A315307EA26C1400127E127FEA3FE013FE381FFFE06C13FC6C13FF0001
1480D8003F13E013039038003FF0EC07F81401140015FC157C12C0153CA37EA215787E6C
14706C14F06CEB01E039F78003C039E3F00F0038E07FFE38C00FF01E2F7CAD27>I<007F
B712F8A29039000FC003007C150000701638A200601618A200E0161CA248160CA5C71500
B3A94A7E011FB512E0A22E2D7EAC33>II87
D<13FF000713C0380F01F0381C00F8003F137C80A2143F001E7FC7FCA4EB07FF137F3801
FE1FEA07F0EA1FC0EA3F80EA7F00127E00FE14065AA3143F7E007E137F007FEBEF8C391F
83C7FC390FFF03F83901FC01E01F207D9E23>97 DII<15F8141FA214011400ACEB0FE0EB7FF83801F81E38
03E0073807C003380F8001EA1F00481300123E127EA25AA9127C127EA2003E13017EEB80
03000F13073903E00EFC3A01F03CFFC038007FF090391FC0F800222F7EAD27>III<013F13F89038FFC3FE
3903E1FF1E3807807C000F140C391F003E00A2003E7FA76C133EA26C6C5A00071378380F
E1F0380CFFC0D81C3FC7FC90C8FCA3121E121F380FFFF814FF6C14C04814F0391E0007F8
48130048147C12F848143CA46C147C007C14F86CEB01F06CEB03E03907E01F803901FFFE
0038003FF01F2D7E9D23>III108
D<2607C07FEB07F03BFFC3FFC03FFC903AC783F0783F3C0FCE01F8E01F803B07DC00F9C0
0F01F8D9FF8013C04990387F000749137EA249137CB2486C01FEEB0FE03CFFFE0FFFE0FF
FEA2371E7E9D3C>I<3807C0FE39FFC3FF809038C703E0390FDE01F0EA07F8496C7EA25B
A25BB2486C487E3AFFFE1FFFC0A2221E7E9D27>II<
3807C0FE39FFC7FF809038CF03E0390FDC01F03907F800FC49137E49133E49133FED1F80
A3ED0FC0A8151F1680A2ED3F00A26D137E6D137C5D9038FC01F09038CE07E09038C7FF80
D9C1FCC7FC01C0C8FCA9487EEAFFFEA2222B7E9D27>I<90380FE01890387FF8383801F8
1C3903E00E783807C007390F8003F8001F1301EA3F00A2007E1300A212FE5AA8127EA36C
13017EEB8003380FC0073803E00E3801F03C38007FF0EB1FC090C7FCA94A7E91381FFFC0
A2222B7E9D25>I<380781F838FF87FEEB8E3FEA0F9CEA07B813B0EBF01EEBE000A45BB0
487EB5FCA2181E7E9D1C>I<3801FE183807FFB8381E01F8EA3C00481378481338A21418
A27E7EB41300EA7FF06CB4FC6C13C06C13F0000113F838001FFC130138C0007E143EA26C
131EA27EA26C133CA26C137838FF01F038E3FFC000C0130017207E9E1C>I<1360A413E0
A312011203A21207121FB512F0A23803E000AF1418A714383801F03014703800F860EB3F
E0EB0F80152A7FA81B>II<3AFFFC01FFC0A2
3A0FE0007E000007147C15380003143015706C6C1360A26C6C5BA390387C0180A26D48C7
FCA2EB3F07EB1F06A2EB0F8CA214DCEB07D8A2EB03F0A36D5AA26D5A221E7F9C25>I<3A
FFFC01FFC0A23A0FE0007E000007147C1538000314306D137000011460A26C6C5BA2EBFC
01017C5BEB7E03013E90C7FCA2EB1F06A2148EEB0F8CA2EB07D8A2EB03F0A36D5AA26D5A
A2495AA2130391C8FC1278EAFC06A25B131CEA7838EA7070EA3FE0EA0F80222B7F9C25>
121 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fn cmsy6 6 3
/Fn 3 123 df<136013701360A20040132000E0137038F861F0387E67E0381FFF803807
FE00EA00F0EA07FE381FFF80387E67E038F861F038E060700040132000001300A2137013
6014157B9620>3 D<136013F0A81360A4387C63E0B512F0A2387C63E038006000A313F0
B3A21360A7142F7CA31E>121 D<136013F0A61360A3B512F0A338006000A313F0A61360
90C7FC136013F0A61360A3B512F0A338006000A313F0A61360142F7CA31E>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fo cmti10 10 37
/Fo 37 122 df13 D44
D<387FFFF8A2B5FCA214F0150579941E>I<120EEA3F80127F12FFA31300127E123C0909
778819>I48 D<15181538157815F0140114031407EC0FE0141F147FEB03FF90383FEFC0148FEB1C
1F13001580A2143FA21500A25CA2147EA214FEA25CA21301A25CA21303A25CA21307A25C
A2130FA25CA2131FA25CA2133FA291C7FC497EB61280A31D3877B72A>II65 D67 D<0107B8FCA3903A000FF000034BEB007F183E141F181E5DA2143FA25D181C
147FA29238000380A24A130718004A91C7FC5E13015E4A133E167E49B512FEA25EECF800
0107147C163C4A1338A2010F147818E04A13701701011F16C016004A14031880013F1507
18004A5CA2017F151E173E91C8123C177C4915FC4C5A4914070001ED7FF0B8FCA25F3839
7BB838>69 D71 D<0103B512F8A390390007F8005DA2140FA25DA2141FA25DA2143F
A25DA2147FA292C7FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131F
A25CA2133FA25CA2137FA291C8FC497EB6FCA25C25397CB820>73
D<0107B512FCA25E9026000FF8C7FC5D5D141FA25DA2143FA25DA2147FA292C8FCA25CA2
5CA21301A25CA21303A25CA21307A25CA2130F170C4A141CA2011F153C17384A1478A201
3F157017F04A14E01601017F140317C091C71207160F49EC1F80163F4914FF0001020713
00B8FCA25E2E397BB834>76 D<0107B612F817FF1880903B000FF0003FE04BEB0FF0EF03
F8141FEF01FC5DA2023F15FEA25DA2147FEF03FC92C7FCA24A15F817074A15F0EF0FE013
01EF1FC04AEC3F80EFFE0001034A5AEE0FF091B612C04CC7FCD907F8C9FCA25CA2130FA2
5CA2131FA25CA2133FA25CA2137FA291CAFCA25BA25B1201B512FCA337397BB838>80
D<0007B812E0A25AD9F800EB001F01C049EB07C0485AD900011403121E001C5C003C1780
1403123800785C00701607140700F01700485CA2140FC792C7FC5DA2141FA25DA2143FA2
5DA2147FA292C9FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CEB3FF000
7FB512F8B6FCA2333971B83B>84 D<14F8EB07FE90381F871C90383E03FE137CEBF80112
0148486C5A485A120FEBC001001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D
48ECC1C0A2141F15831680143F1587007C017F1300ECFF076C485B9038038F8E391F0F07
9E3907FE03FC3901F000F0222677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA31201
5BA312035BA31207EBE0F8EBE7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC0
13F0A21380A2123F1300A214075A127EA2140F12FE4814E0A2141F15C05AEC3F80A21500
5C147E5C387801F8007C5B383C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926
>I<147F903803FFC090380FC1E090381F0070017E13784913383901F801F83803F00312
0713E0120FD81FC013F091C7FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14
F0007EEB01E0003EEB03C0EC0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>
II<147F903803FFC090380FC1E090383F00F0017E13785B485A485A485A120F4913
F8001F14F0383F8001EC07E0EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530
007C14381578007E14F0003EEB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690
C7FC1D2677A426>IIIII108 DII<147F903803FFC090380FC1F090381F00F8017E137C5B4848137E4848133E0007143F
5B120F485AA2485A157F127F90C7FCA215FF5A4814FEA2140115FC5AEC03F8A2EC07F015
E0140F007C14C0007EEB1F80003EEB3F00147E6C13F8380F83F03803FFC0C648C7FC2026
77A42A>I<9039078007C090391FE03FF090393CF0787C903938F8E03E9038787FC00170
497EECFF00D9F0FE148013E05CEA01E113C15CA2D80003143FA25CA20107147FA24A1400
A2010F5C5E5C4B5A131F5EEC80035E013F495A6E485A5E6E48C7FC017F133EEC70FC9038
7E3FF0EC0F8001FEC9FCA25BA21201A25BA21203A25B1207B512C0A3293580A42A>I<39
03C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB7F800078150000
701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075BA3120F5BA3121F
5BA3123F90C9FC120E212679A423>114 D<14FE903807FF8090380F83C090383E00E049
13F00178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEBFFC06C13F814FE
6C7F6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB1F0012E06C133E
00705B6C5B381E03E06CB45AD801FEC7FC1C267AA422>II<13F8D803FEEB01C0D8078FEB03E0390E0F8007121E12
1C0038140F131F007815C01270013F131F00F0130000E015805BD8007E133FA201FE1400
5B5D120149137EA215FE120349EBFC0EA20201131E161C15F813E0163CD9F00313381407
0001ECF07091381EF8F03A00F83C78E090393FF03FC090390FC00F00272679A42D>I<01
F0130ED803FC133FD8071EEB7F80EA0E1F121C123C0038143F49131F0070140FA25BD8F0
7E140000E08013FEC6485B150E12015B151E0003141C5BA2153C000714385B5DA35DA24A
5A140300035C6D48C7FC0001130E3800F83CEB7FF8EB0FC0212679A426>I<01F01507D8
03FC903903801F80D8071E903907C03FC0D80E1F130F121C123C0038021F131F49EC800F
00701607A249133FD8F07E168000E0ED000313FEC64849130718000001147E5B03FE5B00
03160E495BA2171E00070101141C01E05B173C1738A217781770020314F05F0003010713
016D486C485A000190391E7C07802800FC3C3E0FC7FC90393FF81FFE90390FE003F03226
79A437>I<903907E007C090391FF81FF89039787C383C9038F03E703A01E01EE0FE3803
C01F018013C0D8070014FC481480000E1570023F1300001E91C7FC121CA2C75AA2147EA2
14FEA25CA21301A24A1370A2010314F016E0001C5B007E1401010714C000FEEC0380010F
1307010EEB0F0039781CF81E9038387C3C393FF03FF03907C00FC027267CA427>I<13F0
D803FCEB01C0D8071EEB03E0D80E1F1307121C123C0038140F4914C01270A249131FD8F0
7E148012E013FEC648133F160012015B5D0003147E5BA215FE00075C5BA214015DA31403
5D14070003130FEBF01F3901F87FE038007FF7EB1FC7EB000F5DA2141F003F5C48133F92
C7FC147E147C007E13FC387001F8EB03E06C485A383C1F80D80FFEC8FCEA03F0233679A4
28>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fp cmbx10 10 30
/Fp 30 118 df46 D<141E143E14FE1307133FB5FCA313CFEA000FB3B3A6007FB61280A4213779B630>
49 DIII<001C15C0D8
1F80130701F8137F90B61280A216005D5D15F05D15804AC7FC14F090C9FCA8EB07FE9038
3FFFE090B512F89038FC07FC9038E003FFD98001138090C713C0120EC813E0157F16F0A2
16F8A21206EA3F80EA7FE012FF7FA44914F0A26C4813FF90C713E0007C15C06C5B6C4913
80D9C0071300390FF01FFE6CB512F8000114E06C6C1380D90FF8C7FC25387BB630>II<123C123EEA3FE090B71280A41700485D
5E5E5EA25E007CC7EA0FC000784A5A4BC7FC00F8147E48147C15FC4A5A4A5AC7485A5D14
0F4A5A143F92C8FC5C147E14FE1301A2495AA31307A2130F5CA2131FA5133FA96D5A6D5A
6D5A293A7BB830>I<49B47E010F13F0013F13FC9038FE01FF3A01F8007F804848EB3FC0
4848EB1FE0150F485AED07F0121FA27FA27F7F01FEEB0FE0EBFF809138E01FC06CEBF03F
02FC13809138FF7F006C14FC6C5C7E6C14FE6D7F6D14C04914E048B612F0EA07F848486C
13F8261FE01F13FC383FC007EB8001007F6D13FE90C7123F48140F48140715031501A215
00A216FC7E6C14016D14F86C6CEB03F06D13076C6CEB0FE0D80FFEEB7FC00003B61200C6
14FC013F13F00103138027387CB630>I58 D70 D76 D79 DII<003FB91280A4D9F800EBF003D87FC09238007FC049161F007EC7150F
A2007C1707A200781703A400F818E0481701A4C892C7FCB3AE010FB7FCA43B387DB742>
84 D97 D<903803FF80011F13F0017F13FC3901FF83FE3A03FE007F804848
133F484814C0001FEC1FE05B003FEC0FF0A2485A16F8150712FFA290B6FCA301E0C8FCA4
127FA36C7E1678121F6C6C14F86D14F000071403D801FFEB0FE06C9038C07FC06DB51200
010F13FC010113E025257DA42C>101 DI<161FD907FEEBFFC090387FFFE348B6EAEFE02607FE0713
8F260FF801131F48486C138F003F15CF4990387FC7C0EEC000007F81A6003F5DA26D13FF
001F5D6C6C4890C7FC3907FE07FE48B512F86D13E0261E07FEC8FC90CAFCA2123E123F7F
6C7E90B512F8EDFF8016E06C15F86C816C815A001F81393FC0000F48C8138048157F5A16
3FA36C157F6C16006D5C6C6C495AD81FF0EB07FCD807FEEB3FF00001B612C06C6C91C7FC
010713F02B377DA530>I<13FFB5FCA412077EAFED7FC0913803FFF8020F13FE91381F03
FFDA3C01138014784A7E4A14C05CA25CA291C7FCB3A3B5D8FC3F13FFA4303A7DB935>I<
EA01F0EA07FC487EA2487EA56C5AA26C5AEA01F0C8FCA913FF127FA412077EB3A9B512F8
A4153B7DBA1B>I<13FFB5FCA412077EB3B3ACB512FCA4163A7DB91B>108
D<01FED97FE0EB0FFC00FF902601FFFC90383FFF80020701FF90B512E0DA1F81903983F0
3FF0DA3C00903887801F000749DACF007F00034914DE6D48D97FFC6D7E4A5CA24A5CA291
C75BB3A3B5D8FC1FB50083B512F0A44C257DA451>I<01FEEB7FC000FF903803FFF8020F
13FE91381F03FFDA3C011380000713780003497E6D4814C05CA25CA291C7FCB3A3B5D8FC
3F13FFA430257DA435>I<903801FFC0010F13F8017F13FFD9FF807F3A03FE003FE04848
6D7E48486D7E48486D7EA2003F81491303007F81A300FF1680A9007F1600A3003F5D6D13
07001F5DA26C6C495A6C6C495A6C6C495A6C6C6CB45A6C6CB5C7FC011F13FC010113C029
257DA430>I<9038FE03F000FFEB0FFEEC3FFF91387C7F809138F8FFC000075B6C6C5A5C
A29138807F80ED3F00150C92C7FC91C8FCB3A2B512FEA422257EA427>114
D<90383FF0383903FFFEF8000F13FF381FC00F383F0003007E1301007C130012FC15787E
7E6D130013FCEBFFE06C13FCECFF806C14C06C14F06C14F81203C614FC131F9038007FFE
140700F0130114007E157E7E157C6C14FC6C14F8EB80019038F007F090B512C000F81400
38E01FF81F257DA426>I<130FA55BA45BA25B5BA25A1207001FEBFFE0B6FCA3000390C7
FCB21578A815F86CEB80F014816CEBC3E090383FFFC06D1380903803FE001D357EB425>
I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E4813E06CD9C03E13FF90
387FFFFC011F13F00103138030257DA435>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fq cmsy7 7 6
/Fq 6 59 df0 D<137F3801FFC0000713F0380FC1F8381F007C
003C131E0038130E0078130F00707F00F01480481303A56C13070070140000785B003813
0E003C131E001F137C380FC1F86CB45A000113C06C6CC7FC19197C9A22>14
D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB0FE0EB03F8EB00FEEC3F80EC0F
E0EC03F8EC00FEED3F80ED0FE0ED03F8ED00FE163E16FEED03F8ED0FE0ED3F80EDFE00EC
03F8EC0FE0EC3F8002FEC7FCEB03F8EB0FE0EB3F8001FEC8FCEA03F8EA0FE0EA3F80007E
C9FC12F812E0CAFCAB007FB612FCB712FEA227357AA734>21 D<13E0EA01F0EA03F8A3EA
07F0A313E0A2120F13C0A3EA1F80A21300A25A123EA35AA3127812F8A25A12100D1E7D9F
13>48 D<150EA2151E151C153C1578157015F015E0140115C0140315801407EC0F00140E
141E141C143C14381478147014F0495A5C13035C130791C7FC5B131E131C133C13381378
137013F05B1201485A5B120790C8FC5A120E121E121C123C5A127012F05A12601F3576A8
00>54 D58 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fr cmr10 10 79
/Fr 79 122 df11
DII<133C137EA213FE1201EA03FC13F0EA07E0EA0FC0EA1F80EA1E005A5A5A12C0
0F0F6FB92A>19 D<001C131C007F137F39FF80FF80A26D13C0A3007F137F001C131C0000
1300A40001130101801380A20003130301001300485B00061306000E130E485B485B485B
006013601A197DB92A>34 D<121C127FEAFF80A213C0A3127F121C1200A412011380A212
0313005A1206120E5A5A5A12600A1979B917>39 D<146014E0EB01C0EB0380EB0700130E
131E5B5BA25B485AA2485AA212075B120F90C7FCA25A121EA2123EA35AA65AB2127CA67E
A3121EA2121F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB01C0EB00
E01460135278BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378A2137C13
3C133E131EA2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A25B131EA2
133E133C137C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD20>I<15
301578B3A6007FB812F8B912FCA26C17F8C80078C8FCB3A6153036367BAF41>43
D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A
12600A19798817>II<121C127FEAFF80A5EA7F00121C09097988
17>I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C01407A215
80140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495AA25C13
0FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207A25B12
0FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>IIIII<1538A2157815F8A2140114
031407A2140F141F141B14331473146314C313011483EB030313071306130C131C131813
301370136013C01201EA038013005A120E120C5A123812305A12E0B712F8A3C73803F800
AB4A7E0103B512F8A325397EB82A>I<0006140CD80780133C9038F003F890B5FC5D5D15
8092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E007E090388003F049
6C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C12E000605C127000
30495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38007FFCEB1FE0213A
7CB72A>II<12301238123E003FB612E0A316C05A16
8016000070C712060060140E5D151800E01438485C5D5DC712014A5A92C7FC5C140E140C
141C5CA25CA214F0495AA21303A25C1307A2130FA3495AA3133FA5137FA96DC8FC131E23
3B7BB82A>III<121C127FEAFF80
A5EA7F00121CC7FCB2121C127FEAFF80A5EA7F00121C092479A317>I<121C127FEAFF80
A5EA7F00121CC7FCB2121C127F5A1380A4127F121D1201A412031300A25A1206A2120E5A
121812385A1260093479A317>I<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912
FCA26C17F836167B9F41>61 D63 D<1538A3157CA315FEA34A7EA34A6C7EA202077FEC063FA202
0E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F1501A2D90180
7F81A249C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E7EA3496E7E
A213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>65
DI<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03
FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F48
48150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A312
3F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE0
5C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D
7BBA3C>III<
B812F8A30001903880001F6C90C71201EE00FC177C173C171CA2170CA4170E1706A2ED01
80A21700A41503A21507151F91B5FCA3EC001F15071503A21501A692C8FCAD4813C0B612
C0A32F397DB836>II73 D<013FB512E0A39039001F
FC00EC07F8B3B3A3123FEA7F80EAFFC0A44A5A1380D87F005B0070131F6C5C6C495A6C49
C7FC380781FC3801FFF038007F80233B7DB82B>IIIIIIIIII<003FB812E0A3D9C003EB001F273E0001FE130348EE01F00078160000701770A3
00601730A400E01738481718A4C71600B3B0913807FF80011FB612E0A335397DB83C>I<
B6903807FFFEA3000101809038007FE06C90C8EA1F80EF0F001706B3B2170E6D150C8017
1C133F17186D6C14385F6D6C14F06D6C5C6D6C495A6D6CEB07806D6C49C7FC91387F807E
91381FFFF8020713E09138007F80373B7DB83E>III<007FB590383FFFFCA3C601F801071380D97FE0D903FCC7FC013FEC01F0
6D6C5C5F6D6C5C6D6C13034CC8FC6D6C1306160E6D6C5B6DEB8018163891387FC0306E6C
5A16E06E6C5A91380FF18015FB6EB4C9FC5D14036E7EA26E7F6F7EA24B7E15DF9138019F
F09138038FF8150F91380607FC91380E03FE140C4A6C7EEC38000230804A6D7E14E04A6D
7E49486D7E130391C76C7E01066E7E130E010C6E7E011C1401013C8101FE822607FF8001
0713E0B500E0013FEBFF80A339397EB83E>I91 D<3901800180000313033907000700000E130E485B001813180038133800
3013300070137000601360A200E013E0485BA400CE13CE39FF80FF806D13C0A3007F137F
A2393F803F80390E000E001A1974B92A>II96 DIIIII<147E903803FF8090380FC1E0EB1F8790383F0FF0137EA213FCA23901F803C091C7FC
ADB512FCA3D801F8C7FCB3AB487E387FFFF8A31C3B7FBA19>IIIIIII<2703F00FF0
EB1FE000FFD93FFCEB7FF8913AF03F01E07E903BF1C01F83803F3D0FF3800FC7001F8026
03F70013CE01FE14DC49D907F8EB0FC0A2495CA3495CB3A3486C496CEB1FE0B500C1B500
83B5FCA340257EA445>I<3903F00FF000FFEB3FFCECF03F9039F1C01F803A0FF3800FC0
3803F70013FE496D7EA25BA35BB3A3486C497EB500C1B51280A329257EA42E>II<3903F01FE000FFEB7FF89038F1E07E9039F3801F803A0FF7000FC0D803FEEB
07E049EB03F04914F849130116FC150016FEA3167FAA16FEA3ED01FCA26DEB03F816F06D
13076DEB0FE001F614C09039F7803F009038F1E07E9038F0FFF8EC1FC091C8FCAB487EB5
12C0A328357EA42E>II<3807E01F00FFEB7FC09038E1E3E09038E387F0380FE707EA
03E613EE9038EC03E09038FC0080491300A45BB3A2487EB512F0A31C257EA421>II<1318A51338A3
1378A313F8120112031207001FB5FCB6FCA2D801F8C7FCB215C0A93800FC011580EB7C03
017E13006D5AEB0FFEEB01F81A347FB220>II
IIII E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fs cmbx12 14.4 38
/Fs 38 121 df<157815FC14031407141F14FF130F0007B5FCB6FCA2147F13F0EAF800C7
FCB3B3B3A6007FB712FEA52F4E76CD43>49 DI<9138
0FFFC091B512FC0107ECFF80011F15E090263FF8077F9026FF800113FC4848C76C7ED803
F86E7E491680D807FC8048B416C080486D15E0A4805CA36C17C06C5B6C90C75AD801FC16
80C9FC4C13005FA24C5A4B5B4B5B4B13C04B5BDBFFFEC7FC91B512F816E016FCEEFF80DA
000713E0030113F89238007FFE707E7013807013C018E07013F0A218F8A27013FCA218FE
A2EA03E0EA0FF8487E487E487EB57EA318FCA25E18F891C7FC6C17F0495C6C4816E001F0
4A13C06C484A1380D80FF84A13006CB44A5A6CD9F0075BC690B612F06D5D011F15800103
02FCC7FCD9001F1380374F7ACD43>I<177C17FEA2160116031607160FA2161F163F167F
A216FF5D5DA25D5DED1FBFED3F3F153E157C15FCEC01F815F0EC03E01407EC0FC01580EC
1F005C147E147C5C1301495A495A5C495A131F49C7FC133E5B13FC485A5B485A1207485A
485A90C8FC123E127E5ABA12C0A5C96C48C7FCAF020FB712C0A53A4F7CCE43>III<121F7F7FEBFF8091B81280A45A1900606060A260606048
5F0180C86CC7FC007EC95A4C5A007C4B5A5F4C5A160F4C5A484B5A4C5A94C8FC16FEC812
014B5A5E4B5A150F4B5AA24B5AA24B5A15FFA24A90C9FCA25C5D1407A2140FA25D141FA2
143FA4147F5DA314FFA55BAC6D5BA2EC3FC06E5A395279D043>I<171F4D7E4D7EA24D7E
A34C7FA24C7FA34C7FA34C7FA24C7FA34C8083047F80167E8304FE804C7E03018116F883
0303814C7E03078116E083030F814C7E031F81168083033F8293C77E4B82157E8403FE82
4B800201835D840203834B800207835D844AB87EA24A83A3DA3F80C88092C97E4A84A202
7E8202FE844A82010185A24A820103854A82010785A24A82010F855C011F717FEBFFFCB6
00F8020FB712E0A55B547BD366>65 DI<932601FFFCEC01C0047FD9FFC013030307B600F81307033F03FE131F92B8EA
803F0203DAE003EBC07F020F01FCC7383FF0FF023F01E0EC0FF94A01800203B5FC494848
C9FC4901F8824949824949824949824949824990CA7E494883A2484983485B1B7F485B48
1A3FA24849181FA3485B1B0FA25AA298C7FC5CA2B5FCAE7EA280A2F307C07EA36C7FA21B
0F6C6D1980A26C1A1F6C7F1C006C6D606C6D187EA26D6C606D6D4C5A6D6D16036D6D4C5A
6D6D4C5A6D01FC4C5A6D6DEE7F806D6C6C6C4BC7FC6E01E0EC07FE020F01FEEC1FF80203
903AFFE001FFF0020091B612C0033F93C8FC030715FCDB007F14E0040101FCC9FC525479
D261>I69
D<932601FFFCEC01C0047FD9FFC013030307B600F81307033F03FE131F92B8EA803F0203
DAE003EBC07F020F01FCC7383FF0FF023F01E0EC0FF94A01800203B5FC494848C9FC4901
F8824949824949824949824949824990CA7E494883A2484983485B1B7F485B481A3FA248
49181FA3485B1B0FA25AA298C8FC5CA2B5FCAE6C057FB712E0A280A36C94C7003FEBC000
A36C7FA36C7FA27E6C7FA26C7F6C7FA26D7E6D7F6D7F6D6D5E6D7F6D01FC93B5FC6D13FF
6D6C6D5C6E01F0EC07FB020F01FEEC1FF10203903AFFF001FFE0020091B6EAC07F033FEE
001F030703FC1307DB007F02E01301040149CAFC5B5479D26A>71
D73
D76
DII82 D97 DI<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1FFE
0001FFD97FFC491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F130070
5A4892C8FC5BA312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F806C
6DEC3F006C6D147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F49
C7FC020113E033387CB63C>I<4DB47E0407B5FCA5EE001F1707B3A4913801FFE0021F13
FC91B6FC010315C7010F9038E03FE74990380007F7D97FFC0101B5FC49487F4849143F48
4980485B83485B5A91C8FC5AA3485AA412FFAC127FA36C7EA37EA26C7F5F6C6D5C7E6C6D
5C6C6D49B5FC6D6C4914E0D93FFED90FEFEBFF80903A0FFFC07FCF6D90B5128F0101ECFE
0FD9003F13F8020301C049C7FC41547CD24B>I<913803FFC0023F13FC49B6FC010715C0
4901817F903A3FFC007FF849486D7E49486D7E4849130F48496D7E48178048497F18C048
8191C7FC4817E0A248815B18F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E06C
EE01F06E14037E6C6DEC07E0A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFEEB
03FE903A0FFFC03FF8010390B55A010015C0021F49C7FC020113F034387CB63D>IIII<137F
497E000313E0487FA2487FA76C5BA26C5BC613806DC7FC90C8FCADEB3FF0B5FCA512017E
B3B3A6B612E0A51B547BD325>I107 DIII<913801FFE0021F13FE91B612C0010315F0010F90
38807FFC903A1FFC000FFED97FF86D6C7E49486D7F48496D7F48496D7F4A147F48834890
C86C7EA24883A248486F7EA3007F1880A400FF18C0AC007F1880A3003F18006D5DA26C5F
A26C5F6E147F6C5F6C6D4A5A6C6D495B6C6D495B6D6C495BD93FFE011F90C7FC903A0FFF
807FFC6D90B55A010015C0023F91C8FC020113E03A387CB643>I<903A3FF001FFE0B501
0F13FE033FEBFFC092B612F002F301017F913AF7F8007FFE0003D9FFE0EB1FFFC602806D
7F92C76C7F4A824A6E7F4A6E7FA2717FA285187F85A4721380AC1A0060A36118FFA2615F
616E4A5BA26E4A5B6E4A5B6F495B6F4990C7FC03F0EBFFFC9126FBFE075B02F8B612E06F
1480031F01FCC8FC030313C092CBFCB1B612F8A5414D7BB54B>I<90397FE003FEB59038
0FFF80033F13E04B13F09238FE1FF89139E1F83FFC0003D9E3E013FEC6ECC07FECE78014
EF150014EE02FEEB3FFC5CEE1FF8EE0FF04A90C7FCA55CB3AAB612FCA52F367CB537>
114 D<903903FFF00F013FEBFE1F90B7FC120348EB003FD80FF81307D81FE0130148487F
4980127F90C87EA24881A27FA27F01F091C7FC13FCEBFFC06C13FF15F86C14FF16C06C15
F06C816C816C81C681013F1580010F15C01300020714E0EC003F030713F015010078EC00
7F00F8153F161F7E160FA27E17E07E6D141F17C07F6DEC3F8001F8EC7F0001FEEB01FE90
39FFC00FFC6DB55AD8FC1F14E0D8F807148048C601F8C7FC2C387CB635>I<143EA6147E
A414FEA21301A313031307A2130F131F133F13FF5A000F90B6FCB8FCA426003FFEC8FCB3
A9EE07C0AB011FEC0F8080A26DEC1F0015806DEBC03E6DEBF0FC6DEBFFF86D6C5B021F5B
020313802A4D7ECB34>II119 D<007FB500F090387FFFFEA5C66C48C7000F90C7FC6D6C
EC07F86D6D5C6D6D495A6D4B5A6F495A6D6D91C8FC6D6D137E6D6D5B91387FFE014C5A6E
6C485A6EEB8FE06EEBCFC06EEBFF806E91C9FCA26E5B6E5B6F7E6F7EA26F7F834B7F4B7F
92B5FCDA01FD7F03F87F4A486C7E4A486C7E020F7FDA1FC0804A486C7F4A486C7F02FE6D
7F4A6D7F495A49486D7F01076F7E49486E7E49486E7FEBFFF0B500FE49B612C0A542357E
B447>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ft cmsy8 8 5
/Ft 5 123 df<130C131EA50060EB01800078130739FC0C0FC0007FEB3F80393F8C7F00
3807CCF83801FFE038007F80011EC7FCEB7F803801FFE03807CCF8383F8C7F397F0C3F80
00FCEB0FC039781E078000601301000090C7FCA5130C1A1D7C9E23>3
D<141F14FFEB03F0EB0FC0EB1F8014005B133EB3A2137E137C13FC485A485AEA7FC048C7
FCEA7FC0EA03F06C7E6C7E137C137E133EB3A2133F7F1480EB0FC0EB03F0EB00FF141F18
437BB123>102 D<12FCB47EEA0FE0EA01F0EA00FC137C137E133EB3A37F1480130FEB07
E0EB01FEEB007FEB01FEEB07E0EB0F80131F1400133EB3A3137E137C13FCEA01F0EA0FE0
EAFF8000FCC7FC18437BB123>I<1338137CA81338A7007C137CB512FEA3387C387C0000
1300A5137CB3A41338AD173D7CAE20>121 D<1338137CA71338A40020130838FF39FE13
FFA2133938003800A5137CA7133890C7FC1338137CA71338A538FF39FE13FFA213393820
380800001300A4137CA71338173D7CAE20>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fu cmr12 12 32
/Fu 32 122 df45 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00
0A0A78891B>I66 DIII76 DII80
D82 D<003FB912F8A3903BF0001FF8001F01806D481303003EC7150048187C007818
3CA20070181CA30060180CA5481806A5C81600B3B3A54B7EED7FFE49B77EA33F447DC346
>84 DI87 D97 D<167FED3FFFA315018182B3EC7F80903803FFF090380FC07C
90383F000E017E1307496D5AD803F87F48487F5B000F81485AA2485AA2127FA290C8FC5A
AB7E7FA2123FA26C7EA2000F5D7F6C6C5B00035C6C6C9038077F806C6C010E13C0013F01
1C13FE90380FC0F8903803FFE09026007F0013002F467DC436>100
DI103 DII<143C14FFA24913
80A46D1300A2143C91C7FCADEC7F80EB3FFFA31300147F143FB3B3AA123E127F39FF807F
00A2147EA25C6C485A383C01F06C485A3807FF80D801FEC7FC195785C21E>IIII<3901FC01FE00FF903807
FFC091381E07F091383801F8000701707F0003EBE0002601FDC07F5C01FF147F91C7FCA2
5BA35BB3A8486CECFF80B5D8F83F13FEA32F2C7DAB36>II<3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13
FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C7DAB26>114
D<90383FE0183901FFFC383907E01F78390F0003F8001E1301481300007C1478127800F8
1438A21518A27EA27E6C6C13006C7E13FC383FFFE06C13FC6C13FF6C14C06C14E0C614F0
011F13F81300EC0FFC140300C0EB01FE1400157E7E153EA27EA36C143C6C147C15786C14
F86CEB01F039F38003E039F1F00F8039E07FFE0038C00FF01F2E7DAC26>I<1306A5130E
A4131EA3133E137EA213FE12011207001FB512F0B6FCA2C648C7FCB3A4150CAA017E131C
017F1318A26D133890381F8030ECC070903807E0E0903801FFC09038007F001E3E7EBC26
>II119 D121
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fv cmbx12 17.28 23
/Fv 23 122 df66 D<4DB5ED03C0057F02F014070407B600FE14
0F047FDBFFC0131F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF
814A02F0020113C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B5
4882490280824991CB7E49498449498449498449865D49498490B5FC484A84A2484A84A2
4891CD127FA25A4A1A3F5AA348491A1FA44899C8FCA25CA3B5FCB07E071FB812F880A37E
A296C70001ECC000A26C7FA37E807EA26C80A26C80A26C807F6D7F816D7F7F6D7F6D6D5F
6D14C06D6E5E6E7F6E01FC5E020F01FF5E6E02C0ED7FEF020102F8EDFFC76E02FF020713
83033F02FC013F1301030F91B638FC007F03014D131F6F6C04E01307040704801301DC00
7F02F8CAFC050191CBFC6D6677E37F>71 D78 D80 D82 D<001FBEFCA64849C79126E0000F148002
E0180091C8171F498601F81A0349864986A2491B7FA2491B3F007F1DC090C9181FA4007E
1C0FA600FE1DE0481C07A5CA95C7FCB3B3B3A3021FBAFCA663617AE070>84
D<913803FFFE027FEBFFF00103B612FE010F6F7E4916E090273FFE001F7FD97FE001077F
D9FFF801017F486D6D7F717E486D6E7F85717FA2717FA36C496E7FA26C5B6D5AEB1FC090
C9FCA74BB6FC157F0207B7FC147F49B61207010F14C0013FEBFE004913F048B512C04891
C7FC485B4813F85A5C485B5A5CA2B55AA45FA25F806C5E806C047D7F6EEB01F96C6DD903
F1EBFF806C01FED90FE114FF6C9027FFC07FC01580000191B5487E6C6C4B7E011F02FC13
0F010302F001011400D9001F90CBFC49437CC14E>97 D<92380FFFF04AB67E020F15F002
3F15FC91B77E01039039FE001FFF4901F8010113804901E0010713C04901804913E0017F
90C7FC49484A13F0A2485B485B5A5C5A7113E0485B7113C048701380943800FE0095C7FC
485BA4B5FCAE7EA280A27EA2806C18FCA26C6D150119F87E6C6D15036EED07F06C18E06C
6D150F6D6DEC1FC06D01E0EC7F806D6DECFF00010701FCEB03FE6D9039FFC03FFC010091
B512F0023F5D020F1580020102FCC7FCDA000F13C03E437BC148>99
DI<
92380FFFC04AB512FC020FECFF80023F15E091B712F80103D9FE037F499039F0007FFF01
1F01C0011F7F49496D7F4990C76C7F49486E7F48498048844A804884485B727E5A5C4871
7EA35A5C721380A2B5FCA391B9FCA41A0002C0CBFCA67EA380A27EA27E6E160FF11F806C
183F6C7FF17F006C7F6C6D16FE6C17016D6C4B5A6D6D4A5A6D01E04A5A6D6DEC3FE00103
01FC49B45A6D9026FFC01F90C7FC6D6C90B55A021F15F8020715E0020092C8FC030713F0
41437CC14A>III<903807FF80B6FCA6C6FC7F7FB3A8EF1FFF94B5
12F0040714FC041F14FF4C8193267FE07F7F922781FE001F7FDB83F86D7FDB87F07FDB8F
C0814C7F039FC78015BE03BC8003FC825DA25DA25DA45DB3B2B7D8F007B71280A651647B
E35A>II<90
3807FF80B6FCA6C6FC7F7FB3B3B3B3ADB712E0A623647BE32C>108
D<902607FF80D91FFFEEFFF8B691B500F00207EBFF80040702FC023F14E0041F02FF91B6
12F84C6F488193267FE07F6D4801037F922781FE001F9027E00FF0007FC6DA83F86D9026
F01FC06D7F6DD987F06D4A487F6DD98FC0DBF87EC7804C6D027C80039FC76E488203BEEE
FDF003BC6E4A8003FC04FF834B5FA24B5FA24B94C8FCA44B5EB3B2B7D8F007B7D8803FB6
12FCA67E417BC087>I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267F
E07F7F922781FE001F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC
8003FC825DA25DA25DA45DB3B2B7D8F007B71280A651417BC05A>I<923807FFE092B6FC
020715E0021F15F8027F15FE494848C66C6C7E010701F0010F13E04901C001037F49496D
7F4990C87F49486F7E49486F7E48496F13804819C04A814819E048496F13F0A24819F8A3
48496F13FCA34819FEA4B518FFAD6C19FEA46C6D4B13FCA36C19F8A26C6D4B13F0A26C19
E06C6D4B13C0A26C6D4B13806C6D4B13006D6C4B5A6D6D495B6D6D495B010701F0010F13
E06D01FE017F5B010090B7C7FC023F15FC020715E0020092C8FC030713E048437CC151>
I114 D<913A3FFF8007800107B5EAF81F011FEC
FE7F017F91B5FC48B8FC48EBE0014890C7121FD80FFC1407D81FF0801600485A007F167F
49153FA212FF171FA27F7F7F6D92C7FC13FF14E014FF6C14F8EDFFC06C15FC16FF6C16C0
6C16F06C826C826C826C82013F1680010F16C01303D9007F15E0020315F0EC001F150004
1F13F81607007C150100FC81177F6C163FA2171F7EA26D16F0A27F173F6D16E06D157F6D
16C001FEEDFF806D0203130002C0EB0FFE02FCEB7FFC01DFB65A010F5DD8FE0315C026F8
007F49C7FC48010F13E035437BC140>II<902607FFC0ED3FFEB60207B5FCA6C6EE00076D826D82B3B3
A260A360A2607F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D01FFEB3FE06D
91B55A6E1500021F5C020314F8DA003F018002F0C7FC51427BC05A>I
121 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%BeginPaperSize: Letter
letter
%%EndPaperSize
%%EndSetup
%%Page: 1 1
1 0 bop Black Black Black Black Black 926 349 a Fv(Tigh)l(ter)53
b(Bounds)f(on)h(the)g(Gen)l(us)f(of)357 531 y(Nonorthogonal)g(P)l
(olyhedra)i(Built)g(from)g(Rectangles)240 772 y Fu(Therese)35
b(Biedl)826 736 y Ft(\003)l(z)1087 772 y Fu(Timoth)m(y)d(M.)h(Chan)1864
736 y Ft(\003)n(z)2127 772 y Fu(Erik)f(D.)g(Demaine)2850
736 y Ft(y)3079 772 y Fu(Martin)f(L.)i(Demaine)3901 736
y Ft(y)833 938 y Fu(P)m(aul)g(Nijjar)1308 902 y Ft(\003)l(z)1669
938 y Fu(Ryuhei)g(Uehara)2310 902 y Ft(\003)2640 938
y Fu(Ming-w)m(ei)f(W)-8 b(ang)3307 902 y Ft(\003)p Black
0 1263 a Fs(Abstract)0 1457 y Fr(W)h(e)21 b(pro)n(v)n(e)e(that)i(there)
f(is)h(a)f(p)r(olyhedron)g(with)h(gen)n(us)f(6)g(whose)0
1556 y(faces)i(are)g(orthogonal)e(p)r(olygons)i(\(equiv)-5
b(alen)n(tly)e(,)23 b(rectangles\))0 1656 y(and)33 b(y)n(et)h(the)f
(angles)g(b)r(et)n(w)n(een)g(some)g(faces)g(are)f(not)i(m)n(ulti-)0
1756 y(ples)c(of)h(90)351 1726 y Fq(\016)388 1756 y Fr(,)g(so)f(the)g
(p)r(olyhedron)g(itself)h(is)f(not)g(orthogonal.)0 1855
y(On)40 b(the)g(other)f(hand,)k(w)n(e)d(pro)n(v)n(e)e(that)i(an)n(y)f
(suc)n(h)g(p)r(olyhe-)0 1955 y(dron)h(m)n(ust)g(ha)n(v)n(e)f(gen)n(us)g
(at)h(least)g(3.)74 b(These)40 b(results)g(im-)0 2055
y(pro)n(v)n(e)17 b(the)i(b)r(ounds)g(of)f(Donoso)g(and)g(O'Rourk)n(e)f
([4])h(that)h(there)0 2154 y(are)i(nonorthogonal)e(p)r(olyhedra)i(with)
h(orthogonal)e(faces)h(and)0 2254 y(gen)n(us)28 b(7)h(or)f(larger,)f
(and)i(an)n(y)f(suc)n(h)h(p)r(olyhedron)f(m)n(ust)h(ha)n(v)n(e)0
2354 y(gen)n(us)g(at)g(least)g(2.)43 b(W)-7 b(e)29 b(also)g
(demonstrate)g(nono)n(v)n(erlapping)0 2453 y(one-piece)42
b(edge-unfoldings)f(\(nets\))i(for)f(the)h(gen)n(us-7)e(and)0
2553 y(gen)n(us-6)26 b(p)r(olyhedra.)0 2860 y Fs(1)135
b(In)l(tro)t(duction)0 3054 y Fr(Donoso)34 b(and)g(O'Rourk)n(e)f([4])i
(consider)f(t)n(w)n(o)g(questions,)i(the)0 3153 y(\014rst)27
b(of)h(whic)n(h)f(w)n(as)g(p)r(osed)g(b)n(y)h(Biedl,)f(Lubiw,)h(and)g
(Sun)g([3)o(]:)p 137 3248 1707 4 v 137 3670 4 423 v 198
3330 a Fp(Question)41 b(1.)75 b Fr(If)37 b(an)g(orthogonal)e(p)r
(olygon)h(is)198 3430 y(creased)25 b(along)g(orthogonal)f(c)n(hords)h
(\(parallel)g(to)198 3530 y(the)47 b(edges\))e(and)i(folded)f(in)n(to)g
(a)g(p)r(olyhedron,)198 3629 y(m)n(ust)28 b(it)g(b)r(e)g(an)f
(orthogonal)e(p)r(olyhedron?)p 1840 3670 V 137 3673 1707
4 v 137 3748 V 137 4075 4 328 v 198 3830 a Fp(Question)45
b(2.)87 b Fr(If)40 b(a)h(p)r(olyhedron's)e(faces)h(are)198
3930 y(orthogonal)j(p)r(olygons)i(\(equiv)-5 b(alen)n(tly)e(,)50
b(rectan-)198 4029 y(gles\),)26 b(m)n(ust)g(it)g(b)r(e)g(an)f
(orthogonal)f(p)r(olyhedron?)p 1840 4075 V 137 4078 1707
4 v 0 4213 a(The)49 b(di\013erence)g(b)r(et)n(w)n(een)g(these)g(t)n(w)n
(o)f(questions)g(is)h(that)0 4312 y(Question)40 b(1)g(demands)h(that)f
(the)h(p)r(olyhedron)f(has)g(a)g Fo(net)p Fr(,)0 4412
y(a)29 b(nono)n(v)n(erlapping)e(one-piece)h(unfolding)i(b)n(y)f
(cutting)g(along)0 4512 y(edges.)56 b(This)34 b(restriction)g(reduces)f
(the)i(class)e(of)h(candidate)0 4611 y(p)r(olyhedra;)27
b(see)g([1,)g(2].)83 4717 y(The)34 b(answ)n(ers)d(to)j(these)f
(questions)g(turn)h(out)f(to)g(dep)r(end)0 4817 y(on)h(the)g(allo)n(w)n
(ed)f(gen)n(us)h(of)g(the)g(p)r(olyhedron.)56 b(Donoso)33
b(and)0 4916 y(O'Rourk)n(e)39 b([4])h(pro)n(v)n(ed)g(that)g(for)h(the)g
(originally)e(in)n(tended)p Black 0 4994 792 4 v 91 5048
a Fn(\003)127 5071 y Fm(Sc)n(ho)r(ol)c(of)f(Computer)g(Science,)k(Univ)
n(ersit)n(y)d(of)f(W)-6 b(aterlo)r(o,)38 b(W)-6 b(a-)0
5150 y(terlo)r(o,)41 b(On)n(tario)e(N2L)f(3G1,)k(Canada,)g
Ft(f)p Fl(biedl)p Fm(,)h Fl(tmchan)p Fm(,)f Fl(pnijjar)p
Fm(,)0 5229 y Fl(ruehara)p Fm(,)25 b Fl(m2wang)p Ft(g)p
Fl(@math.uwaterloo.)q(ca)94 5287 y Fn(y)127 5311 y Fm(MIT)59
b(Lab)r(oratory)g(for)f(Computer)g(Science,)69 b(200)59
b(T)-6 b(ec)n(hnol-)0 5389 y(ogy)73 b(Square,)86 b(Cam)n(bridge,)e(MA)
72 b(02139,)86 b(USA,)72 b Ft(f)p Fl(edemaine)p Fm(,)0
5468 y Fl(mdemaine)p Ft(g)p Fl(@mit.edu)94 5527 y Fn(z)127
5550 y Fm(P)n(artially)23 b(supp)r(orted)i(b)n(y)f(NSER)n(C.)p
Black 2160 1263 a Fr(case)32 b(of)g(gen)n(us-0)f(p)r(olyhedra,)i(and)f
(ev)n(en)h(for)f(gen)n(us-1)f(p)r(oly-)2160 1363 y(hedra,)h(the)g(answ)
n(ers)e(are)g(b)r(oth)i Fk(yes)p Fr(.)49 b(On)31 b(the)h(other)f(hand,)
2160 1463 y(they)39 b(demonstrated)g(a)g(nonorthogonal)d(p)r(olyhedron)
j(with)2160 1562 y(rectangular)e(faces)h(and)g(gen)n(us)g(7,)j(answ)n
(ering)c(Question)g(2)2160 1662 y(with)32 b(a)f Fk(no)g
Fr(for)f(gen)n(us)h(7)f(and)i(larger.)45 b(They)32 b(also)e(mo)r
(di\014ed)2160 1762 y(this)39 b(p)r(olyhedron)f(to)g(answ)n(er)f
(Question)h(1)g(with)h(a)f Fk(no)h Fr(for)2160 1861 y(gen)n(us)27
b(7)g(and)g(larger.)2160 2095 y Fp(Our)32 b(results.)82
b Fr(W)-7 b(e)28 b(extend)f(these)h(results)f(in)h(3)f(w)n(a)n(ys:)p
Black 2220 2198 a(1.)p Black 41 w(W)-7 b(e)32 b(extend)h(the)f(lo)n(w)n
(er)f(b)r(ound)h(to)g(sho)n(w)f(that)h(the)h(an-)2326
2298 y(sw)n(ers)c(to)h(b)r(oth)h(questions)f(are)f Fk(yes)i
Fr(for)f(gen)n(us-2)f(p)r(oly-)2326 2397 y(hedra.)p Black
2220 2497 a(2.)p Black 41 w(W)-7 b(e)51 b(sho)n(w)f(that)h(the)g
(original)e(gen)n(us-7)g(p)r(olyhedron)2326 2596 y(from)36
b([4])g(has)g(a)f(net,)k(so)d(it)g(to)r(o)g(answ)n(ers)f(Question)g(1)
2326 2696 y(with)28 b(a)f Fk(no)p Fr(.)p Black 2220 2796
a(3.)p Black 41 w(W)-7 b(e)34 b(giv)n(e)f(a)g(gen)n(us-6)g(p)r
(olyhedron)g(that)h(answ)n(ers)e(b)r(oth)2326 2895 y(questions)27
b(with)h(a)f Fk(no)p Fr(.)2160 3188 y Fs(2)135 b(Net)45
b(for)h(Gen)l(us)e(7)3408 3857 y @beginspecial 18 @llx
108 @lly 594 @urx 684 @ury 1094 @rwi @setspecial
%%BeginDocument: pix/martyoct2.eps
%!PS-Adobe-2.0 EPSF-1.2
%%Title: Geomview Snapshot
%%Creator: Geomview
%%CreationDate: Wed Oct 3 15:29:42 2001
%%For: pnijjar
%%BoundingBox: 18 108 594 684
%%EndComments
gsave
1 setlinecap 1 setlinejoin
18.000000 108.000000 translate
1.280000 1.280000 scale
[ % stack mark
/poly {
setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath fill
} bind def
/epoly {
setrgbcolor newpath moveto
counttomark 4 sub 2 idiv { lineto } repeat closepath
gsave fill grestore setrgbcolor setlinewidth stroke
} bind def
/lines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat stroke
} bind def
/clines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath stroke
} bind def
/circ {
setrgbcolor newpath 0 360 arc fill
} bind def
/tri {
setrgbcolor newpath moveto lineto lineto
closepath fill
} bind def
/l {
setrgbcolor newpath moveto lineto stroke
} bind def
%
0 0 moveto 450 0 lineto 450 450 lineto 0 450 lineto
1 1 1 setrgbcolor closepath fill
1 0 0 0 236.963 234.558 237.584 273.637 277.148 270.629 275.788 230.857 0.807843 0.807843 0.807843 epoly
1 0 0 0 127.529 263.039 129.009 220.774 236.963 234.558 237.584 273.637 0.764706 0.764706 0.764706 epoly
1 0 0 0 236.963 234.558 275.788 230.857 252.233 123.054 210.447 129.289 0.709804 0.709804 0.709804 epoly
1 0 0 0 129.009 220.774 138.651 234.217 251.213 247.565 236.963 234.558 0.592157 0.592157 0.592157 epoly
1 0 0 0 236.963 234.558 251.213 247.565 224.574 137.735 210.447 129.289 0.294118 0.294118 0.294118 epoly
1 0 0 0 127.529 263.039 138.651 234.217 251.213 247.565 237.584 273.637 0.6 0.6 0.6 epoly
1 0 0 0 275.788 230.857 251.213 247.565 224.574 137.735 252.233 123.054 0.603922 0.603922 0.603922 epoly
1 0 0 0 237.584 273.637 277.148 270.629 257.698 347.627 211.243 349.445 0.576471 0.576471 0.576471 epoly
1 0 0 0 350.511 243.881 347.296 197.227 275.788 230.857 277.148 270.629 0.388235 0.388235 0.388235 epoly
1 0 0 0 237.584 273.637 251.213 247.565 226.51 321.185 211.243 349.445 0.0745098 0.0745098 0.0745098 epoly
1 0 0 0 347.296 197.227 320.54 215.961 251.213 247.565 275.788 230.857 0.266667 0.266667 0.266667 epoly
1 0 0 0 129.009 220.774 138.651 234.217 224.574 137.735 210.447 129.289 0.443137 0.443137 0.443137 epoly
1 0 0 0 277.148 270.629 251.213 247.565 226.51 321.185 257.698 347.627 0.67451 0.67451 0.67451 epoly
1 0 0 0 350.511 243.881 320.54 215.961 251.213 247.565 277.148 270.629 0.596078 0.596078 0.596078 epoly
1 0 0 0 108.216 208.255 129.009 220.774 210.447 129.289 195.18 110.497 0.466667 0.466667 0.466667 epoly
1 0 0 0 129.009 220.774 127.529 263.039 106.188 253.197 108.216 208.255 0.415686 0.415686 0.415686 epoly
1 0 0 0 210.447 129.289 252.233 123.054 239.544 103.406 195.18 110.497 0.733333 0.733333 0.733333 epoly
1 0 0 0 108.216 208.255 138.651 234.217 224.574 137.735 195.18 110.497 0.988235 0.988235 0.988235 epoly
1 0 0 0 127.529 263.039 138.651 234.217 226.51 321.185 211.243 349.445 0.615686 0.615686 0.615686 epoly
1 0 0 0 347.296 197.227 320.54 215.961 224.574 137.735 252.233 123.054 0.811765 0.811765 0.811765 epoly
1 0 0 0 106.188 253.197 127.529 263.039 211.243 349.445 194.25 345.256 0.431373 0.431373 0.431373 epoly
1 0 0 0 340.667 181.372 347.296 197.227 252.233 123.054 239.544 103.406 0.388235 0.388235 0.388235 epoly
1 0 0 0 106.188 253.197 138.651 234.217 226.51 321.185 194.25 345.256 0.756863 0.756863 0.756863 epoly
1 0 0 0 340.667 181.372 320.54 215.961 224.574 137.735 239.544 103.406 0.623529 0.623529 0.623529 epoly
1 0 0 0 108.216 208.255 138.651 234.217 191.363 196.206 155.064 163.954 0.517647 0.517647 0.517647 epoly
1 0 0 0 155.064 163.954 191.363 196.206 224.574 137.735 195.18 110.497 0.733333 0.733333 0.733333 epoly
1 0 0 0 350.511 243.881 320.54 215.961 226.51 321.185 257.698 347.627 0.913725 0.913725 0.913725 epoly
1 0 0 0 106.188 253.197 138.651 234.217 191.363 196.206 153.806 217.862 0.458824 0.458824 0.458824 epoly
1 0 0 0 208.239 156.742 191.363 196.206 224.574 137.735 239.544 103.406 0.258824 0.258824 0.258824 epoly
1 0 0 0 211.243 349.445 257.698 347.627 243.914 343.191 194.25 345.256 0.686275 0.686275 0.686275 epoly
1 0 0 0 347.296 197.227 350.511 243.881 343.975 231.303 340.667 181.372 0.415686 0.415686 0.415686 epoly
1 0 0 0 106.188 253.197 108.216 208.255 155.064 163.954 153.806 217.862 0.388235 0.388235 0.388235 epoly
1 0 0 0 155.064 163.954 208.239 156.742 239.544 103.406 195.18 110.497 0.568627 0.568627 0.568627 epoly
1 0 0 0 343.975 231.303 350.511 243.881 257.698 347.627 243.914 343.191 0.45098 0.45098 0.45098 epoly
1 0 0 0 343.975 231.303 320.54 215.961 226.51 321.185 243.914 343.191 0.443137 0.443137 0.443137 epoly
1 0 0 0 153.806 217.862 191.363 196.206 226.51 321.185 194.25 345.256 0.607843 0.607843 0.607843 epoly
1 0 0 0 340.667 181.372 320.54 215.961 191.363 196.206 208.239 156.742 0.6 0.6 0.6 epoly
1 0 0 0 208.377 211.969 191.363 196.206 226.51 321.185 243.914 343.191 0.294118 0.294118 0.294118 epoly
1 0 0 0 343.975 231.303 320.54 215.961 191.363 196.206 208.377 211.969 0.611765 0.611765 0.611765 epoly
1 0 0 0 153.806 217.862 208.377 211.969 243.914 343.191 194.25 345.256 0.705882 0.705882 0.705882 epoly
1 0 0 0 343.975 231.303 340.667 181.372 208.239 156.742 208.377 211.969 0.729412 0.729412 0.729412 epoly
1 0 0 0 155.064 163.954 153.806 217.862 208.377 211.969 208.239 156.742 0.776471 0.776471 0.776471 epoly
pop
grestore
showpage
%%EndDocument
@endspecial 3660 3831 a Fp(Figure)31 b(1:)3660 3923
y Fj(Genus)26 b(7)3660 4014 y(example.)2160 3376 y Fr(W)-7
b(e)28 b(b)r(egin)h(with)f(the)g(most)g(tangible)g(re-)2160
3475 y(sult.)67 b(The)38 b(original)e(gen)n(us-7)f(example)2160
3575 y(from)g([4)o(,)i(Fig.)e(2],)i(repro)r(duced)d(in)i(Fig-)2160
3675 y(ure)e(1,)i(is)e(a)h(sk)n(eletal)e(o)r(ctahedron)h(with)2160
3774 y(its)42 b(edges)e(\\thic)n(k)n(ened")g(in)n(to)h(thin)h(tri-)2160
3874 y(angular)g(prisms.)85 b(Figure)43 b(3)g(sho)n(ws)f(a)2160
3974 y(net)24 b(for)e(this)i(p)r(olyhedron,)f(pro)n(ving)f(that)2160
4073 y(it)28 b(settles)g(Question)f(1)h(without)g(further)2160
4173 y(mo)r(di\014cation.)2160 4465 y Fs(3)135 b(Example)46
b(with)f(Gen)l(us)g(6)2160 4653 y Fr(Figure)32 b(2)g(sho)n(ws)g(our)g
(p)r(olyhedron)g(with)h(gen)n(us)f(6)h(that)g(an-)2160
4753 y(sw)n(ers)i(b)r(oth)i(questions)f(with)h(a)g Fk(no)p
Fr(.)63 b(As)37 b(in)g(Figure)f(1,)i(w)n(e)2160 4853
y(start)f(with)i(a)e(sk)n(eletal)g(cub)r(e)h(whose)f(edges)h(are)e
(thic)n(k)n(ened)2160 4952 y(in)n(to)30 b(triangular)e(prisms.)45
b(This)30 b(construction)f(lea)n(v)n(es)g(trian-)2160
5052 y(gular)f(\\holes")f(at)i(the)g(corners,)f(visible)h(from)f(the)i
(cen)n(ter)e(of)2160 5151 y(the)22 b(cub)r(e.)35 b(T)-7
b(o)22 b(\014ll)g(these)f(holes,)i(w)n(e)e(add)g(8)h(triangular)e
(prisms)2160 5251 y(meeting)k(at)f(t)n(w)n(o)g(p)r(oin)n(ts)g(in)h(the)
f(cen)n(ter)g(to)h(form)f(t)n(w)n(o)f(degree-)2160 5351
y(4)33 b(v)n(ertices)e(as)i(in)g(Figure)f(2.)53 b(The)33
b(result)f(is)h(a)g(p)r(olyhedron,)2160 5450 y(sho)n(wn)27
b(in)i(Figure)e(2)h(\(left\),)h(with)g(gen)n(us)e(11.)37
b(T)-7 b(o)28 b(reduce)g(the)2160 5550 y(gen)n(us)23
b(to)i(6,)f(w)n(e)g(add)g(a)g(thin)h(la)n(y)n(er)e(around)g(\014v)n(e)h
(of)g(the)h(faces.)p Black Black eop
%%Page: 2 2
2 1 bop Black Black Black -362 1056 a @beginspecial 18
@llx 108 @lly 594 @urx 684 @ury 1267 @rwi @setspecial
%%BeginDocument: pix/box_skel2.eps
%!PS-Adobe-2.0 EPSF-1.2
%%Title: Geomview Snapshot
%%Creator: Geomview
%%CreationDate: Thu Apr 25 15:37:09 2002
%%For: pnijjar
%%BoundingBox: 18 108 594 684
%%EndComments
gsave
1 setlinecap 1 setlinejoin
18.000000 108.000000 translate
1.280000 1.280000 scale
[ % stack mark
/poly {
setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath fill
} bind def
/epoly {
setrgbcolor newpath moveto
counttomark 4 sub 2 idiv { lineto } repeat closepath
gsave fill grestore setrgbcolor setlinewidth stroke
} bind def
/lines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat stroke
} bind def
/clines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath stroke
} bind def
/circ {
setrgbcolor newpath 0 360 arc fill
} bind def
/tri {
setrgbcolor newpath moveto lineto lineto
closepath fill
} bind def
/l {
setrgbcolor newpath moveto lineto stroke
} bind def
%
0 0 moveto 450 0 lineto 450 450 lineto 0 450 lineto
1 1 1 setrgbcolor closepath fill
1 0 0 0 174.936 142.301 174.341 160.301 190.474 159.388 191.043 141.166 0.772549 0.772549 0.772549 epoly
1 0 0 0 174.936 142.301 174.341 160.301 165.135 157.088 165.766 138.603 0.454902 0.454902 0.454902 epoly
1 0 0 0 174.341 160.301 169.489 307.084 185.84 308.012 190.474 159.388 0.772549 0.772549 0.772549 epoly
1 0 0 0 174.936 142.301 191.043 141.166 182.201 137.389 165.766 138.603 0.603922 0.603922 0.603922 epoly
1 0 0 0 174.341 160.301 169.489 307.084 159.985 307.904 165.135 157.088 0.454902 0.454902 0.454902 epoly
1 0 0 0 168.87 325.786 169.489 307.084 185.84 308.012 185.25 326.953 0.776471 0.776471 0.776471 epoly
1 0 0 0 190.474 159.388 165.135 157.088 159.985 307.904 185.84 308.012 0.85098 0.85098 0.85098 epoly
1 0 0 0 168.87 325.786 169.489 307.084 159.985 307.904 159.329 327.131 0.454902 0.454902 0.454902 epoly
1 0 0 0 168.87 325.786 185.25 326.953 176.047 328.348 159.329 327.131 0.4 0.4 0.4 epoly
1 0 0 0 191.043 141.166 356.255 129.523 356.012 150.014 190.474 159.388 0.772549 0.772549 0.772549 epoly
1 0 0 0 191.043 141.166 182.201 137.389 351.432 124.893 356.255 129.523 0.607843 0.607843 0.607843 epoly
1 0 0 0 182.201 137.389 190.474 159.388 356.012 150.014 351.432 124.893 0.576471 0.576471 0.576471 epoly
1 0 0 0 185.25 326.953 185.84 308.012 354.025 317.559 353.771 338.964 0.780392 0.780392 0.780392 epoly
1 0 0 0 190.474 159.388 224.669 227.249 194.795 225.688 165.135 157.088 0.717647 0.717647 0.717647 epoly
1 0 0 0 185.84 308.012 176.047 328.348 348.746 340.93 354.025 317.559 0.607843 0.607843 0.607843 epoly
1 0 0 0 185.25 326.953 176.047 328.348 348.746 340.93 353.771 338.964 0.403922 0.403922 0.403922 epoly
1 0 0 0 190.474 159.388 224.669 227.249 215.746 202.815 182.201 137.389 0.239216 0.239216 0.239216 epoly
1 0 0 0 159.985 307.904 194.795 225.688 224.669 227.249 185.84 308.012 0.717647 0.717647 0.717647 epoly
1 0 0 0 165.135 157.088 194.795 225.688 215.746 202.815 182.201 137.389 0.462745 0.462745 0.462745 epoly
1 0 0 0 185.84 308.012 224.669 227.249 214.465 248.433 176.047 328.348 0.247059 0.247059 0.247059 epoly
1 0 0 0 159.985 307.904 194.795 225.688 214.465 248.433 176.047 328.348 0.505882 0.505882 0.505882 epoly
1 0 0 0 165.766 138.603 69.3215 99.7105 68.246 123.273 165.135 157.088 0.454902 0.454902 0.454902 epoly
1 0 0 0 165.766 138.603 69.3215 99.7105 88.8489 97.5146 182.201 137.389 0.603922 0.603922 0.603922 epoly
1 0 0 0 165.135 157.088 182.201 137.389 88.8489 97.5146 68.246 123.273 0.482353 0.482353 0.482353 epoly
1 0 0 0 356.255 129.523 377.214 128.046 377.018 148.825 356.012 150.014 0.819608 0.819608 0.819608 epoly
1 0 0 0 159.329 327.131 159.985 307.904 59.4224 316.585 58.2912 341.367 0.454902 0.454902 0.454902 epoly
1 0 0 0 356.012 150.014 377.018 148.825 375.419 318.773 354.025 317.559 0.823529 0.823529 0.823529 epoly
1 0 0 0 159.985 307.904 176.047 328.348 78.1969 343.181 59.4224 316.585 0.592157 0.592157 0.592157 epoly
1 0 0 0 159.329 327.131 176.047 328.348 78.1969 343.181 58.2912 341.367 0.4 0.4 0.4 epoly
1 0 0 0 356.255 129.523 351.432 124.893 372.984 123.301 377.214 128.046 0.596078 0.596078 0.596078 epoly
1 0 0 0 377.214 128.046 372.984 123.301 372.772 144.729 377.018 148.825 0.454902 0.454902 0.454902 epoly
1 0 0 0 356.012 150.014 372.772 144.729 371.034 320.108 354.025 317.559 0.317647 0.317647 0.317647 epoly
1 0 0 0 375.215 340.493 353.771 338.964 354.025 317.559 375.419 318.773 0.843137 0.843137 0.843137 epoly
1 0 0 0 377.018 148.825 372.772 144.729 371.034 320.108 375.419 318.773 0.454902 0.454902 0.454902 epoly
1 0 0 0 375.215 340.493 353.771 338.964 348.746 340.93 370.812 342.538 0.407843 0.407843 0.407843 epoly
1 0 0 0 351.432 124.893 236.648 202.332 245.074 227.151 356.012 150.014 0.615686 0.615686 0.615686 epoly
1 0 0 0 375.215 340.493 375.419 318.773 371.034 320.108 370.812 342.538 0.454902 0.454902 0.454902 epoly
1 0 0 0 356.012 150.014 245.074 227.151 257.67 225.303 372.772 144.729 0.329412 0.329412 0.329412 epoly
1 0 0 0 354.025 317.559 245.074 227.151 235.459 248.664 348.746 340.93 0.705882 0.705882 0.705882 epoly
1 0 0 0 354.025 317.559 245.074 227.151 257.67 225.303 371.034 320.108 0.564706 0.564706 0.564706 epoly
1 0 0 0 351.432 124.893 236.648 202.332 257.67 225.303 372.772 144.729 0.780392 0.780392 0.780392 epoly
1 0 0 0 348.746 340.93 235.459 248.664 257.67 225.303 371.034 320.108 0.807843 0.807843 0.807843 epoly
1 0 0 0 224.669 227.249 215.746 202.815 204.884 223.761 214.465 248.433 0.454902 0.454902 0.454902 epoly
1 0 0 0 245.074 227.151 236.648 202.332 226.403 223.6 235.459 248.664 0.454902 0.454902 0.454902 epoly
1 0 0 0 68.246 123.273 194.795 225.688 215.746 202.815 88.8489 97.5146 0.882353 0.882353 0.882353 epoly
1 0 0 0 59.4224 316.585 194.795 225.688 214.465 248.433 78.1969 343.181 0.792157 0.792157 0.792157 epoly
1 0 0 0 68.246 123.273 194.795 225.688 204.884 223.761 72.1881 115.687 0.47451 0.47451 0.47451 epoly
1 0 0 0 88.8489 97.5146 215.746 202.815 204.884 223.761 72.1881 115.687 0.784314 0.784314 0.784314 epoly
1 0 0 0 59.4224 316.585 194.795 225.688 204.884 223.761 62.971 319.504 0.329412 0.329412 0.329412 epoly
1 0 0 0 351.432 124.893 372.984 123.301 326.209 70.8236 298.368 73.9543 0.6 0.6 0.6 epoly
1 0 0 0 298.368 73.9543 325.767 99.3848 372.772 144.729 351.432 124.893 0.462745 0.462745 0.462745 epoly
1 0 0 0 62.971 319.504 204.884 223.761 214.465 248.433 78.1969 343.181 0.619608 0.619608 0.619608 epoly
1 0 0 0 372.984 123.301 372.772 144.729 325.767 99.3848 326.209 70.8236 0.454902 0.454902 0.454902 epoly
1 0 0 0 53.3347 93.2636 52.1742 117.664 68.246 123.273 69.3215 99.7105 0.458824 0.458824 0.458824 epoly
1 0 0 0 53.3347 93.2636 73.31 90.8773 88.8489 97.5146 69.3215 99.7105 0.576471 0.576471 0.576471 epoly
1 0 0 0 68.246 123.273 52.1742 117.664 42.6445 318.033 59.4224 316.585 0.454902 0.454902 0.454902 epoly
1 0 0 0 371.034 320.108 348.746 340.93 292.948 362.754 322.117 334.997 0.466667 0.466667 0.466667 epoly
1 0 0 0 370.812 342.538 348.746 340.93 292.948 362.754 321.647 365.369 0.407843 0.407843 0.407843 epoly
1 0 0 0 68.246 123.273 72.1881 115.687 62.971 319.504 59.4224 316.585 0.317647 0.317647 0.317647 epoly
1 0 0 0 370.812 342.538 371.034 320.108 322.117 334.997 321.647 365.369 0.454902 0.454902 0.454902 epoly
1 0 0 0 41.4217 343.744 42.6445 318.033 59.4224 316.585 58.2912 341.367 0.454902 0.454902 0.454902 epoly
1 0 0 0 53.3347 93.2636 73.31 90.8773 72.1881 115.687 52.1742 117.664 0.752941 0.752941 0.752941 epoly
1 0 0 0 41.4217 343.744 61.7877 345.668 78.1969 343.181 58.2912 341.367 0.4 0.4 0.4 epoly
1 0 0 0 298.368 73.9543 236.648 202.332 257.67 225.303 325.767 99.3848 0.505882 0.505882 0.505882 epoly
1 0 0 0 52.1742 117.664 72.1881 115.687 62.971 319.504 42.6445 318.033 0.752941 0.752941 0.752941 epoly
1 0 0 0 298.368 73.9543 236.648 202.332 226.403 223.6 288.558 94.3078 0.247059 0.247059 0.247059 epoly
1 0 0 0 292.948 362.754 235.459 248.664 257.67 225.303 322.117 334.997 0.462745 0.462745 0.462745 epoly
1 0 0 0 41.4217 343.744 61.7877 345.668 62.971 319.504 42.6445 318.033 0.752941 0.752941 0.752941 epoly
1 0 0 0 288.558 94.3078 226.403 223.6 257.67 225.303 325.767 99.3848 0.619608 0.619608 0.619608 epoly
1 0 0 0 283.764 335.476 226.403 223.6 235.459 248.664 292.948 362.754 0.239216 0.239216 0.239216 epoly
1 0 0 0 283.764 335.476 226.403 223.6 257.67 225.303 322.117 334.997 0.772549 0.772549 0.772549 epoly
1 0 0 0 88.8489 97.5146 73.31 90.8773 289.138 65.0944 298.368 73.9543 0.588235 0.588235 0.588235 epoly
1 0 0 0 72.1881 115.687 288.558 94.3078 298.368 73.9543 88.8489 97.5146 0.607843 0.607843 0.607843 epoly
1 0 0 0 73.31 90.8773 72.1881 115.687 288.558 94.3078 289.138 65.0944 0.752941 0.752941 0.752941 epoly
1 0 0 0 62.971 319.504 78.1969 343.181 292.948 362.754 283.764 335.476 0.576471 0.576471 0.576471 epoly
1 0 0 0 61.7877 345.668 78.1969 343.181 292.948 362.754 283.146 366.588 0.4 0.4 0.4 epoly
1 0 0 0 62.971 319.504 61.7877 345.668 283.146 366.588 283.764 335.476 0.756863 0.756863 0.756863 epoly
1 0 0 0 318.027 61.6434 289.138 65.0944 298.368 73.9543 326.209 70.8236 0.631373 0.631373 0.631373 epoly
1 0 0 0 318.027 61.6434 317.536 91.4445 325.767 99.3848 326.209 70.8236 0.454902 0.454902 0.454902 epoly
1 0 0 0 288.558 94.3078 325.767 99.3848 322.117 334.997 283.764 335.476 0.811765 0.811765 0.811765 epoly
1 0 0 0 317.536 91.4445 325.767 99.3848 322.117 334.997 313.48 337.626 0.454902 0.454902 0.454902 epoly
1 0 0 0 318.027 61.6434 317.536 91.4445 288.558 94.3078 289.138 65.0944 0.8 0.8 0.8 epoly
1 0 0 0 312.957 369.405 283.146 366.588 292.948 362.754 321.647 365.369 0.407843 0.407843 0.407843 epoly
1 0 0 0 288.558 94.3078 317.536 91.4445 313.48 337.626 283.764 335.476 0.796078 0.796078 0.796078 epoly
1 0 0 0 312.957 369.405 313.48 337.626 322.117 334.997 321.647 365.369 0.454902 0.454902 0.454902 epoly
1 0 0 0 312.957 369.405 283.146 366.588 283.764 335.476 313.48 337.626 0.819608 0.819608 0.819608 epoly
pop
grestore
showpage
%%EndDocument
@endspecial 1256 w @beginspecial 18 @llx 108 @lly 594
@urx 684 @ury 1267 @rwi @setspecial
%%BeginDocument: pix/box_complete2.eps
%!PS-Adobe-2.0 EPSF-1.2
%%Title: Geomview Snapshot
%%Creator: Geomview
%%CreationDate: Thu Apr 25 15:30:37 2002
%%For: pnijjar
%%BoundingBox: 18 108 594 684
%%EndComments
gsave
1 setlinecap 1 setlinejoin
18.000000 108.000000 translate
1.280000 1.280000 scale
[ % stack mark
/poly {
setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath fill
} bind def
/epoly {
setrgbcolor newpath moveto
counttomark 4 sub 2 idiv { lineto } repeat closepath
gsave fill grestore setrgbcolor setlinewidth stroke
} bind def
/lines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat stroke
} bind def
/clines {
setlinewidth setrgbcolor newpath moveto
counttomark 2 idiv { lineto } repeat closepath stroke
} bind def
/circ {
setrgbcolor newpath 0 360 arc fill
} bind def
/tri {
setrgbcolor newpath moveto lineto lineto
closepath fill
} bind def
/l {
setrgbcolor newpath moveto lineto stroke
} bind def
%
0 0 moveto 450 0 lineto 450 450 lineto 0 450 lineto
1 1 1 setrgbcolor closepath fill
1 0 0 0 121.697 125.749 120.792 175.766 121.697 125.749 121.697 125.749 0.0588235 0.0588235 0.0588235 epoly
1 0 0 0 121.697 125.749 153.071 124.383 121.697 125.749 121.697 125.749 0.0588235 0.0588235 0.0588235 epoly
1 0 0 0 114.534 122.367 121.697 125.749 118.044 327.774 110.686 329.834 0.364706 0.364706 0.364706 epoly
1 0 0 0 121.697 125.749 90.5417 111.038 121.697 125.749 121.697 125.749 0.0588235 0.0588235 0.0588235 epoly
1 0 0 0 114.217 139.446 130.181 138.847 127.13 312.974 111.011 312.333 0.862745 0.862745 0.862745 epoly
1 0 0 0 130.181 138.847 129.879 156.085 146.088 155.601 146.374 138.238 0.870588 0.870588 0.870588 epoly
1 0 0 0 121.697 125.749 342.617 116.131 341.762 338.187 118.044 327.774 0.866667 0.866667 0.866667 epoly
1 0 0 0 129.879 156.085 127.438 295.386 143.776 295.908 146.088 155.601 0.870588 0.870588 0.870588 epoly
1 0 0 0 130.181 138.847 129.879 156.085 122.676 153.42 122.994 135.706 0.364706 0.364706 0.364706 epoly
1 0 0 0 114.534 122.367 121.697 125.749 342.617 116.131 341.25 112.122 0.576471 0.576471 0.576471 epoly
1 0 0 0 127.13 312.974 127.438 295.386 143.776 295.908 143.484 313.625 0.878431 0.878431 0.878431 epoly
1 0 0 0 130.181 138.847 146.374 138.238 139.587 135.057 122.994 135.706 0.576471 0.576471 0.576471 epoly
1 0 0 0 129.879 156.085 127.438 295.386 120.1 296.606 122.676 153.42 0.364706 0.364706 0.364706 epoly
1 0 0 0 146.088 155.601 122.676 153.42 120.1 296.606 143.776 295.908 0.745098 0.745098 0.745098 epoly
1 0 0 0 127.13 312.974 127.438 295.386 120.1 296.606 119.775 314.69 0.364706 0.364706 0.364706 epoly
1 0 0 0 127.13 312.974 143.484 313.625 136.537 315.371 119.775 314.69 0.396078 0.396078 0.396078 epoly
1 0 0 0 340.349 340.771 341.762 338.187 118.044 327.774 110.686 329.834 0.4 0.4 0.4 epoly
1 0 0 0 114.534 122.367 114.217 139.446 341.176 130.922 341.25 112.122 0.862745 0.862745 0.862745 epoly
1 0 0 0 146.374 138.238 303.308 132.345 303.19 150.902 146.088 155.601 0.87451 0.87451 0.87451 epoly
1 0 0 0 114.534 122.367 341.25 112.122 340.349 340.771 110.686 329.834 0.862745 0.862745 0.862745 epoly
1 0 0 0 111.011 312.333 110.686 329.834 340.349 340.771 340.426 321.459 0.870588 0.870588 0.870588 epoly
1 0 0 0 143.484 313.625 143.776 295.908 302.233 300.972 302.112 319.935 0.882353 0.882353 0.882353 epoly
1 0 0 0 146.374 138.238 139.587 135.057 300.742 128.76 303.308 132.345 0.580392 0.580392 0.580392 epoly
1 0 0 0 139.587 135.057 146.088 155.601 303.19 150.902 300.742 128.76 0.592157 0.592157 0.592157 epoly
1 0 0 0 143.776 295.908 136.537 315.371 299.477 321.999 302.233 300.972 0.658824 0.658824 0.658824 epoly
1 0 0 0 143.484 313.625 136.537 315.371 299.477 321.999 302.112 319.935 0.396078 0.396078 0.396078 epoly
1 0 0 0 146.088 155.601 190.026 222.14 163.691 221.182 122.676 153.42 0.717647 0.717647 0.717647 epoly
1 0 0 0 341.25 112.122 342.617 116.131 341.762 338.187 340.349 340.771 0.364706 0.364706 0.364706 epoly
1 0 0 0 303.308 132.345 322.095 131.639 321.999 150.339 303.19 150.902 0.933333 0.933333 0.933333 epoly
1 0 0 0 146.088 155.601 190.026 222.14 183.795 200.173 139.587 135.057 0.290196 0.290196 0.290196 epoly
1 0 0 0 120.1 296.606 163.691 221.182 190.026 222.14 143.776 295.908 0.721569 0.721569 0.721569 epoly
1 0 0 0 303.19 150.902 321.999 150.339 321.217 301.579 302.233 300.972 0.937255 0.937255 0.937255 epoly
1 0 0 0 143.776 295.908 190.026 222.14 183.206 242.208 136.537 315.371 0.184314 0.184314 0.184314 epoly
1 0 0 0 321.118 320.691 302.112 319.935 302.233 300.972 321.217 301.579 0.956863 0.956863 0.956863 epoly
1 0 0 0 303.308 132.345 300.742 128.76 320.076 128.005 322.095 131.639 0.588235 0.588235 0.588235 epoly
1 0 0 0 322.095 131.639 341.176 130.922 340.426 321.459 321.118 320.691 0.941176 0.941176 0.941176 epoly
1 0 0 0 122.676 153.42 163.691 221.182 183.795 200.173 139.587 135.057 0.560784 0.560784 0.560784 epoly
1 0 0 0 303.19 150.902 319.974 147.266 319.149 303.096 302.233 300.972 0.435294 0.435294 0.435294 epoly
1 0 0 0 322.095 131.639 320.076 128.005 319.974 147.266 321.999 150.339 0.364706 0.364706 0.364706 epoly
1 0 0 0 120.1 296.606 163.691 221.182 183.206 242.208 136.537 315.371 0.584314 0.584314 0.584314 epoly
1 0 0 0 321.999 150.339 319.974 147.266 319.149 303.096 321.217 301.579 0.364706 0.364706 0.364706 epoly
1 0 0 0 321.118 320.691 302.112 319.935 299.477 321.999 319.044 322.795 0.4 0.4 0.4 epoly
1 0 0 0 321.118 320.691 321.217 301.579 319.149 303.096 319.044 322.795 0.364706 0.364706 0.364706 epoly
1 0 0 0 114.534 122.367 114.217 139.446 13.4749 98.1954 14.0591 74.9235 0.364706 0.364706 0.364706 epoly
1 0 0 0 114.217 139.446 130.181 138.847 34.3649 96.9705 13.4749 98.1954 0.568627 0.568627 0.568627 epoly
1 0 0 0 114.217 139.446 111.011 312.333 7.53551 334.825 13.4749 98.1954 0.364706 0.364706 0.364706 epoly
1 0 0 0 111.011 312.333 110.686 329.834 6.93158 358.886 7.53551 334.825 0.364706 0.364706 0.364706 epoly
1 0 0 0 130.181 138.847 127.13 312.974 28.6888 335.931 34.3649 96.9705 0.364706 0.364706 0.364706 epoly
1 0 0 0 122.994 135.706 47.026 102.504 46.5047 125.238 122.676 153.42 0.364706 0.364706 0.364706 epoly
1 0 0 0 111.011 312.333 127.13 312.974 28.6888 335.931 7.53551 334.825 0.396078 0.396078 0.396078 epoly
1 0 0 0 122.994 135.706 47.026 102.504 67.6811 101.353 139.587 135.057 0.572549 0.572549 0.572549 epoly
1 0 0 0 300.742 128.76 203.926 199.97 209.592 222.129 303.19 150.902 0.521569 0.521569 0.521569 epoly
1 0 0 0 122.676 153.42 139.587 135.057 67.6811 101.353 46.5047 125.238 0.443137 0.443137 0.443137 epoly
1 0 0 0 303.19 150.902 209.592 222.129 224.168 221.122 319.974 147.266 0.4 0.4 0.4 epoly
1 0 0 0 302.233 300.972 209.592 222.129 203.387 242.372 299.477 321.999 0.658824 0.658824 0.658824 epoly
1 0 0 0 119.775 314.69 120.1 296.606 42.279 309.54 41.7438 332.886 0.364706 0.364706 0.364706 epoly
1 0 0 0 302.233 300.972 209.592 222.129 224.168 221.122 319.149 303.096 0.572549 0.572549 0.572549 epoly
1 0 0 0 120.1 296.606 136.537 315.371 62.6579 333.944 42.279 309.54 0.529412 0.529412 0.529412 epoly
1 0 0 0 119.775 314.69 136.537 315.371 62.6579 333.944 41.7438 332.886 0.396078 0.396078 0.396078 epoly
1 0 0 0 300.742 128.76 203.926 199.97 224.168 221.122 319.974 147.266 0.796078 0.796078 0.796078 epoly
1 0 0 0 114.534 122.367 341.25 112.122 321.286 53.5681 14.0591 74.9235 0.576471 0.576471 0.576471 epoly
1 0 0 0 114.217 139.446 341.176 130.922 321.146 80.1548 13.4749 98.1954 0.568627 0.568627 0.568627 epoly
1 0 0 0 299.477 321.999 203.387 242.372 224.168 221.122 319.149 303.096 0.764706 0.764706 0.764706 epoly
1 0 0 0 111.011 312.333 340.426 321.459 319.725 351.143 7.53551 334.825 0.396078 0.396078 0.396078 epoly
1 0 0 0 110.686 329.834 340.349 340.771 319.58 378.765 6.93158 358.886 0.396078 0.396078 0.396078 epoly
1 0 0 0 190.026 222.14 183.795 200.173 176.532 220.119 183.206 242.208 0.364706 0.364706 0.364706 epoly
1 0 0 0 209.592 222.129 203.926 199.97 197.315 220.089 203.387 242.372 0.364706 0.364706 0.364706 epoly
1 0 0 0 300.742 128.76 320.076 128.005 298.134 88.5062 272.93 89.9112 0.588235 0.588235 0.588235 epoly
1 0 0 0 272.93 89.9112 297.964 113.852 319.974 147.266 300.742 128.76 0.423529 0.423529 0.423529 epoly
1 0 0 0 322.095 131.639 341.176 130.922 321.146 80.1548 294.367 81.725 0.580392 0.580392 0.580392 epoly
1 0 0 0 322.095 131.639 321.118 320.691 292.498 349.72 294.367 81.725 0.364706 0.364706 0.364706 epoly
1 0 0 0 320.076 128.005 319.974 147.266 297.964 113.852 298.134 88.5062 0.364706 0.364706 0.364706 epoly
1 0 0 0 341.25 112.122 341.176 130.922 321.146 80.1548 321.286 53.5681 0.364706 0.364706 0.364706 epoly
1 0 0 0 341.176 130.922 340.426 321.459 319.725 351.143 321.146 80.1548 0.364706 0.364706 0.364706 epoly
1 0 0 0 319.149 303.096 299.477 321.999 270.803 344.465 296.579 319.65 0.427451 0.427451 0.427451 epoly
1 0 0 0 319.044 322.795 299.477 321.999 270.803 344.465 296.403 345.759 0.4 0.4 0.4 epoly
1 0 0 0 321.118 320.691 340.426 321.459 319.725 351.143 292.498 349.72 0.4 0.4 0.4 epoly
1 0 0 0 46.5047 125.238 163.691 221.182 183.795 200.173 67.6811 101.353 0.847059 0.847059 0.847059 epoly
1 0 0 0 319.044 322.795 319.149 303.096 296.579 319.65 296.403 345.759 0.364706 0.364706 0.364706 epoly
1 0 0 0 340.426 321.459 340.349 340.771 319.58 378.765 319.725 351.143 0.364706 0.364706 0.364706 epoly
1 0 0 0 42.279 309.54 163.691 221.182 183.206 242.208 62.6579 333.944 0.819608 0.819608 0.819608 epoly
1 0 0 0 46.5047 125.238 163.691 221.182 176.532 220.119 55.1348 119.521 0.501961 0.501961 0.501961 epoly
1 0 0 0 42.279 309.54 163.691 221.182 176.532 220.119 50.814 312.587 0.4 0.4 0.4 epoly
1 0 0 0 67.6811 101.353 183.795 200.173 176.532 220.119 55.1348 119.521 0.741176 0.741176 0.741176 epoly
1 0 0 0 50.814 312.587 176.532 220.119 183.206 242.208 62.6579 333.944 0.521569 0.521569 0.521569 epoly
1 0 0 0 272.93 89.9112 203.926 199.97 224.168 221.122 297.964 113.852 0.588235 0.588235 0.588235 epoly
1 0 0 0 270.803 344.465 203.387 242.372 224.168 221.122 296.579 319.65 0.560784 0.560784 0.560784 epoly
1 0 0 0 272.93 89.9112 203.926 199.97 197.315 220.089 267.943 109.365 0.184314 0.184314 0.184314 epoly
1 0 0 0 266.105 321.414 197.315 220.089 203.387 242.372 270.803 344.465 0.290196 0.290196 0.290196 epoly
1 0 0 0 267.943 109.365 197.315 220.089 224.168 221.122 297.964 113.852 0.603922 0.603922 0.603922 epoly
1 0 0 0 34.3649 96.9705 33.8051 120.539 46.5047 125.238 47.026 102.504 0.368627 0.368627 0.368627 epoly
1 0 0 0 266.105 321.414 197.315 220.089 224.168 221.122 296.579 319.65 0.772549 0.772549 0.772549 epoly
1 0 0 0 34.3649 96.9705 55.6675 95.7214 67.6811 101.353 47.026 102.504 0.556863 0.556863 0.556863 epoly
1 0 0 0 46.5047 125.238 33.8051 120.539 29.2643 311.703 42.279 309.54 0.364706 0.364706 0.364706 epoly
1 0 0 0 46.5047 125.238 55.1348 119.521 50.814 312.587 42.279 309.54 0.435294 0.435294 0.435294 epoly
1 0 0 0 28.6888 335.931 29.2643 311.703 42.279 309.54 41.7438 332.886 0.364706 0.364706 0.364706 epoly
1 0 0 0 28.6888 335.931 50.2663 337.059 62.6579 333.944 41.7438 332.886 0.392157 0.392157 0.392157 epoly
1 0 0 0 13.4749 98.1954 34.3649 96.9705 28.6888 335.931 7.53551 334.825 0.831373 0.831373 0.831373 epoly
1 0 0 0 34.3649 96.9705 55.6675 95.7214 55.1348 119.521 33.8051 120.539 0.835294 0.835294 0.835294 epoly
1 0 0 0 33.8051 120.539 55.1348 119.521 50.814 312.587 29.2643 311.703 0.839216 0.839216 0.839216 epoly
1 0 0 0 28.6888 335.931 50.2663 337.059 50.814 312.587 29.2643 311.703 0.843137 0.843137 0.843137 epoly
1 0 0 0 67.6811 101.353 55.6675 95.7214 268.169 83.2611 272.93 89.9112 0.564706 0.564706 0.564706 epoly
1 0 0 0 55.1348 119.521 267.943 109.365 272.93 89.9112 67.6811 101.353 0.654902 0.654902 0.654902 epoly
1 0 0 0 50.814 312.587 62.6579 333.944 270.803 344.465 266.105 321.414 0.592157 0.592157 0.592157 epoly
1 0 0 0 50.2663 337.059 62.6579 333.944 270.803 344.465 265.872 348.328 0.392157 0.392157 0.392157 epoly
1 0 0 0 14.0591 74.9235 13.4749 98.1954 321.146 80.1548 321.286 53.5681 0.831373 0.831373 0.831373 epoly
1 0 0 0 55.6675 95.7214 55.1348 119.521 267.943 109.365 268.169 83.2611 0.843137 0.843137 0.843137 epoly
1 0 0 0 7.53551 334.825 6.93158 358.886 319.58 378.765 319.725 351.143 0.839216 0.839216 0.839216 epoly
1 0 0 0 50.814 312.587 50.2663 337.059 265.872 348.328 266.105 321.414 0.85098 0.85098 0.85098 epoly
1 0 0 0 294.367 81.725 268.169 83.2611 272.93 89.9112 298.134 88.5062 0.603922 0.603922 0.603922 epoly
1 0 0 0 294.367 81.725 294.183 108.113 297.964 113.852 298.134 88.5062 0.364706 0.364706 0.364706 epoly
1 0 0 0 267.943 109.365 297.964 113.852 296.579 319.65 266.105 321.414 0.721569 0.721569 0.721569 epoly
1 0 0 0 294.183 108.113 297.964 113.852 296.579 319.65 292.688 322.504 0.364706 0.364706 0.364706 epoly
1 0 0 0 292.498 349.72 265.872 348.328 270.803 344.465 296.403 345.759 0.4 0.4 0.4 epoly
1 0 0 0 292.498 349.72 292.688 322.504 296.579 319.65 296.403 345.759 0.364706 0.364706 0.364706 epoly
1 0 0 0 294.367 81.725 294.183 108.113 267.943 109.365 268.169 83.2611 0.921569 0.921569 0.921569 epoly
1 0 0 0 267.943 109.365 294.183 108.113 292.688 322.504 266.105 321.414 0.917647 0.917647 0.917647 epoly
1 0 0 0 292.498 349.72 265.872 348.328 266.105 321.414 292.688 322.504 0.941176 0.941176 0.941176 epoly
1 0 0 0 294.367 81.725 321.146 80.1548 319.725 351.143 292.498 349.72 0.921569 0.921569 0.921569 epoly
pop
grestore
showpage
%%EndDocument
@endspecial -240 1230 a Fp(Figure)37 b(2:)54 b Fj(\(Left\))31
b(Base)g(p)r(olyhedron)f(with)g(genus)g(11.)50 b(\(Right\))-240
1322 y(P)n(olyhedron)27 b(with)g(genus)h(6)g(after)g(adding)e(a)h(thin)
f(b)r(o)n(x)i(la)n(y)n(er)f(on)g(the)-240 1413 y(outside)e(of)h(all)f
(but)f(one)i(face.)p Black -157 1723 a Fr(Figure)h(4)g(sho)n(ws)g(a)g
(net)h(for)f(this)h(p)r(olyhedron.)p Black -111 3627
a @beginspecial 0 @llx 0 @lly 137 @urx 668 @ury 411 @rwi
@setspecial
%%BeginDocument: genus7_net_off.eps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: genus7_net_off.eps
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Sat Apr 27 18:46:06 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 137 668
%%Magnification: 1.0000
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 668 moveto 0 0 lineto 137 0 lineto 137 668 lineto closepath clip newpath
-183.8 684.7 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.06000 0.06000 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 3300 9900 m 3600 9900 l 3600 10200 l 3300 10200 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 5100 4200 m 5325 4200 l 5325 5400 l 5100 5400 l
cp gs col0 s gr
% Polyline
n 4575 7200 m 4800 7200 l 4800 8400 l 4575 8400 l
cp gs col0 s gr
% Polyline
n 5100 7200 m 5325 7200 l 5325 8400 l 5100 8400 l
cp gs col0 s gr
% Polyline
n 4800 7200 m 5100 7200 l 5100 8400 l 4800 8400 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4050 5700 m 3825 5700 l 3825 4500 l 4050 4500 l
cp gs col0 s gr
% Polyline
n 3825 5700 m 3600 5700 l 3600 4500 l 3825 4500 l
cp gs col0 s gr
% Polyline
n 3075 3300 m 3300 3300 l 3300 4500 l 3075 4500 l
cp gs col0 s gr
% Polyline
n 3600 3300 m 3825 3300 l 3825 4500 l 3600 4500 l
cp gs col0 s gr
% Polyline
n 3075 6300 m 3300 6300 l 3300 7500 l 3075 7500 l
cp gs col0 s gr
% Polyline
n 3600 6300 m 3825 6300 l 3825 7500 l 3600 7500 l
cp gs col0 s gr
% Polyline
n 3075 8700 m 3300 8700 l 3300 9900 l 3075 9900 l
cp gs col0 s gr
% Polyline
n 3600 8700 m 3825 8700 l 3825 9900 l 3600 9900 l
cp gs col0 s gr
% Polyline
n 3075 10200 m 3300 10200 l 3300 11400 l 3075 11400 l
cp gs col0 s gr
% Polyline
n 3600 10200 m 3825 10200 l 3825 11400 l 3600 11400 l
cp gs col0 s gr
% Polyline
n 3300 10200 m 3600 10200 l 3600 11400 l 3300 11400 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 3300 8700 m 3600 8700 l 3600 9900 l 3300 9900 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4050 8700 m 3825 8700 l 3825 7500 l 4050 7500 l
cp gs col0 s gr
% Polyline
n 3825 8700 m 3600 8700 l 3600 7500 l 3825 7500 l
cp gs col0 s gr
% Polyline
n 4350 8700 m 4050 8700 l 4050 7500 l 4350 7500 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 3300 6300 m 3600 6300 l 3600 7500 l 3300 7500 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4350 6000 m 4575 6000 l 4575 7200 l 4350 7200 l
cp gs col0 s gr
% Polyline
n 4575 6000 m 4800 6000 l 4800 7200 l 4575 7200 l
cp gs col0 s gr
% Polyline
n 4050 6000 m 4350 6000 l 4350 7200 l 4050 7200 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4350 5700 m 4050 5700 l 4050 4500 l 4350 4500 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4800 4200 m 5100 4200 l 5100 5400 l 4800 5400 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 3300 3300 m 3600 3300 l 3600 4500 l 3300 4500 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4350 3000 m 4575 3000 l 4575 4200 l 4350 4200 l
cp gs col0 s gr
% Polyline
n 4575 3000 m 4800 3000 l 4800 4200 l 4575 4200 l
cp gs col0 s gr
% Polyline
n 4050 3000 m 4350 3000 l 4350 4200 l 4050 4200 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4575 1800 m 4800 1800 l 4800 3000 l 4575 3000 l
cp gs col0 s gr
% Polyline
n 5100 1800 m 5325 1800 l 5325 3000 l 5100 3000 l
cp gs col0 s gr
% Polyline
n 4575 300 m 4800 300 l 4800 1500 l 4575 1500 l
cp gs col0 s gr
% Polyline
n 5100 300 m 5325 300 l 5325 1500 l 5100 1500 l
cp gs col0 s gr
% Polyline
n 4800 300 m 5100 300 l 5100 1500 l 4800 1500 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4800 1800 m 5100 1800 l 5100 3000 l 4800 3000 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 4800 1500 m 5100 1500 l 5100 1800 l 4800 1800 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 4050 2700 m 4350 2700 l 4350 3000 l 4050 3000 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 4050 4200 m 4350 4200 l 4350 4500 l 4050 4500 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 4050 5700 m 4350 5700 l 4350 6000 l 4050 6000 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 4050 7200 m 4350 7200 l 4350 7500 l 4050 7500 l
cp gs col7 0.50 shd ef gr gs col0 s gr
% Polyline
n 4575 4200 m 4800 4200 l 4800 5400 l 4575 5400 l
cp gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial -240 3802 a Fp(Figure)j(3:)-240 3893 y Fj(Net)26
b(fo)n(r)g(Figure)g(1.)559 3767 y @beginspecial 0 @llx
0 @lly 465 @urx 747 @ury 1395 @rwi @setspecial
%%BeginDocument: genus6_net.eps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: genus6_net.eps
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Tue Apr 30 01:25:10 2002
%%For: edemaine@quail (Erik Demaine,NE43-203,617-253-6871,617-441-9696)
%%BoundingBox: 0 0 465 747
%%Magnification: 1.0000
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 747 moveto 0 0 lineto 465 0 lineto 465 747 lineto closepath clip newpath
-69.6 760.3 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.06299 0.06299 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2391 6981 m 3488 6981 l 3488 7160 l 2391 7160 l
cp gs col0 s gr
% Polyline
n 2391 7160 m 2214 7160 l 2214 6981 l 2391 6981 l
cp gs col0 s gr
% Polyline
n 2391 7160 m 3488 7160 l 3488 7339 l 2391 7339 l
cp gs col0 s gr
% Polyline
n 1296 7517 m 2391 7517 l 2391 7696 l 1296 7696 l
cp gs col0 s gr
% Polyline
n 1296 7696 m 2391 7696 l 2391 7874 l 1296 7874 l
cp gs col0 s gr
% Polyline
n 1117 6981 m 2214 6981 l 2214 7160 l 1117 7160 l
cp gs col0 s gr
% Polyline
n 1117 6803 m 2214 6803 l 2214 6981 l 1117 6981 l
cp gs col0 s gr
% Polyline
n 2214 6446 m 3310 6446 l 3310 6625 l 2214 6625 l
cp gs col0 s gr
% Polyline
n 4508 8358 m 6547 8358 l 6547 10144 l 4508 10144 l
cp gs col0 s gr
% Polyline
n 5681 939 m 6778 939 l 6778 1118 l 5681 1118 l
cp gs col0 s gr
% Polyline
n 5681 1118 m 5502 1118 l 5502 939 l 5681 939 l
cp gs col0 s gr
% Polyline
n 5681 1118 m 6778 1118 l 6778 1295 l 5681 1295 l
cp gs col0 s gr
% Polyline
n 4584 1474 m 5681 1474 l 5681 1653 l 4584 1653 l
cp gs col0 s gr
% Polyline
n 4407 939 m 5502 939 l 5502 1118 l 4407 1118 l
cp gs col0 s gr
% Polyline
n 4407 761 m 5502 761 l 5502 939 l 4407 939 l
cp gs col0 s gr
% Polyline
n 5502 403 m 6599 403 l 6599 582 l 5502 582 l
cp gs col0 s gr
% Polyline
n 5502 225 m 6599 225 l 6599 403 l 5502 403 l
cp gs col0 s gr
% Polyline
n 2719 9863 m 2727 9863 l gs col0 s gr
% Polyline
n 2719 9863 m 2727 9863 l gs col0 s gr
% Polyline
n 2597 8595 m 2717 8595 l 2717 8359 l
2852 8359 l gs col0 s gr
% Polyline
n 2595 8588 m 2595 9863 l
2723 9863 l gs col0 s gr
% Polyline
n 2723 9862 m 2723 10144 l
2855 10144 l gs col0 s gr
% Polyline
n 4638 6704 m 4638 6444 l 6423 6444 l
6423 6699 l gs col0 s gr
% Polyline
n 4632 6573 m 4640 6573 l gs col0 s gr
% Polyline
n 6417 6573 m 6425 6573 l gs col0 s gr
% Polyline
n 4758 6446 m 4766 6446 l gs col0 s gr
% Polyline
n 4762 6446 m
6293 6446 l gs col0 s gr
% Polyline
n 6289 6446 m 6297 6446 l gs col0 s gr
% Polyline
n 6289 4993 m 6297 4993 l gs col0 s gr
% Polyline
n 6289 6268 m 6297 6268 l gs col0 s gr
% Polyline
n 6293 4993 m 6471 4993 l 6471 6268 l
6293 6268 l gs col0 s gr
% Polyline
n 4580 4993 m 4588 4993 l gs col0 s gr
% Polyline
n 4580 3284 m 4588 3284 l gs col0 s gr
% Polyline
n 4580 4840 m 4588 4840 l gs col0 s gr
% Polyline
n 4584 3284 m 4762 3284 l 4762 4814 l
4584 4814 l gs col0 s gr
% Polyline
n 3306 4814 m 3314 4814 l gs col0 s gr
% Polyline
n 3310 3284 m 3131 3284 l 3131 4814 l
3310 4814 l gs col0 s gr
% Polyline
n 4589 4819 m
4589 4998 l gs col0 s gr
% Polyline
n 4580 3106 m 4588 3106 l gs col0 s gr
% Polyline
n 3304 3106 m 3312 3106 l gs col0 s gr
% Polyline
n 3306 3106 m 3314 3106 l gs col0 s gr
% Polyline
n 3304 1829 m 3312 1829 l gs col0 s gr
% Polyline
n 4582 1829 m
4582 3104 l gs col0 s gr
% Polyline
n 4579 1831 m 4587 1831 l gs col0 s gr
% Polyline
n 4583 1653 m 3309 1653 l
3309 1831 l gs col0 s gr
% Polyline
n 1597 3106 m 1605 3106 l gs col0 s gr
% Polyline
n 1601 1831 m 1424 1831 l 1424 3106 l
1601 3106 l gs col0 s gr
% Polyline
n 1597 1832 m 1605 1832 l gs col0 s gr
% Polyline
n 3131 1831 m 3131 1653 l 1601 1653 l
1601 1831 l gs col0 s gr
% Polyline
n 3123 1825 m 3131 1825 l gs col0 s gr
% Polyline
n 3127 3100 m
1597 3100 l gs col0 s gr
% Polyline
n 3306 3099 m
3127 3099 l gs col0 s gr
% Polyline
n 3127 1824 m
3306 1824 l gs col0 s gr
% Polyline
n 5682 1474 m 4585 1474 l 4585 1295 l
5682 1295 l gs col0 s gr
% Polyline
n 5682 1294 m 6779 1294 l 6779 1473 l
5682 1473 l gs col0 s gr
% Polyline
n 2387 7339 m 2395 7339 l gs col0 s gr
% Polyline
n 2387 7517 m 2395 7517 l gs col0 s gr
% Polyline
n 2391 7517 m 1296 7517 l 1296 7339 l
2391 7339 l gs col0 s gr
% Polyline
n 2391 7339 m 3488 7339 l 3488 7517 l
2391 7517 l gs col0 s gr
% Polyline
n 2210 6625 m 2218 6625 l gs col0 s gr
% Polyline
n 2210 6803 m 2218 6803 l gs col0 s gr
% Polyline
n 2214 6625 m 3310 6625 l 3310 6803 l
2214 6803 l gs col0 s gr
% Polyline
n 2214 6803 m 1117 6803 l 1117 6625 l
2214 6625 l gs col0 s gr
% Polyline
n 5502 761 m 4407 761 l 4407 582 l
5502 582 l gs col0 s gr
% Polyline
n 5502 582 m 6599 582 l 6599 761 l
5502 761 l gs col0 s gr
% Polyline
n 4580 6268 m 4588 6268 l gs col0 s gr
% Polyline
n 4580 4993 m 4588 4993 l gs col0 s gr
% Polyline
n 3331 6268 m 3339 6268 l gs col0 s gr
% Polyline
n 4580 6268 m 4588 6268 l gs col0 s gr
% Polyline
n 4508 8232 m 4508 6701 l 6547 6701 l
6547 8232 l gs col0 s gr
% Polyline
n 4504 8232 m 4512 8232 l gs col0 s gr
% Polyline
n 6543 8232 m 6551 8232 l gs col0 s gr
% Polyline
n 6547 8232 m 6547 8358 l 4508 8358 l
4508 8232 l gs col0 s gr
% Polyline
n 6675 10144 m 6547 10144 l 6547 8358 l
6675 8358 l gs col0 s gr
% Polyline
n 6547 10268 m 6547 11798 l 4508 11798 l
4508 10268 l gs col0 s gr
% Polyline
n 4504 10271 m 4512 10271 l gs col0 s gr
% Polyline
n 6543 10271 m 6551 10271 l gs col0 s gr
% Polyline
n 4508 10271 m 4508 10144 l 6547 10144 l
6547 10271 l gs col0 s gr
% Polyline
n 4380 8358 m 2852 8358 l 2852 10144 l
4380 10144 l gs col0 s gr
% Polyline
n 4376 8358 m 4384 8358 l gs col0 s gr
% Polyline
n 4376 10144 m 4384 10144 l gs col0 s gr
% Polyline
n 4380 10144 m 4508 10144 l 4508 8358 l
4380 8358 l gs col0 s gr
% Polyline
n 4639 11805 m 4639 12057 l 6424 12057 l
6424 11802 l gs col0 s gr
% Polyline
n 6289 6268 m 6297 6268 l gs col0 s gr
% Polyline
n 4769 6263 m
4591 6263 l gs col0 s gr
% Polyline
n 4764 4995 m
6295 4995 l gs col0 s gr
% Polyline
n 4583 4995 m
4761 4995 l gs col0 s gr
% Polyline
n 3311 5000 m
3311 4821 l gs col0 s gr
% Polyline
n 3311 6290 m
3311 5015 l gs col0 s gr
% Polyline
n 3310 6446 m 2214 6446 l 2214 6268 l
3310 6268 l gs col0 s gr
% Polyline
n 4584 6268 m 4584 6446 l
3310 6446 l gs col0 s gr
% Polyline
n 3306 6268 m 3314 6268 l gs col0 s gr
% Polyline
n 3307 6270 m 3315 6270 l gs col0 s gr
% Polyline
n 3307 6447 m 3315 6447 l gs col0 s gr
% Polyline
n 3306 6268 m 3314 6268 l gs col0 s gr
% Polyline
n 3306 6446 m 3314 6446 l gs col0 s gr
% Polyline
n 6293 6268 m 6293 6446 l 4762 6446 l
4762 6268 l gs col0 s gr
% Polyline
n 8206 8357 m
8340 8357 l gs col0 s gr
% Polyline
n 8328 8617 m 8336 8617 l gs col0 s gr
% Polyline
n 8328 9892 m 8336 9892 l gs col0 s gr
% Polyline
n 8332 8617 m 8460 8617 l 8460 9892 l
8332 9892 l gs col0 s gr
% Polyline
n 8329 9891 m
8329 10144 l gs col0 s gr
% Polyline
n 8332 8359 m
8332 8616 l gs col0 s gr
% Polyline
n 6680 8357 m 8204 8358 l 8204 10146 l
6673 10146 l gs col0 s gr
% Polyline
n 8332 10146 m
8206 10146 l gs col0 s gr
% Polyline
n 4576 3101 m
4576 3279 l gs col0 s gr
% Polyline
n 3302 3279 m
3302 3101 l gs col0 s gr
% Polyline
n 4579 1656 m 4587 1656 l gs col0 s gr
% Polyline
n 5680 1656 m 5680 1834 l
4583 1834 l gs col0 s gr
% Polyline
[45] 0 sd
n 3316 6268 m
4583 6268 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 4582 4993 m
4582 6265 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 4758 6270 m
4758 4988 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 6299 6267 m
4764 6267 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 6298 4998 m
6298 6270 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 4583 3282 m
4583 4807 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3316 4814 m
4588 4814 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3313 3287 m
3313 4812 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3317 3286 m
4584 3286 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3293 3099 m
4570 3099 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3308 3101 m
3308 1829 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3127 1833 m
3127 3100 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 1598 1832 m
3128 1832 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 1599 1834 m
1599 3106 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3306 1829 m
4583 1829 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 5682 1297 m
5682 1469 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 4583 1652 m
4583 1829 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 5502 563 m
5502 778 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3321 5000 m
4588 5000 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 3310 6276 m
3310 6448 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 2212 6628 m
2212 6809 l gs col0 s gr [] 0 sd
% Polyline
[45] 0 sd
n 2392 7338 m
2392 7514 l gs col0 s gr [] 0 sd
$F2psEnd
rs
%%EndDocument
@endspecial Black 661 3949 a Fp(Figure)31 b(4:)42 b
Fj(Net)26 b(fo)n(r)g(Figure)f(2.)p Black Black -240 4515
a Fs(4)135 b(Gen)l(us)44 b(Must)h(Be)g(A)l(t)g(Least)g(3)-240
4753 y Fr(Our)37 b(pro)r(of)g(that)g(a)h(nonorthogonal)d(p)r(olyhedron)
h(with)i(or-)-240 4853 y(thogonal)k(faces)g(m)n(ust)h(ha)n(v)n(e)e(gen)
n(us)h(at)h(least)f(3)h(w)n(orks)e(as)-240 4952 y(follo)n(ws.)70
b(First)39 b(w)n(e)g(dev)n(elop)f(a)g(general)g(upp)r(er)h(b)r(ound)g
(on)-240 5052 y(the)45 b(n)n(um)n(b)r(er)f(of)g(v)n(ertices)g(of)g(the)
h(\\nonorthogonal)c(part")-240 5151 y(of)c(a)f(p)r(olyhedron)g(in)h
(terms)f(of)h(its)g(gen)n(us.)63 b(In)37 b(particular,)-240
5251 y(for)i(gen)n(us)h(2,)i(the)f(b)r(ound)f(is)g(8.)73
b(Then)40 b(w)n(e)g(pro)n(v)n(e)e(that)i(a)-240 5351
y(nonorthogonal)28 b(p)r(olyhedron)h(with)i(orthogonal)d(faces)i(m)n
(ust)-240 5450 y(ha)n(v)n(e)f(at)h(least)g(9)g(v)n(ertices)f(in)i(its)f
(nonorthogonal)e(part,)i(and)-240 5550 y(hence)e(m)n(ust)f(ha)n(v)n(e)g
(gen)n(us)g(more)f(than)i(2.)1920 83 y Fi(4.1)112 b(Basic)37
b(De\014nitions)f(and)j(Coun)m(ts)1920 236 y Fr(F)-7
b(ollo)n(wing)32 b([4],)i(w)n(e)f(think)h(of)f(an)g(edge)f(of)i(a)e(p)r
(olyhedron)h(as)1920 336 y(colored)18 b Fo(gr)l(e)l(en)25
b Fr(\(go)r(o)r(d\))19 b(if)g(its)g(dihedral)g(angle)f(\(angle)g(b)r
(et)n(w)n(een)1920 436 y(the)39 b(t)n(w)n(o)g(inciden)n(t)g(faces\))g
(is)g(a)g(m)n(ultiple)h(of)f(90)3518 405 y Fq(\016)3555
436 y Fr(,)j(and)d Fo(r)l(e)l(d)1920 535 y Fr(\(bad\))30
b(otherwise.)44 b(De\014ne)30 b(the)h(graph)e Fh(G)3266
547 y Fg(r)3333 535 y Fr(\(the)i Fo(nonortho)l(g-)1920
635 y(onal)37 b(p)l(art)8 b Fr(\))35 b(b)n(y)f(starting)g(with)g(all)h
(of)f(the)h(red)f(edges,)i(then)1920 734 y(remo)n(ving)c(an)n(y)h
(degree-t)n(w)n(o)e(v)n(ertices,)j(coalescing)d(the)j(inci-)1920
834 y(den)n(t)27 b(edges,)f(and)g(\014nally)g(fo)r(cusing)h(atten)n
(tion)f(to)g(just)h(a)f(sin-)1920 934 y(gle)37 b(connected)g(comp)r
(onen)n(t.)66 b(An)n(y)38 b(edges)e(that)i(w)n(ere)e(coa-)1920
1033 y(lesced)31 b(w)n(ere)e(already)h(collinear)f([4,)j(Lem.)f(7],)g
(so)f(the)h(graph)1920 1133 y Fh(G)1985 1145 y Fg(r)2050
1133 y Fr(remains)d(em)n(b)r(edded)h(in)f Ff(R)2905 1103
y Fe(3)2948 1133 y Fr(,)h(de\014ning)f(angles)f(and)i(faces)1920
1233 y(\(com)n(binatorial)h(faces,)j(whic)n(h)f(do)g(not)g(necessarily)
e(lie)i(in)g(a)1920 1332 y(plane\).)2003 1432 y(The)h(follo)n(wing)f(t)
n(w)n(o)g(lemmas)g(relate)g Fh(G)3303 1444 y Fg(r)3373
1432 y Fr(to)g(the)i(original)1920 1531 y(p)r(olyhedron.)68
b(F)-7 b(or)38 b(their)g(pro)r(ofs,)i(w)n(e)e(need)g(the)h(notion)f(of)
1920 1631 y(an)h Fo(ortho)l(gonal)i(p)l(ath)46 b Fr(around)38
b(a)h(v)n(ertex)e Fh(v)43 b Fr([4)o(]:)60 b(a)38 b(path)h(of)1920
1731 y(circular)23 b(arcs)g(on)g(the)i(in)n(tersection)e(of)h(the)g(p)r
(olyhedron)g(with)1920 1830 y(a)d(small)h(sphere)f(cen)n(tered)h(at)f
Fh(v)s Fr(,)j(suc)n(h)d(that)i(ev)n(ery)d(turn)i(along)1920
1930 y(the)29 b(path)g(is)g(b)n(y)f Fd(\006)p Fr(90)2609
1900 y Fq(\016)2646 1930 y Fr(.)41 b(Let)29 b Fh(p)2902
1900 y Fq(0)2954 1930 y Fr(denote)g(the)g(pro)5 b(jection)28
b(of)g(a)1920 2030 y(p)r(oin)n(t)g Fh(p)f Fr(on)n(to)g(this)h(sphere.)p
Black 1920 2181 a Fp(Lemma)i(1)p Black 41 w Fo(The)g(fac)l(e)g(angles)g
(of)g Fh(G)3098 2193 y Fg(r)3164 2181 y Fo(ar)l(e)g(multiples)f(of)h
Fr(90)3837 2151 y Fq(\016)3875 2181 y Fo(.)1920 2332
y Fp(Pro)s(of:)46 b Fr(Consider)28 b(a)h(face)g(angle)f(at)h
Fh(v)j Fr(made)d(b)n(y)g(t)n(w)n(o)g(edges)1920 2432
y Fh(v)s(;)14 b(v)2040 2444 y Fe(0)2115 2432 y Fr(and)36
b Fh(v)s(;)14 b(v)2405 2444 y Fe(1)2480 2432 y Fr(in)37
b Fh(G)2651 2444 y Fg(r)2688 2432 y Fr(.)65 b(By)37 b(the)g
(de\014nition)h(of)f Fh(G)3616 2444 y Fg(r)3653 2432
y Fr(,)i(there)1920 2531 y(is)32 b(an)g(orthogonal)e(path)j(around)e
Fh(v)36 b Fr(from)c Fh(v)3353 2501 y Fq(0)3350 2552 y
Fe(0)3420 2531 y Fr(to)g Fh(v)3569 2501 y Fq(0)3566 2552
y Fe(1)3603 2531 y Fr(.)51 b(By)32 b([4,)1920 2631 y(Lem.)k(4],)h(the)f
(great)f(arc)f(length)i(b)r(et)n(w)n(een)g Fh(v)3414
2601 y Fq(0)3411 2651 y Fe(0)3484 2631 y Fr(and)g Fh(v)3697
2601 y Fq(0)3694 2651 y Fe(1)3767 2631 y Fr(is)f(a)1920
2730 y(m)n(ultiple)25 b(of)f(90)2417 2700 y Fq(\016)2454
2730 y Fr(,)h(and)f(this)g(arc)f(length)i(is)f(precisely)f(the)h(face)
1920 2830 y(angle.)1705 b Fc(2)p Black 1920 3019 a Fp(Lemma)30
b(2)p Black 41 w Fo(L)l(et)g Fh(e)2531 3031 y Fe(0)2568
3019 y Fh(;)14 b(e)2644 3031 y Fe(1)2681 3019 y Fh(;)g(e)2757
3031 y Fe(2)2824 3019 y Fo(b)l(e)31 b(c)l(onse)l(cutive)f(e)l(dges)i
(ar)l(ound)f(a)1920 3118 y(c)l(ommon)c(vertex)g(in)g
Fh(G)2655 3130 y Fg(r)2692 3118 y Fo(.)38 b(Then)28 b(the)f(dihe)l(dr)l
(al)j(angle)d(b)l(etwe)l(en)1920 3218 y(the)37 b(plane)g
Fh(e)2331 3230 y Fe(0)2368 3218 y Fh(;)14 b(e)2444 3230
y Fe(1)2518 3218 y Fo(and)37 b(the)f(plane)i Fh(e)3097
3230 y Fe(1)3134 3218 y Fh(;)14 b(e)3210 3230 y Fe(2)3283
3218 y Fo(is)37 b(not)f(a)h(multiple)1920 3317 y(of)31
b Fr(90)2102 3287 y Fq(\016)2139 3317 y Fo(.)1920 3469
y Fp(Pro)s(of:)41 b Fr(Let)25 b Fh(v)k Fr(b)r(e)d(the)g(common)f(endp)r
(oin)n(t)h(of)g(the)g Fh(e)3634 3481 y Fg(i)3661 3469
y Fr('s,)g(and)1920 3568 y(let)31 b Fh(w)2102 3580 y
Fg(i)2161 3568 y Fr(b)r(e)g(the)g(other)f(endp)r(oin)n(t)h(of)g
Fh(e)3129 3580 y Fg(i)3156 3568 y Fr(.)46 b(As)31 b(in)g(the)g
(previous)1920 3668 y(lemma,)g(there)f(is)g(an)g(orthogonal)e(path)i
(around)f Fh(v)k Fr(from)d Fh(w)3864 3638 y Fq(0)3862
3689 y Fe(0)1920 3768 y Fr(to)23 b Fh(w)2078 3737 y Fq(0)2076
3788 y Fe(1)2114 3768 y Fr(.)36 b(By)23 b([4)o(,)i(Lem.)f(5],)g(the)f
(great)g(arc)f(b)r(et)n(w)n(een)i Fh(w)3587 3737 y Fq(0)3585
3788 y Fe(0)3646 3768 y Fr(and)f Fh(w)3864 3737 y Fq(0)3862
3788 y Fe(1)1920 3867 y Fr(meets)h(this)h(orthogonal)d(path)i(at)h
Fh(w)3073 3837 y Fq(0)3071 3888 y Fe(0)3133 3867 y Fr(and)f
Fh(w)3352 3837 y Fq(0)3350 3888 y Fe(1)3412 3867 y Fr(with)h(t)n(w)n(o)
e(90)3835 3837 y Fq(\016)3872 3867 y Fr(-)1920 3967 y(m)n(ultiple)29
b(angles.)40 b(Similarly)-7 b(,)29 b(there)f(is)h(an)f(orthogonal)f
(path)1920 4066 y(from)32 b Fh(w)2182 4036 y Fq(0)2180
4087 y Fe(1)2250 4066 y Fr(to)g Fh(w)2417 4036 y Fq(0)2415
4087 y Fe(2)2453 4066 y Fr(,)h(and)f(the)h(great)e(arc)g(b)r(et)n(w)n
(een)h Fh(w)3569 4036 y Fq(0)3567 4087 y Fe(1)3637 4066
y Fr(and)g Fh(w)3864 4036 y Fq(0)3862 4087 y Fe(2)1920
4166 y Fr(meets)27 b(this)g(orthogonal)e(path)i(at)g(t)n(w)n(o)g(90)
3266 4136 y Fq(\016)3303 4166 y Fr(-m)n(ultiple)g(angles.)1920
4266 y(Th)n(us,)22 b(the)e(t)n(w)n(o)g(great)f(arcs)g(meet)i(at)g
Fh(w)3154 4236 y Fq(0)3152 4286 y Fe(1)3210 4266 y Fr(with)g(a)f(90)
3538 4236 y Fq(\016)3575 4266 y Fr(-m)n(ultiple)1920
4365 y(angle)27 b(precisely)h(if)g(the)h(t)n(w)n(o)e(orthogonal)f
(paths)i(meet)g(at)g Fh(w)3864 4335 y Fq(0)3862 4386
y Fe(1)1920 4465 y Fr(with)i(a)f(90)2266 4435 y Fq(\016)2304
4465 y Fr(-m)n(ultiple)g(angle.)42 b(The)30 b(former)f(angle)g(is)g
(the)h(di-)1920 4565 y(hedral)i(angle)g(b)r(et)n(w)n(een)g(planes)g
Fh(e)3024 4577 y Fe(0)3061 4565 y Fh(;)14 b(e)3137 4577
y Fe(1)3206 4565 y Fr(and)33 b Fh(e)3412 4577 y Fe(1)3449
4565 y Fh(;)14 b(e)3525 4577 y Fe(2)3561 4565 y Fr(,)34
b(and)f(the)1920 4664 y(latter)g(angle)f(is)h(the)g(dihedral)f(angle)g
(at)h Fh(e)3307 4676 y Fe(1)3377 4664 y Fr(in)g(the)h(original)1920
4764 y(p)r(olyhedron.)39 b(Because)28 b Fh(e)2747 4776
y Fe(1)2812 4764 y Fr(is)h(red,)g(the)g(angles)e(m)n(ust)i(not)g(b)r(e)
1920 4863 y(90)2004 4833 y Fq(\016)2069 4863 y Fr(m)n(ultiples.)1416
b Fc(2)2003 5000 y Fr(Let)44 b Fh(V)19 b Fr(,)48 b Fh(E)5
b Fr(,)49 b(and)44 b Fh(F)56 b Fr(denote)44 b(the)g(n)n(um)n(b)r(er)g
(of)g(v)n(ertices,)1920 5100 y(edges,)37 b(and)f(faces)g(in)g
Fh(G)2725 5112 y Fg(r)2762 5100 y Fr(.)63 b(Let)36 b
Fh(D)3074 5112 y Fq(6)p Fe(=5)3198 5100 y Fr(denote)g(the)g(n)n(um)n(b)
r(er)1920 5200 y(of)27 b(v)n(ertices)f(with)i(degree)e(not)h(equal)g
(to)g(5.)36 b(Because)26 b(no)h(v)n(er-)1920 5299 y(tex)k(of)g
Fh(G)2227 5311 y Fg(r)2295 5299 y Fr(can)g(ha)n(v)n(e)f(degree)g(one)h
(or)f(three)h([4)o(,)h(Lem.)g(6,)e(8],)1920 5399 y(and)d(w)n(e)h(ha)n
(v)n(e)e(eliminated)i(all)f(degree-2)f(v)n(ertices,)2557
5550 y Fh(D)2626 5562 y Fq(6)p Fe(=5)2737 5550 y Fr(=)c
Fh(D)2893 5562 y Fe(=4)3000 5550 y Fr(+)c Fh(D)3152 5562
y Fq(\025)p Fe(6)3240 5550 y Fh(;)p Black 531 w Fr(\(1\))p
Black Black Black eop
%%Page: 3 3
3 2 bop Black Black 0 83 a Fr(where)35 b Fh(D)317 95
y Fe(=4)440 83 y Fr(is)g(the)g(n)n(um)n(b)r(er)g(of)g(v)n(ertices)f(of)
h(degree)g(4)f(and)0 183 y Fh(D)69 195 y Fq(\025)p Fe(6)186
183 y Fr(is)27 b(the)h(n)n(um)n(b)r(er)f(of)h(v)n(ertices)e(of)i
(degree)e(at)i(least)f(6.)0 461 y Fi(4.2)112 b(Sp)s(ecial)37
b(Angles)0 631 y Fr(T)-7 b(o)19 b(get)f(a)h(b)r(etter)g(handle)g(on)g
Fh(D)977 643 y Fe(=4)1064 631 y Fr(,)i(w)n(e)e(in)n(tro)r(duce)f(the)i
(notions)0 730 y(of)30 b(\\\015at")e(and)i(\\sp)r(ecial")f(angles.)42
b(Call)29 b(a)h(face)f(angle)g Fo(\015at)38 b Fr(if)0
830 y(it)28 b(is)g(180)293 800 y Fq(\016)329 830 y Fr(.)p
Black 0 1056 a Fp(Lemma)i(3)p Black 41 w Fo(A)n(ny)i(de)l(gr)l(e)l(e-)p
Fr(4)h Fo(vertex)g Fh(v)j Fo(in)d Fh(G)1424 1068 y Fg(r)1494
1056 y Fo(is)g(incident)h(to)0 1156 y(two)c(fac)l(es)h(e)l(ach)f(of)h
(which)g(have)g(a)f(\015at)g(angle)g(at)g Fh(v)s Fo(.)1490
2088 y @beginspecial 0 @llx 0 @lly 46 @urx 91 @ury 460
@rwi @setspecial
%%BeginDocument: deg4_proof.pstex
%!PS-Adobe-2.0 EPSF-2.0
%%Title: deg4_proof.pstex
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Mon Apr 29 23:32:11 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 46 91
%%Magnification: 0.5000
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 91 moveto 0 0 lineto 46 0 lineto 46 91 lineto closepath clip newpath
-37.9 128.5 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/DrawEllipse {
/endangle exch def
/startangle exch def
/yrad exch def
/xrad exch def
/y exch def
/x exch def
/savematrix mtrx currentmatrix def
x y tr xrad yrad sc 0 0 1 startangle endangle arc
closepath
savematrix setmatrix
} def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.03000 0.03000 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2100 1500 m 2325 1275 l 2325 2475 l 2100 2700 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
30.000 slw
n 2100 2100 m
2100 2700 l gs col0 s gr
% Polyline
7.500 slw
n 2100 3600 m 2700 3600 l 2700 4200 l 2100 4200 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 2100 3000 m 2700 3000 l 2700 3600 l 2100 3600 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 1500 3600 m 2100 3600 l 2100 4200 l 1500 4200 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 1500 3000 m 2100 3000 l 2100 3600 l 1500 3600 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
n 1500 2100 m 1275 2325 l 2475 2325 l 2700 2100 l
cp gs col7 0.75 shd ef gr gs col0 s gr
% Polyline
30.000 slw
n 2100 3600 m
2100 4200 l gs col0 s gr
% Polyline
n 2100 2100 m
1500 2100 l gs col0 s gr
% Polyline
n 2100 3600 m
2100 3000 l gs col0 s gr
% Polyline
n 2100 3600 m
2700 3600 l gs col0 s gr
% Polyline
n 2100 3600 m
1500 3600 l gs col0 s gr
% Polyline
n 2100 2100 m
2100 1500 l gs col0 s gr
% Polyline
n 2100 2100 m
2700 2100 l gs col0 s gr
% Polyline
[15 33] 33 sd
n 2100 2325 m
2100 2175 l gs col0 s gr [] 0 sd
7.500 slw
% Ellipse
n 2100 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 3000 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1500 3600 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2700 3600 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 4200 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 3600 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 1500 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1500 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2700 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 2700 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial 0 0 0 TeXcolorrgb 1406 1392 a Fr(\(a\))p
Black 0 0 0 TeXcolorrgb 1401 1805 a(\(b\))p Black 0 0 0
TeXcolorrgb 1629 1842 a Fb(e)1665 1850 y Fa(1)p Black
0 0 0 TeXcolorrgb 1570 1898 a Fb(e)1606 1906 y Fa(0)p
Black 0 0 0 TeXcolorrgb 1718 1967 a Fb(v)p Black 0 0 0
TeXcolorrgb 1629 2011 a(e)1665 2019 y Fa(3)p Black 0 0 0
TeXcolorrgb 1760 1898 a Fb(e)1796 1906 y Fa(2)p Black
0 0 0 TeXcolorrgb 1760 1523 a Fb(e)1796 1531 y Fa(2)p
Black 0 0 0 TeXcolorrgb 1570 1523 a Fb(e)1606 1531 y
Fa(0)p Black 0 0 0 TeXcolorrgb 1629 1467 a Fb(e)1665
1475 y Fa(1)p Black 0 0 0 TeXcolorrgb 1718 1588 a Fb(v)p
Black 0 0 0 TeXcolorrgb 1629 1655 a(e)1665 1663 y Fa(3)p
Black 1380 2262 a Fp(Figure)d(5:)39 b Fj(P)n(ossi-)1380
2353 y(ble)31 b(faces)h(a)n(round)f(a)1380 2445 y(degree-4)26
b(vertex.)0 1373 y Fp(Pro)s(of:)49 b Fr(Consider)30 b(a)g(degree-4)f(v)
n(er-)0 1473 y(tex)g Fh(v)j Fr(in)d Fh(G)377 1485 y Fg(r)443
1473 y Fr(whose)f(inciden)n(t)h(edges)0 1573 y(are)k
Fh(e)184 1585 y Fe(0)221 1573 y Fh(;)14 b(e)297 1585
y Fe(1)334 1573 y Fh(;)g(e)410 1585 y Fe(2)446 1573 y
Fh(;)g(e)522 1585 y Fe(3)559 1573 y Fr(.)56 b(By)33 b([4,)i(Lem.)f(9],)
0 1672 y(these)44 b(edges)g(form)f(an)h(orthogonal)0
1772 y(`+')30 b(in)h Ff(R)295 1742 y Fe(3)338 1772 y
Fr(.)46 b(W)-7 b(e)31 b(claim)f(that)h Fh(e)999 1784
y Fe(0)1066 1772 y Fr(and)0 1871 y Fh(e)39 1883 y Fe(2)97
1871 y Fr(b)r(ound)21 b(a)g(common)g(face,)h(forming)0
1971 y(a)34 b(\015at)g(angle)g(at)g Fh(v)s Fr(,)i(and)f(symmetri-)0
2071 y(cally)28 b Fh(e)236 2083 y Fe(1)302 2071 y Fr(and)g
Fh(e)503 2083 y Fe(3)568 2071 y Fr(b)r(ound)h(a)g(common)0
2170 y(face)21 b([Figure)g(5\(a\)].)35 b(The)22 b(only)f(other)0
2270 y(p)r(ossible)37 b(t)n(yp)r(e)g(of)h(face)f(inciden)n(t)g(to)0
2370 y Fh(v)d Fr(is)c(one)g(that)g(b)r(ounds)h Fh(e)828
2382 y Fg(i)885 2370 y Fr(and)g Fh(e)1089 2382 y Fg(i)p
Fe(+1)0 2469 y Fr(for)37 b(some)h Fh(i)f Fr(\(mo)r(dulo)h(4\).)68
b(In)38 b(fact,)0 2569 y(w)n(e)28 b(m)n(ust)h(ha)n(v)n(e)f(all)h(suc)n
(h)f(faces)g([Fig-)0 2668 y(ure)36 b(5\(b\)],)j(or)c(else)i(there)f(w)n
(ould)g(b)r(e)g(an)h(edge)e(inciden)n(t)i(to)0 2768 y(only)28
b(one)g(face,)g(con)n(tradicting)f(the)i(de\014nition)f(of)h(a)e(p)r
(olyhe-)0 2868 y(dron.)34 b(But)22 b(then)g(the)g(dihedral)e(angles)h
(b)r(et)n(w)n(een)g(these)h(faces,)0 2967 y(as)28 b(in)g(Lemma)g(2,)g
(w)n(ould)g(eac)n(h)g(b)r(e)g(180)1260 2937 y Fq(\016)1297
2967 y Fr(,)h(making)e(the)i(edges)0 3067 y(green,)e(not)g(red.)37
b(Th)n(us)27 b(the)h(claim)f(holds.)563 b Fc(2)83 3243
y Fr(Call)26 b(an)f(angle)h Fo(sp)l(e)l(cial)36 b Fr(if)26
b(it)h(is)f(b)r(oth)g(\015at)g(and)g(inciden)n(t)g(to)0
3342 y(a)31 b(degree-4)e(v)n(ertex)h(as)g(in)i(the)f(lemma.)47
b(Th)n(us,)32 b(the)f(n)n(um)n(b)r(er)0 3442 y Fh(s)d
Fr(of)f(sp)r(ecial)g(angles)g(is)g(giv)n(en)g(b)n(y)804
3642 y Fh(s)c Fr(=)g(2)p Fh(D)1065 3654 y Fe(=4)1153
3642 y Fh(:)p Black 698 w Fr(\(2\))p Black Black 0 3851
a Fp(Lemma)30 b(4)p Black 41 w Fo(Every)h(fac)l(e)g(of)g
Fh(G)999 3863 y Fg(r)1066 3851 y Fo(has)g(at)f(le)l(ast)h
Fr(4)e Fo(non\015at)h(an-)0 3950 y(gles,)h(and)f(henc)l(e)g(at)g(le)l
(ast)g Fr(4)f Fo(nonsp)l(e)l(cial)i(angles.)0 4168 y
Fp(Pro)s(of:)44 b Fr(By)28 b(Lemma)h(1,)f(ev)n(ery)f(face)i(angle)e(is)
i(a)f(m)n(ultiple)h(of)0 4267 y(90)84 4237 y Fq(\016)121
4267 y Fr(.)37 b(Suc)n(h)26 b(a)g(closed)f(p)r(olygonal)g(c)n(hain)g
(in)i(3D)f(m)n(ust)g(ha)n(v)n(e)f(at)0 4367 y(least)j(4)g(b)r(ends:)39
b(there)29 b(is)f(no)g(triangle)g(whose)f(angles)h(are)f(all)0
4467 y Fd(\006)p Fr(90)149 4436 y Fq(\016)186 4467 y
Fr(.)1709 b Fc(2)83 4642 y Fr(See)28 b(also)e([4,)h(Lem.)h(14].)83
4751 y(Because)f(ev)n(ery)f(face)i(of)f(degree)g(more)g(than)g(4)h(has)
f(a)g(\014fth)0 4850 y(angle)g(whic)n(h)i(is)f(either)g(sp)r(ecial)g
(or)g(nonsp)r(ecial,)g(this)g(lemma)0 4950 y(implies)g(that)605
5076 y Fh(F)658 5088 y Fq(\025)p Fe(5)770 5076 y Fd(\024)23
b Fh(F)911 5088 y Fq(\025)p Fe(1)p Fg(s)1050 5076 y Fr(+)18
b Fh(F)1186 5088 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)1352
5076 y Fh(;)p Black 499 w Fr(\(3\))p Black 0 5251 a(where)j
Fh(F)287 5263 y Fq(\025)p Fe(5)399 5251 y Fr(is)h(the)g(n)n(um)n(b)r
(er)g(of)f(faces)h(with)g(degree)f(at)h(least)f(5,)0
5351 y Fh(F)53 5363 y Fq(\025)p Fe(1)p Fg(s)203 5351
y Fr(is)29 b(the)g(n)n(um)n(b)r(er)g(of)f(faces)h(with)g(at)g(least)g
(1)f(sp)r(ecial)h(an-)0 5450 y(gle,)35 b(and)f Fh(F)381
5462 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)580 5450 y Fr(is)g(the)g(n)n(um)n
(b)r(er)f(of)h(faces)f(with)i(at)e(least)g(5)0 5550 y(nonsp)r(ecial)27
b(angles.)2160 83 y Fi(4.3)112 b(Upp)s(er)38 b(Bound)g(on)g(V)-9
b(ertices)2160 236 y Fr(W)i(e)28 b(start)f(with)h(t)n(w)n(o)f
(relationships:)p Black 2160 392 a Fp(Lemma)j(5)p Black
41 w Fo(In)f Fh(G)2761 404 y Fg(r)2798 392 y Fo(,)h Fr(2)p
Fh(E)23 b Fd(\000)18 b Fr(2)p Fh(D)3173 404 y Fe(=4)3284
392 y Fd(\025)23 b Fr(4)p Fh(F)29 b Fr(+)18 b Fh(F)3632
404 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)3798 392 y Fo(.)2160
548 y Fp(Pro)s(of:)64 b Fr(The)37 b(total)g(n)n(um)n(b)r(er)g(of)g
(angles)f(is)h(2)p Fh(E)5 b Fr(,)40 b(and)d(eac)n(h)2160
648 y(degree-4)20 b(v)n(ertex)h(con)n(tributes)h(t)n(w)n(o)f(sp)r
(ecial)h(angles.)34 b(So)21 b(2)p Fh(E)12 b Fd(\000)2160
747 y Fr(2)p Fh(D)2271 759 y Fe(=4)2383 747 y Fr(is)24
b(the)h(n)n(um)n(b)r(er)f(of)h(nonsp)r(ecial)f(angles.)35
b(On)24 b(the)h(other)2160 847 y(hand,)40 b(there)e(are)f(at)g(least)g
(4)h(nonsp)r(ecial)f(angles)g(p)r(er)g(face)2160 946
y(\(Lemma)c(4\),)i(and)e(at)g(least)g(one)g(more)f(p)r(er)h(face)g
(with)h(5)f(or)2160 1046 y(more)27 b(nonsp)r(ecial)g(angles.)1060
b Fc(2)p Black 2160 1241 a Fp(Lemma)30 b(6)p Black 41
w Fo(In)f Fh(G)2761 1253 y Fg(r)2798 1241 y Fo(,)h Fr(2)p
Fh(E)e Fd(\025)23 b Fr(5)p Fh(V)36 b Fd(\000)19 b Fh(D)3351
1253 y Fe(=4)3457 1241 y Fr(+)f Fh(D)3609 1253 y Fq(\025)p
Fe(6)3698 1241 y Fo(.)2160 1397 y Fp(Pro)s(of:)42 b Fr(The)27
b(sum)h(of)f(the)h(v)n(ertex)f(degrees)f(is)h(2)p Fh(E)5
b Fr(.)37 b(As)27 b(men-)2160 1496 y(tioned)h(earlier,)e(eac)n(h)h(v)n
(ertex)g(has)g(degree)g(at)g(least)g(4.)37 b(Th)n(us,)2160
1596 y(w)n(e)32 b(can)g(lo)n(w)n(er)e(b)r(ound)j(the)f(sum)h(of)f(the)g
(v)n(ertex)g(degrees)e(b)n(y)2160 1696 y(coun)n(ting)k(eac)n(h)f(v)n
(ertex)g(as)h(if)g(it)h(had)f(degree)f(5)h(\(5)p Fh(V)18
b Fr(\),)37 b(then)2160 1795 y(decremen)n(ting)18 b(the)h(sum)g(for)f
(eac)n(h)g(v)n(ertex)f(of)i(degree)e(4)h(\()p Fh(D)3996
1807 y Fe(=4)4085 1795 y Fr(\),)2160 1895 y(then)26 b(incremen)n(ting)g
(the)g(sum)g(for)f(eac)n(h)g(v)n(ertex)g(of)g(degree)g(at)2160
1995 y(least)i(6)g(\()p Fh(D)2524 2007 y Fq(\025)p Fe(6)2614
1995 y Fr(\).)1409 b Fc(2)2243 2133 y Fr(W)-7 b(e)28
b(are)f(no)n(w)g(ready)f(to)i(pro)n(v)n(e)e(the)h(b)r(ound:)p
Black 2160 2278 a Fp(Lemma)j(7)p Black 41 w Fo(In)f Fh(G)2761
2290 y Fg(r)2798 2278 y Fo(,)h Fh(V)42 b Fd(\024)23 b
Fr(8\()p Fh(g)e Fd(\000)d Fr(1\))g Fd(\000)g Fr(max)p
Fd(f)p Fh(D)3690 2290 y Fq(6)p Fe(=5)3777 2278 y Fh(;)c(F)3867
2290 y Fq(\025)p Fe(5)3956 2278 y Fh(=)p Fr(2)p Fd(g)p
Fo(.)2160 2422 y Fp(Pro)s(of:)42 b Fr(By)27 b(Euler's)g(Theorem,)2769
2578 y Fh(F)35 b Fd(\025)23 b Fr(2)18 b Fd(\000)g Fr(2)p
Fh(g)i Fd(\000)e Fh(V)38 b Fr(+)18 b Fh(E)5 b(:)p Black
503 w Fr(\(4\))p Black 2160 2734 a(Substituting)25 b(this)f(b)r(ound)h
(on)f Fh(F)36 b Fr(in)n(to)23 b(Lemma)h(5,)h(w)n(e)e(obtain)2396
2890 y(2)p Fh(E)g Fd(\000)18 b Fr(2)p Fh(D)2716 2902
y Fe(=4)2827 2890 y Fd(\025)23 b Fr(8)18 b Fd(\000)g
Fr(8)p Fh(g)i Fd(\000)e Fr(4)p Fh(V)37 b Fr(+)18 b(4)p
Fh(E)23 b Fr(+)18 b Fh(F)3715 2902 y Fq(\025)p Fe(5)p
Fq(:)p Fg(s)3881 2890 y Fh(:)2160 3046 y Fr(Com)n(bining)36
b(the)i Fh(E)k Fr(terms,)d(negating,)f(and)f(rewriting,)h(w)n(e)2160
3145 y(obtain)2436 3301 y(2)p Fh(E)28 b Fd(\024)23 b(\000)p
Fr(2)p Fh(D)2831 3313 y Fe(=4)2936 3301 y Fr(+)18 b(8\()p
Fh(g)j Fd(\000)d Fr(1\))g(+)g(4)p Fh(V)37 b Fd(\000)18
b Fh(F)3675 3313 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)3841
3301 y Fh(:)2160 3457 y Fr(Com)n(bining)27 b(this)h(equation)f(with)h
(Lemma)f(6,)h(w)n(e)f(ha)n(v)n(e)2177 3613 y(5)p Fh(V)37
b Fd(\000)18 b Fh(D)2456 3625 y Fe(=4)2562 3613 y Fr(+)g
Fh(D)2714 3625 y Fq(\025)p Fe(6)2826 3613 y Fd(\024)23
b(\000)p Fr(2)p Fh(D)3090 3625 y Fe(=4)3195 3613 y Fr(+)18
b(8\()p Fh(g)j Fd(\000)d Fr(1\))g(+)g(4)p Fh(V)37 b Fd(\000)18
b Fh(F)3934 3625 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)4100
3613 y Fh(;)2160 3769 y Fr(whic)n(h)28 b(simpli\014es)f(to)2453
3924 y Fh(V)42 b Fd(\024)22 b(\000)p Fh(D)2764 3936 y
Fq(\025)p Fe(6)2871 3924 y Fd(\000)c Fh(D)3023 3936 y
Fe(=4)3130 3924 y Fr(+)g(8\()p Fh(g)i Fd(\000)e Fr(1\))h
Fd(\000)f Fh(F)3659 3936 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)3824
3924 y Fh(:)2160 4080 y Fr(By)j(Equation)g(1)g(and)g(dropping)g(the)g
Fh(F)3389 4092 y Fq(\025)p Fe(5)p Fq(:)p Fg(s)3577 4080
y Fr(term,)h(w)n(e)f(obtain)2160 4180 y(the)28 b(\014rst)f(b)r(ound:)
2742 4336 y Fh(V)42 b Fd(\024)23 b(\000)p Fh(D)3054 4348
y Fq(6)p Fe(=5)3160 4336 y Fr(+)18 b(8\()p Fh(g)j Fd(\000)d
Fr(1\))p Fh(:)2160 4491 y Fr(On)41 b(the)g(other)g(hand,)k(b)n(y)40
b(Equation)h(2,)j(and)d(b)r(ecause)f(b)n(y)2160 4591
y(de\014nition)28 b Fh(F)2582 4603 y Fq(\025)p Fe(1)p
Fg(s)2726 4591 y Fd(\024)23 b Fh(s)p Fr(,)k(w)n(e)g(can)h(obtain)2403
4747 y Fh(V)42 b Fd(\024)22 b(\000)p Fh(D)2714 4759 y
Fq(\025)p Fe(6)2821 4747 y Fd(\000)c Fh(F)2957 4759 y
Fq(\025)p Fe(1)p Fg(s)3078 4747 y Fh(=)p Fr(2)g(+)g(8\()p
Fh(g)i Fd(\000)e Fr(1\))h Fd(\000)f Fh(F)3709 4759 y
Fq(\025)p Fe(5)p Fq(:)p Fg(s)3874 4747 y Fh(:)2160 4903
y Fr(By)24 b(Equation)f(3,)i(and)f(dropping)f(the)i Fh(D)3446
4915 y Fq(\025)p Fe(6)3559 4903 y Fr(term)g(and)f(half)g(of)2160
5002 y(the)k Fh(F)2356 5014 y Fq(\025)p Fe(5)p Fq(:)p
Fg(s)2549 5002 y Fr(term,)g(w)n(e)f(obtain)g(the)h(second)f(b)r(ound:)
2708 5158 y Fh(V)42 b Fd(\024)23 b(\000)p Fh(F)3004 5170
y Fq(\025)p Fe(5)3093 5158 y Fh(=)p Fr(2)17 b(+)h(8\()p
Fh(g)j Fd(\000)d Fr(1\))p Fh(:)4078 5160 y Fc(2)2243
5370 y Fr(F)-7 b(or)27 b(gen)n(us)g(2,)g(Lemma)g(7)h(b)r(ecomes)2657
5526 y(max)o Fd(f)p Fh(D)2922 5538 y Fq(6)p Fe(=5)3010
5526 y Fh(;)14 b(F)3100 5538 y Fq(\025)p Fe(5)3189 5526
y Fh(=)p Fr(2)p Fd(g)22 b(\024)g Fr(8)c Fd(\000)g Fh(V)5
b(:)p Black 391 w Fr(\(5\))p Black Black Black eop
%%Page: 4 4
4 3 bop Black Black -240 83 a Fi(4.4)112 b(T)-9 b(o)s(o)37
b(Man)m(y)i(V)-9 b(ertices)35 b(for)j(Gen)m(us)g(2)-240
236 y Fr(W)-7 b(e)28 b(no)n(w)f(use)g(this)h(b)r(ound)g(to)g(pro)n(v)n
(e)e(the)i(\014nal)f(result:)p Black -240 402 a Fp(Theorem)j(8)p
Black 42 w Fo(Ther)l(e)58 b(ar)l(e)g(no)f(nonortho)l(gonal)i(p)l(olyhe)
l(dr)l(a)-240 502 y(with)30 b(ortho)l(gonal)i(fac)l(es)e(and)h(genus)e
(at)h(most)f(2.)1257 1243 y @beginspecial 0 @llx 0 @lly
48 @urx 63 @ury 480 @rwi @setspecial
%%BeginDocument: proof_a.pstex
%!PS-Adobe-2.0 EPSF-2.0
%%Title: proof_a.pstex
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Sun Apr 28 01:18:19 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 48 63
%%Magnification: 0.6500
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 63 moveto 0 0 lineto 48 0 lineto 48 63 lineto closepath clip newpath
-58.2 109.4 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/DrawEllipse {
/endangle exch def
/startangle exch def
/yrad exch def
/xrad exch def
/y exch def
/x exch def
/savematrix mtrx currentmatrix def
x y tr xrad yrad sc 0 0 1 startangle endangle arc
closepath
savematrix setmatrix
} def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.03900 0.03900 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2100 2100 m
2100 1500 l gs col0 s gr
% Polyline
n 2100 2100 m
2625 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1575 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1725 2550 l gs col0 s gr
% Polyline
n 2100 2100 m
2475 2550 l gs col0 s gr
% Ellipse
n 2100 1500 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2475 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1725 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial 0 0 0 TeXcolorrgb 1419 745 a Fb(v)1456 753
y Fa(1)p Black 0 0 0 TeXcolorrgb 1261 1086 a Fb(f)1298
1094 y Fa(0)p Black 0 0 0 TeXcolorrgb 1419 1184 a Fb(f)1456
1192 y Fa(4)p Black 0 0 0 TeXcolorrgb 1577 1086 a Fb(f)1614
1094 y Fa(3)p Black 0 0 0 TeXcolorrgb 1188 940 a Fb(v)1225
948 y Fa(0)p Black 0 0 0 TeXcolorrgb 1650 940 a Fb(v)1687
948 y Fa(2)p Black 0 0 0 TeXcolorrgb 1261 1233 a Fb(v)1298
1241 y Fa(4)p Black 0 0 0 TeXcolorrgb 1479 964 a Fb(v)p
Black 0 0 0 TeXcolorrgb 1601 1233 a(v)1638 1241 y Fa(3)p
Black 0 0 0 TeXcolorrgb 1528 867 a Fb(f)1565 875 y Fa(2)p
Black 0 0 0 TeXcolorrgb 1310 867 a Fb(f)1347 875 y Fa(1)p
Black -240 668 a Fp(Pro)s(of:)64 b Fr(Because)37 b(ev)n(ery)f(v)n
(ertex)g(in)i Fh(G)1073 680 y Fg(r)-240 768 y Fr(has)k(degree)g(at)g
(least)g(4,)k Fh(V)67 b Fd(\025)48 b Fr(5.)81 b(By)-240
867 y(Equation)38 b(5,)j Fh(D)305 879 y Fq(6)p Fe(=5)435
867 y Fd(\024)h Fr(3.)71 b(Th)n(us,)41 b(there)-240 967
y(m)n(ust)36 b(b)r(e)g(a)f(degree-5)f(v)n(ertex,)i(call)g(it)g
Fh(v)s Fr(.)-240 1067 y(Let)29 b Fh(v)-50 1079 y Fe(0)-12
1067 y Fh(;)14 b(v)65 1079 y Fe(1)102 1067 y Fh(;)g(v)179
1079 y Fe(2)217 1067 y Fh(;)g(v)294 1079 y Fe(3)331 1067
y Fh(;)g(v)408 1079 y Fe(4)475 1067 y Fr(denote)29 b(the)h(neigh-)-240
1166 y(b)r(ors)35 b(of)h Fh(v)k Fr(in)c(clo)r(c)n(kwise)f(order.)61
b(Let)36 b Fh(f)1083 1178 y Fg(i)-240 1266 y Fr(denote)19
b(the)g(face)f(b)r(ounded)i(b)n(y)e Fh(v)789 1278 y Fg(i)p
Fq(\000)p Fe(1)902 1266 y Fh(;)c(v)s(;)g(v)1059 1278
y Fg(i)1087 1266 y Fr(.)-240 1366 y(\(Indices)28 b(are)e(mo)r(dulo)i
(5.\))-157 1465 y(Because)18 b Fh(v)s(;)c(v)272 1477
y Fe(0)310 1465 y Fh(;)g(v)387 1477 y Fe(1)424 1465 y
Fh(;)g(v)501 1477 y Fe(2)538 1465 y Fh(;)g(v)615 1477
y Fe(3)653 1465 y Fh(;)g(v)730 1477 y Fe(4)786 1465 y
Fr(are)k(6)h(distinct)h(v)n(ertices,)f Fh(V)42 b Fd(\025)-240
1565 y Fr(6.)74 b(Substituting)41 b(this)g(b)r(ound)f(in)n(to)g
(Equation)f(5,)k(w)n(e)d(ob-)-240 1664 y(tain)35 b(that)h
Fh(F)179 1676 y Fq(\025)p Fe(5)305 1664 y Fd(\024)f Fr(4.)60
b(Th)n(us,)37 b(out)e(of)h(the)g(5)f(distinct)h(faces)-240
1764 y Fh(f)-199 1776 y Fe(0)-162 1764 y Fh(;)14 b(f)-84
1776 y Fe(1)-47 1764 y Fh(;)g(f)31 1776 y Fe(2)67 1764
y Fh(;)g(f)145 1776 y Fe(3)182 1764 y Fh(;)g(f)260 1776
y Fe(4)297 1764 y Fr(,)39 b(at)e(least)g(one)f Fh(f)876
1776 y Fg(i)941 1764 y Fr(has)g(degree)g(4.)64 b(\(There)-240
1864 y(are)28 b(no)g(faces)g(with)h(degree)f(less)g(than)h(4)f(b)n(y)g
(Lemma)h(4.\))39 b(By)-240 1963 y(Lemma)28 b(1,)h(the)g(angles)e(of)h
(this)h(quadrilateral)e(face)h Fh(f)1506 1975 y Fg(i)1562
1963 y Fr(m)n(ust)-240 2063 y(b)r(e)i(m)n(ultiples)g(of)f(90)415
2033 y Fq(\016)452 2063 y Fr(,)h(and)g(an)n(y)e(suc)n(h)h(face)h(m)n
(ust)f(b)r(e)h(planar)-240 2163 y(and)d(hence)h(a)f(rectangle.)1274
2837 y @beginspecial 0 @llx 0 @lly 48 @urx 63 @ury 480
@rwi @setspecial
%%BeginDocument: proof_b.pstex
%!PS-Adobe-2.0 EPSF-2.0
%%Title: proof_b.pstex
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Sun Apr 28 01:22:22 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 48 63
%%Magnification: 0.6500
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 63 moveto 0 0 lineto 48 0 lineto 48 63 lineto closepath clip newpath
-58.2 109.4 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/DrawEllipse {
/endangle exch def
/startangle exch def
/yrad exch def
/xrad exch def
/y exch def
/x exch def
/savematrix mtrx currentmatrix def
x y tr xrad yrad sc 0 0 1 startangle endangle arc
closepath
savematrix setmatrix
} def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.03900 0.03900 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2100 2100 m
2100 1500 l gs col0 s gr
% Polyline
n 2100 2100 m
2625 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1575 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1725 2550 l gs col0 s gr
% Polyline
n 2100 2100 m
2475 2550 l gs col0 s gr
% Polyline
n 1575 1950 m
1575 1350 l gs col0 s gr
% Polyline
n 2103 1490 m
1578 1340 l gs col0 s gr
% Ellipse
n 1575 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2475 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1725 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 1500 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1350 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial 0 0 0 TeXcolorrgb 1338 2485 a Fb(f)1375
2493 y Fa(1)p Black 0 0 0 TeXcolorrgb 1435 2778 a Fb(f)1472
2786 y Fa(4)p Black 0 0 0 TeXcolorrgb 1593 2680 a Fb(f)1630
2688 y Fa(3)p Black 0 0 0 TeXcolorrgb 1204 2534 a Fb(v)1241
2542 y Fa(0)p Black 0 0 0 TeXcolorrgb 1666 2534 a Fb(v)1703
2542 y Fa(2)p Black 0 0 0 TeXcolorrgb 1277 2827 a Fb(v)1314
2835 y Fa(4)p Black 0 0 0 TeXcolorrgb 1435 2339 a Fb(v)1472
2347 y Fa(1)p Black 0 0 0 TeXcolorrgb 1187 2339 a Fb(w)1242
2347 y Fa(1)p Black 0 0 0 TeXcolorrgb 1496 2558 a Fb(v)p
Black 0 0 0 TeXcolorrgb 1617 2827 a(v)1654 2835 y Fa(3)p
Black 0 0 0 TeXcolorrgb 1544 2461 a Fb(f)1581 2469 y
Fa(2)p Black 0 0 0 TeXcolorrgb 1277 2680 a Fb(f)1314
2688 y Fa(0)p Black -157 2262 a Fr(Let)22 b Fh(w)45 2274
y Fg(i)95 2262 y Fr(b)r(e)h(the)f(fourth)g(v)n(ertex)f(of)h
Fh(f)962 2274 y Fg(i)989 2262 y Fr(,)i(so)-240 2362 y(that)34
b Fh(v)-14 2374 y Fg(i)p Fq(\000)p Fe(1)99 2362 y Fh(;)14
b(v)s(;)g(v)256 2374 y Fg(i)284 2362 y Fh(;)g(w)380 2374
y Fg(i)442 2362 y Fr(are)33 b(the)h(v)n(ertices)f(of)-240
2462 y(the)22 b(face.)35 b(W)-7 b(e)22 b(claim)g(that)g
Fh(w)682 2474 y Fg(i)732 2462 y Fr(is)g(di\013eren)n(t)-240
2561 y(from)27 b(eac)n(h)g(of)h Fh(v)278 2573 y Fe(0)315
2561 y Fh(;)14 b(v)392 2573 y Fe(1)429 2561 y Fh(;)g(v)506
2573 y Fe(2)544 2561 y Fh(;)g(v)621 2573 y Fe(3)658 2561
y Fh(;)g(v)735 2573 y Fe(4)773 2561 y Fr(:)p Black -180
2661 a(1.)p Black 41 w Fh(w)-15 2673 y Fg(i)56 2661 y
Fr(m)n(ust)42 b(b)r(e)h(di\013eren)n(t)f(from)g Fh(v)997
2673 y Fg(i)p Fq(\000)p Fe(1)-74 2760 y Fr(and)61 b Fh(v)161
2772 y Fg(i)250 2760 y Fr(b)r(ecause)f(together)g(they)-74
2860 y(mak)n(e)27 b(up)h(a)f(face.)p Black -180 2960
a(2.)p Black 41 w Fh(w)-15 2972 y Fg(i)43 2960 y Fr(m)n(ust)i(b)r(e)h
(di\013eren)n(t)f(from)g Fh(v)932 2972 y Fg(i)p Fe(+1)1044
2960 y Fr(,)h(b)r(ecause)f(the)h(angle)-74 3059 y Fh(v)-34
3071 y Fg(i)-6 3059 y Fh(;)14 b(v)s(;)g(v)151 3071 y
Fg(i)p Fe(+1)286 3059 y Fr(is)23 b(a)g(m)n(ultiple)h(of)f(90)925
3029 y Fq(\016)985 3059 y Fr(b)n(y)g(Lemma)g(1,)h(but)g(the)-74
3159 y(angle)f Fh(v)179 3171 y Fg(i)207 3159 y Fh(;)14
b(v)s(;)g(w)383 3171 y Fg(i)436 3159 y Fr(b)r(et)n(w)n(een)24
b(a)f(side)h(and)g(a)g(diagonal)f(of)h(the)-74 3259 y(rectangle)i
Fh(f)322 3271 y Fg(i)377 3259 y Fr(m)n(ust)i(b)r(e)g(strictly)f(b)r(et)
n(w)n(een)h(0)f(and)h(90)1616 3228 y Fq(\016)1653 3259
y Fr(.)p Black -180 3358 a(3.)p Black 41 w(Symmetrically)-7
b(,)27 b Fh(w)550 3370 y Fg(i)606 3358 y Fr(m)n(ust)h(b)r(e)g
(di\013eren)n(t)f(from)h Fh(v)1489 3370 y Fg(i)p Fq(\000)p
Fe(2)1602 3358 y Fr(.)p Black -180 3458 a(4.)p Black
41 w(Finally)-7 b(,)42 b Fh(w)298 3470 y Fg(i)365 3458
y Fr(m)n(ust)d(b)r(e)h(di\013eren)n(t)f(from)g Fh(v)1294
3470 y Fg(i)p Fe(+2)1406 3458 y Fr(.)71 b(Other-)-74
3557 y(wise,)39 b(angles)c Fh(v)439 3569 y Fg(i)467 3557
y Fh(;)14 b(v)s(;)g(v)624 3569 y Fg(i)p Fe(+1)773 3557
y Fr(and)36 b Fh(v)983 3569 y Fg(i)p Fe(+1)1095 3557
y Fh(;)14 b(v)s(;)g(v)1252 3569 y Fg(i)p Fe(+2)1403 3557
y Fr(=)37 b Fh(w)1564 3569 y Fg(i)1629 3557 y Fr(are)-74
3657 y(b)r(oth)24 b(m)n(ultiples)g(of)f(90)646 3627 y
Fq(\016)707 3657 y Fr(b)n(y)g(Lemma)g(1.)35 b(Th)n(us,)24
b(the)g(edge)-74 3757 y Fh(v)s(;)14 b(v)46 3769 y Fg(i)p
Fe(+1)184 3757 y Fr(is)26 b(orthogonal)d(to)j(rectangle)e
Fh(f)1173 3769 y Fg(i)1201 3757 y Fr(,)i(and)g(hence)f(or-)-74
3856 y(thogonal)34 b(to)h(b)r(oth)h Fh(v)s(;)14 b(v)708
3868 y Fg(i)771 3856 y Fr(and)35 b Fh(v)s(;)14 b(v)1060
3868 y Fg(i)p Fq(\000)p Fe(1)1173 3856 y Fr(.)60 b(But)35
b(then)h(the)-74 3956 y(dihedral)j(angle)g(at)g(edge)g
Fh(v)s(;)14 b(v)924 3968 y Fg(i)991 3956 y Fr(as)39 b(in)h(Lemma)f(2)g
(is)g(a)-74 4056 y(m)n(ultiple)d(of)g(90)446 4025 y Fq(\016)483
4056 y Fr(,)i(con)n(tradicting)d(that)h(edge)f Fh(v)s(;)14
b(v)1563 4068 y Fg(i)1627 4056 y Fr(b)r(e-)-74 4155 y(longs)27
b(to)g Fh(G)305 4167 y Fg(r)342 4155 y Fr(.)1257 4889
y @beginspecial 0 @llx 0 @lly 48 @urx 63 @ury 480 @rwi
@setspecial
%%BeginDocument: proof_c.pstex
%!PS-Adobe-2.0 EPSF-2.0
%%Title: proof_c.pstex
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Sun Apr 28 01:25:42 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 48 63
%%Magnification: 0.6500
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 63 moveto 0 0 lineto 48 0 lineto 48 63 lineto closepath clip newpath
-58.2 109.4 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/DrawEllipse {
/endangle exch def
/startangle exch def
/yrad exch def
/xrad exch def
/y exch def
/x exch def
/savematrix mtrx currentmatrix def
x y tr xrad yrad sc 0 0 1 startangle endangle arc
closepath
savematrix setmatrix
} def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.03900 0.03900 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2100 2100 m
2100 1500 l gs col0 s gr
% Polyline
n 2100 2100 m
2625 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1575 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1725 2550 l gs col0 s gr
% Polyline
n 2100 2100 m
2475 2550 l gs col0 s gr
% Polyline
n 1575 1950 m
1575 1350 l gs col0 s gr
% Polyline
n 2103 1490 m
1578 1340 l gs col0 s gr
% Polyline
n 2097 1490 m
2622 1340 l gs col0 s gr
% Polyline
n 2625 1950 m
2625 1350 l gs col0 s gr
% Ellipse
n 2100 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2475 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1725 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1350 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1350 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 1500 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial 0 0 0 TeXcolorrgb 1650 4392 a Fb(w)1705
4400 y Fa(2)p Black 0 0 0 TeXcolorrgb 1577 4733 a Fb(f)1614
4741 y Fa(3)p Black 0 0 0 TeXcolorrgb 1188 4587 a Fb(v)1225
4595 y Fa(0)p Black 0 0 0 TeXcolorrgb 1650 4587 a Fb(v)1687
4595 y Fa(2)p Black 0 0 0 TeXcolorrgb 1261 4879 a Fb(v)1298
4887 y Fa(4)p Black 0 0 0 TeXcolorrgb 1419 4392 a Fb(v)1456
4400 y Fa(1)p Black 0 0 0 TeXcolorrgb 1170 4392 a Fb(w)1225
4400 y Fa(1)p Black 0 0 0 TeXcolorrgb 1322 4538 a Fb(f)1359
4546 y Fa(1)p Black 0 0 0 TeXcolorrgb 1517 4538 a Fb(f)1554
4546 y Fa(2)p Black 0 0 0 TeXcolorrgb 1479 4611 a Fb(v)p
Black 0 0 0 TeXcolorrgb 1601 4879 a(v)1638 4887 y Fa(3)p
Black 0 0 0 TeXcolorrgb 1261 4733 a Fb(f)1298 4741 y
Fa(0)p Black 0 0 0 TeXcolorrgb 1419 4830 a Fb(f)1456
4838 y Fa(4)p Black -157 4255 a Fr(Th)n(us,)114 b Fh(v)s(;)14
b(v)283 4267 y Fe(0)321 4255 y Fh(;)g(v)398 4267 y Fe(1)435
4255 y Fh(;)g(v)512 4267 y Fe(2)549 4255 y Fh(;)g(v)626
4267 y Fe(3)664 4255 y Fh(;)g(v)741 4267 y Fe(4)778 4255
y Fh(;)g(w)874 4267 y Fg(i)999 4255 y Fr(are)-240 4354
y(sev)n(en)48 b(distinct)h(v)n(ertices,)k(so)48 b Fh(V)78
b Fd(\025)57 b Fr(7.)-240 4454 y(Applying)47 b(Equation)e(5,)51
b(w)n(e)46 b(\014nd)h(that)-240 4554 y Fh(F)-187 4566
y Fq(\025)p Fe(5)-69 4554 y Fd(\024)27 b Fr(2.)46 b(Th)n(us,)31
b(out)g(of)f(the)h(5)f(distinct)-240 4653 y(faces)59
b Fh(f)34 4665 y Fe(0)71 4653 y Fh(;)14 b(f)149 4665
y Fe(1)186 4653 y Fh(;)g(f)264 4665 y Fe(2)301 4653 y
Fh(;)g(f)379 4665 y Fe(3)415 4653 y Fh(;)g(f)493 4665
y Fe(4)530 4653 y Fr(,)68 b(at)60 b(least)f(t)n(w)n(o)-240
4753 y(consecutiv)n(e)48 b(faces)h Fh(f)484 4765 y Fg(i)561
4753 y Fr(and)g Fh(f)785 4765 y Fg(i)p Fe(+1)946 4753
y Fr(ha)n(v)n(e)-240 4853 y(degree)44 b(4.)88 b(Again)44
b(w)n(e)g(de\014ne)h Fh(w)903 4865 y Fg(i)976 4853 y
Fr(and)-240 4952 y Fh(w)-181 4964 y Fg(i)p Fe(+1)-30
4952 y Fr(to)39 b(b)r(e)g(the)g(fourth)g(v)n(ertices)f(of)h
Fh(f)1083 4964 y Fg(i)-240 5052 y Fr(and)27 b Fh(f)-38
5064 y Fg(i)p Fe(+1)74 5052 y Fr(,)h(resp)r(ectiv)n(ely)-7
b(.)-157 5151 y(Applying)43 b(the)h(same)e(reasoning)g(as)g(ab)r(o)n(v)
n(e)g(to)h(eac)n(h)f(of)-240 5251 y Fh(w)-181 5263 y
Fg(i)-102 5251 y Fr(and)52 b Fh(w)143 5263 y Fg(i)p Fe(+1)255
5251 y Fr(,)57 b Fh(w)394 5263 y Fg(i)474 5251 y Fr(and)51
b Fh(w)718 5263 y Fg(i)p Fe(+1)881 5251 y Fr(m)n(ust)h(b)r(e)f
(distinct)h(from)-240 5351 y Fh(v)s(;)14 b(v)-120 5363
y Fe(0)-82 5351 y Fh(;)g(v)-5 5363 y Fe(1)32 5351 y Fh(;)g(v)109
5363 y Fe(2)146 5351 y Fh(;)g(v)223 5363 y Fe(3)261 5351
y Fh(;)g(v)338 5363 y Fe(4)375 5351 y Fr(.)47 b(F)-7
b(urthermore,)31 b(w)n(e)g(claim)g(that)g Fh(w)1547 5363
y Fg(i)1606 5351 y Fr(and)-240 5450 y Fh(w)-181 5462
y Fg(i)p Fe(+1)-49 5450 y Fr(m)n(ust)21 b(b)r(e)g(distinct)g(from)e
(eac)n(h)h(other.)34 b(Otherwise,)21 b(rect-)-240 5550
y(angles)e Fh(f)43 5562 y Fg(i)90 5550 y Fr(and)h Fh(f)285
5562 y Fg(i)p Fe(+1)417 5550 y Fr(w)n(ould)f(share)g(three)h(v)n
(ertices,)g(and)g(hence)1920 83 y(b)r(e)28 b(iden)n(tical,)f(implying)g
(that)g Fh(v)2952 95 y Fg(i)p Fq(\000)p Fe(1)3092 83
y Fr(and)g Fh(v)3293 95 y Fg(i)p Fe(+2)3432 83 y Fr(are)f(iden)n
(tical,)1920 183 y(con)n(tradicting)g(that)i(they)g(are)f(distinct)h
(neigh)n(b)r(ors)e(of)i Fh(v)s Fr(.)3222 1033 y @beginspecial
0 @llx 0 @lly 77 @urx 81 @ury 770 @rwi @setspecial
%%BeginDocument: proof_d.pstex
%!PS-Adobe-2.0 EPSF-2.0
%%Title: proof_d.pstex
%%Creator: fig2dev Version 3.2 Patchlevel 3d
%%CreationDate: Sun Apr 28 01:30:17 2002
%%For: Erik Demaine@FOLD (U-FOLD\Erik Demaine,S-1-5-21-3009342548-2650805779-3784137826-1004)
%%BoundingBox: 0 0 77 81
%%Magnification: 0.6500
%%EndComments
/$F2psDict 200 dict def
$F2psDict begin
$F2psDict /mtrx matrix put
/col-1 {0 setgray} bind def
/col0 {0.000 0.000 0.000 srgb} bind def
/col1 {0.000 0.000 1.000 srgb} bind def
/col2 {0.000 1.000 0.000 srgb} bind def
/col3 {0.000 1.000 1.000 srgb} bind def
/col4 {1.000 0.000 0.000 srgb} bind def
/col5 {1.000 0.000 1.000 srgb} bind def
/col6 {1.000 1.000 0.000 srgb} bind def
/col7 {1.000 1.000 1.000 srgb} bind def
/col8 {0.000 0.000 0.560 srgb} bind def
/col9 {0.000 0.000 0.690 srgb} bind def
/col10 {0.000 0.000 0.820 srgb} bind def
/col11 {0.530 0.810 1.000 srgb} bind def
/col12 {0.000 0.560 0.000 srgb} bind def
/col13 {0.000 0.690 0.000 srgb} bind def
/col14 {0.000 0.820 0.000 srgb} bind def
/col15 {0.000 0.560 0.560 srgb} bind def
/col16 {0.000 0.690 0.690 srgb} bind def
/col17 {0.000 0.820 0.820 srgb} bind def
/col18 {0.560 0.000 0.000 srgb} bind def
/col19 {0.690 0.000 0.000 srgb} bind def
/col20 {0.820 0.000 0.000 srgb} bind def
/col21 {0.560 0.000 0.560 srgb} bind def
/col22 {0.690 0.000 0.690 srgb} bind def
/col23 {0.820 0.000 0.820 srgb} bind def
/col24 {0.500 0.190 0.000 srgb} bind def
/col25 {0.630 0.250 0.000 srgb} bind def
/col26 {0.750 0.380 0.000 srgb} bind def
/col27 {1.000 0.500 0.500 srgb} bind def
/col28 {1.000 0.630 0.630 srgb} bind def
/col29 {1.000 0.750 0.750 srgb} bind def
/col30 {1.000 0.880 0.880 srgb} bind def
/col31 {1.000 0.840 0.000 srgb} bind def
end
save
newpath 0 81 moveto 0 0 lineto 77 0 lineto 77 81 lineto closepath clip newpath
-43.6 127.0 translate
1 -1 scale
/cp {closepath} bind def
/ef {eofill} bind def
/gr {grestore} bind def
/gs {gsave} bind def
/sa {save} bind def
/rs {restore} bind def
/l {lineto} bind def
/m {moveto} bind def
/rm {rmoveto} bind def
/n {newpath} bind def
/s {stroke} bind def
/sh {show} bind def
/slc {setlinecap} bind def
/slj {setlinejoin} bind def
/slw {setlinewidth} bind def
/srgb {setrgbcolor} bind def
/rot {rotate} bind def
/sc {scale} bind def
/sd {setdash} bind def
/ff {findfont} bind def
/sf {setfont} bind def
/scf {scalefont} bind def
/sw {stringwidth} bind def
/tr {translate} bind def
/tnt {dup dup currentrgbcolor
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
bind def
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4 -2 roll mul srgb} bind def
/DrawEllipse {
/endangle exch def
/startangle exch def
/yrad exch def
/xrad exch def
/y exch def
/x exch def
/savematrix mtrx currentmatrix def
x y tr xrad yrad sc 0 0 1 startangle endangle arc
closepath
savematrix setmatrix
} def
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
/$F2psEnd {$F2psEnteredState restore end} def
$F2psBegin
10 setmiterlimit
0.03900 0.03900 sc
%
% Fig objects follow
%
% Polyline
7.500 slw
n 2100 2100 m
2100 1500 l gs col0 s gr
% Polyline
n 2100 2100 m
2625 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1575 1950 l gs col0 s gr
% Polyline
n 2100 2100 m
1725 2550 l gs col0 s gr
% Polyline
n 2100 2100 m
2475 2550 l gs col0 s gr
% Polyline
n 1575 1950 m
1575 1350 l gs col0 s gr
% Polyline
n 2103 1490 m
1578 1340 l gs col0 s gr
% Polyline
n 2097 1490 m
2622 1340 l gs col0 s gr
% Polyline
n 2625 1950 m
2625 1350 l gs col0 s gr
% Polyline
n 1575 1950 m
1200 2400 l gs col0 s gr
% Polyline
n 2625 1950 m
3000 2400 l gs col0 s gr
% Polyline
n 2475 2550 m
3000 2400 l gs col0 s gr
% Polyline
n 1725 2550 m
1200 2400 l gs col0 s gr
% Polyline
n 1725 2550 m
2100 3000 l gs col0 s gr
% Polyline
n 2475 2550 m
2100 3000 l gs col0 s gr
% Ellipse
n 2100 2100 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2475 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1725 2550 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1950 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1575 1350 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2625 1350 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 1200 2400 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 3000 2400 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 3000 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
% Ellipse
n 2100 1500 75 75 0 360 DrawEllipse gs col7 1.00 shd ef gr gs col0 s gr
$F2psEnd
rs
%%EndDocument
@endspecial 0 0 0 TeXcolorrgb 3789 828 a Fb(w)3844 836
y Fa(3)p Black 0 0 0 TeXcolorrgb 3274 584 a Fb(v)3311
592 y Fa(0)p Black 0 0 0 TeXcolorrgb 3736 584 a Fb(v)3773
592 y Fa(2)p Black 0 0 0 TeXcolorrgb 3347 877 a Fb(v)3384
885 y Fa(4)p Black 0 0 0 TeXcolorrgb 3505 389 a Fb(v)3542
397 y Fa(1)p Black 0 0 0 TeXcolorrgb 3257 389 a Fb(w)3312
397 y Fa(1)p Black 0 0 0 TeXcolorrgb 3408 535 a Fb(f)3445
543 y Fa(1)p Black 0 0 0 TeXcolorrgb 3603 535 a Fb(f)3640
543 y Fa(2)p Black 0 0 0 TeXcolorrgb 3736 389 a Fb(w)3791
397 y Fa(2)p Black 0 0 0 TeXcolorrgb 3663 730 a Fb(f)3700
738 y Fa(3)p Black 0 0 0 TeXcolorrgb 3496 1023 a Fb(w)3551
1031 y Fa(4)p Black 0 0 0 TeXcolorrgb 3204 828 a Fb(w)3259
836 y Fa(0)p Black 0 0 0 TeXcolorrgb 3566 608 a Fb(v)p
Black 0 0 0 TeXcolorrgb 3687 877 a(v)3724 885 y Fa(3)p
Black 0 0 0 TeXcolorrgb 3347 730 a Fb(f)3384 738 y Fa(0)p
Black 0 0 0 TeXcolorrgb 3505 828 a Fb(f)3542 836 y Fa(4)p
Black 2003 282 a Fr(No)n(w)48 b(w)n(e)h(ha)n(v)n(e)e(8)i(distinct)g(v)n
(er-)1920 382 y(tices,)c Fh(v)s(;)14 b(v)2270 394 y Fe(0)2307
382 y Fh(;)g(v)2384 394 y Fe(1)2422 382 y Fh(;)g(v)2499
394 y Fe(2)2536 382 y Fh(;)g(v)2613 394 y Fe(3)2651 382
y Fh(;)g(v)2728 394 y Fe(4)2765 382 y Fh(;)g(w)2861 394
y Fg(i)2889 382 y Fh(;)g(w)2985 394 y Fg(i)p Fe(+1)3097
382 y Fr(,)1920 482 y(so)31 b Fh(V)48 b Fd(\025)29 b
Fr(8.)48 b(Applying)32 b(Equation)e(5,)1920 581 y(w)n(e)18
b(obtain)h(that)g Fh(F)2507 593 y Fq(\025)p Fe(5)2620
581 y Fr(=)j(0.)34 b(Th)n(us,)20 b(all)1920 681 y(of)31
b(the)h(faces)f(in)h Fh(G)2536 693 y Fg(r)2604 681 y
Fr(m)n(ust)g(ha)n(v)n(e)e(de-)1920 780 y(gree)19 b(4,)j(in)f
(particular)e(all)h(of)h(the)g Fh(f)3014 792 y Fg(i)3041
780 y Fr('s.)1920 880 y(De\014ne)27 b Fh(w)2235 892 y
Fg(i)2290 880 y Fr(to)g(b)r(e)g(the)g(fourth)g(v)n(ertex)1920
980 y(of)d(eac)n(h)f Fh(f)2235 992 y Fg(i)2263 980 y
Fr(.)35 b(Applying)25 b(the)f(previous)1920 1079 y(argumen)n(ts,)k
Fh(w)2408 1091 y Fe(0)2446 1079 y Fh(;)14 b(w)2542 1091
y Fe(1)2579 1079 y Fh(;)g(w)2675 1091 y Fe(2)2713 1079
y Fh(;)g(w)2809 1091 y Fe(3)2846 1079 y Fh(;)g(w)2942
1091 y Fe(4)3009 1079 y Fr(are)1920 1179 y(distinct)39
b(from)f Fh(v)2478 1191 y Fe(0)2516 1179 y Fh(;)14 b(v)2593
1191 y Fe(1)2630 1179 y Fh(;)g(v)2707 1191 y Fe(2)2744
1179 y Fh(;)g(v)2821 1191 y Fe(3)2859 1179 y Fh(;)g(v)2936
1191 y Fe(4)2973 1179 y Fr(,)42 b(and)c(eac)n(h)f Fh(w)3466
1191 y Fg(i)3533 1179 y Fr(is)h(distinct)1920 1279 y(from)32
b Fh(w)2180 1291 y Fg(i)p Fq(\000)p Fe(1)2326 1279 y
Fr(and)g Fh(w)2551 1291 y Fg(i)p Fe(+1)2664 1279 y Fr(.)52
b(\(Although)32 b Fh(w)3201 1291 y Fg(i)3262 1279 y Fr(migh)n(t)h
(equal)f Fh(w)3788 1291 y Fg(i)p Fe(+2)1920 1378 y Fr(or)37
b Fh(w)2091 1390 y Fg(i)p Fe(+3)2203 1378 y Fr(.\))67
b(F)-7 b(urthermore,)39 b(w)n(e)e(cannot)h(ha)n(v)n(e)e(all)h(the)h(o)r
(dd-)1920 1478 y(index)43 b Fh(w)2218 1490 y Fg(i)2246
1478 y Fr('s)g(equal,)j(and)d(all)f(the)i(ev)n(en-index)e
Fh(w)3559 1490 y Fg(i)3587 1478 y Fr('s)h(equal,)1920
1577 y(b)r(ecause)i(the)i(n)n(um)n(b)r(er)e(of)h Fh(w)2899
1589 y Fg(i)2927 1577 y Fr('s)g(is)f(o)r(dd.)92 b(Th)n(us,)50
b(the)c(set)1920 1677 y Fd(f)p Fh(w)2021 1689 y Fe(0)2058
1677 y Fh(;)14 b(w)2154 1689 y Fe(1)2192 1677 y Fh(;)g(w)2288
1689 y Fe(2)2325 1677 y Fh(;)g(w)2421 1689 y Fe(3)2459
1677 y Fh(;)g(w)2555 1689 y Fe(4)2593 1677 y Fd(g)23
b Fr(m)n(ust)h(ha)n(v)n(e)e(at)i(least)f(3)h(distinct)g(mem-)1920
1777 y(b)r(ers.)2003 1876 y(So)e(there)g(m)n(ust)h(b)r(e)g(at)f(least)g
(9)g(distinct)h(v)n(ertices)f(in)g(the)h(set)1920 1976
y Fd(f)p Fh(v)s(;)14 b(v)2082 1988 y Fe(0)2119 1976 y
Fh(;)g(v)2196 1988 y Fe(1)2234 1976 y Fh(;)g(v)2311 1988
y Fe(2)2348 1976 y Fh(;)g(v)2425 1988 y Fe(3)2462 1976
y Fh(;)g(v)2539 1988 y Fe(4)2577 1976 y Fh(;)g(w)2673
1988 y Fe(0)2710 1976 y Fh(;)g(w)2806 1988 y Fe(1)2844
1976 y Fh(;)g(w)2940 1988 y Fe(2)2977 1976 y Fh(;)g(w)3073
1988 y Fe(3)3111 1976 y Fh(;)g(w)3207 1988 y Fe(4)3245
1976 y Fd(g)p Fr(.)34 b(But)24 b(Equation)d(5)1920 2076
y(tells)28 b(us)f(that)h Fh(V)42 b Fd(\024)23 b Fr(8,)k(a)g(con)n
(tradiction.)615 b Fc(2)1920 2378 y Fs(5)135 b(Conclusion)1920
2560 y Fr(The)31 b(main)g(op)r(en)g(problem)f(is)h(to)g(settle)g
(whether)f(there)h(are)1920 2659 y(nonorthogonal)46 b(p)r(olyhedra)h
(with)i(orthogonal)d(faces)i(and)1920 2759 y(gen)n(us)27
b(b)r(et)n(w)n(een)g(3)h(and)f(5.)1920 3027 y Fs(Ac)l(kno)l(wledgmen)l
(ts)1920 3209 y Fr(This)k(w)n(ork)e(w)n(as)h(initiated)i(at)f(the)g
(Univ)n(ersit)n(y)f(of)h(W)-7 b(aterlo)r(o)1920 3308
y(Algorithmic)35 b(Op)r(en)g(Problem)f(Session)h(on)g(July)g(30,)h
(2001.)1920 3408 y(W)-7 b(e)34 b(thank)g(Graeme)g(Kemk)n(es,)g(Anna)g
(Lubiw,)i(and)e(Joseph)1920 3508 y(O'Rourk)n(e)26 b(for)h(helpful)h
(discussions.)1920 3776 y Fs(References)p Black 1920
3957 a Fr([1])p Black 41 w(M.)44 b(Bern,)k(E.)43 b(D.)i(Demaine,)j(D.)c
(Eppstein,)k(E.)c(Kuo,)2049 4057 y(A.)36 b(Man)n(tler,)g(and)f(J.)g
(Sno)r(eyink.)59 b(Un)n(unfoldable)36 b(p)r(oly-)2049
4157 y(hedra)g(with)h(con)n(v)n(ex)e(faces.)62 b Fo(Comput.)39
b(Ge)l(om.)f(The)l(ory)2049 4256 y(Appl.)p Fr(,)29 b(2002.)35
b(T)-7 b(o)27 b(app)r(ear.)p Black 1920 4407 a([2])p
Black 41 w(T.)50 b(Biedl,)k(E.)49 b(Demaine,)55 b(M.)50
b(Demaine,)55 b(A.)50 b(Lubiw,)2049 4507 y(M.)65 b(Ov)n(ermars,)72
b(J.)65 b(O'Rourk)n(e,)73 b(S.)65 b(Robbins,)74 b(and)2049
4606 y(S.)22 b(Whitesides.)28 b(Unfolding)22 b(some)f(classes)g(of)g
(orthogonal)2049 4706 y(p)r(olyhedra.)39 b(In)29 b Fo(Pr)l(o)l(c.)i
(10th)h(Canadian)g(Conf.)g(Comput.)2049 4806 y(Ge)l(om.)p
Fr(,)d(Mon)n(tr)n(\023)-39 b(eal,)25 b(Canada,)i(Aug.)g(1998.)p
Black 1920 4956 a([3])p Black 41 w(T.)34 b(Biedl,)i(A.)e(Lubiw,)i(and)e
(J.)f(Sun.)56 b(When)35 b(can)e(a)h(net)2049 5056 y(fold)20
b(to)g(a)g(p)r(olyhedron?)38 b(In)20 b Fo(Pr)l(o)l(c.)j(11th)h
(Canadian)h(Conf.)2049 5155 y(Comput.)31 b(Ge)l(om.)p
Fr(,)d(V)-7 b(ancouv)n(er,)26 b(Canada,)h(Aug.)h(1999.)p
Black 1920 5306 a([4])p Black 41 w(M.)i(Donoso)f(and)h(J.)f(O'Rourk)n
(e.)42 b(Nonorthogonal)28 b(p)r(oly-)2049 5406 y(hedra)g(built)h(from)g
(rectangles.)38 b(arXiv:cs.CG/0110059,)2049 5505 y(Dec.)28
b(2001.)p Black Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF