eb@
ЉɂۗނƂ̊Ƌ
eb@܂ B..
eb@܂ B
R~jP[V́CVOiiMjƌĂh̊Ԃł肷邱ƂŐDVOi𐳊mɎMCM邽߂ɂ́CꂽoeVXe̍\zK{łD́CJV̑lŃj[NȃR~jP[VnfƂāCpVOiVXeCi1jǂ̂悤ȃvZXoĐi𐋂Ci2jǂꂾIɗpĂ邩C𖾂炩ɂ錤ɎgłD{uł́CقȂӂ̏ʂɂR~jP[V̗āCJV̍I݂ȏp헪̐ivZXƍIȃVXeɂĂЉD
@b@}gw@GA@A 211
eb@܂ B
@b@}gw@GA@A 205
eb@܂ B
Cϓł̎RیɂۑSw
@Rی́AԌn̒nIz܂łςȂƂÓIȍlɊÂāAeɐݒuĂBAiCϓ钆Łĵ悤ȑO͒ʗpȂȂ\ߔN͎wEĂB܂AC ϓɔēn番zgĂwpuOvƌȂ̂ƂVȖサBCϓɑKƂĂ̈ڏZxAgȋCɓK`q̐lדIȓƂg݂ɂĂA^ۗ_B
@b@QOPTN@SROijPUFOO`PWFOO
@b@}gw@GA@A 205
eb@܂ B
@b@QOPTN@SQSijPUFOO`PWFOO
@b@}gw@GA@A107?
eb@܂ BXyCoonce, ?(: SEl)
@b@QOPTN@SVij@PUFOO|PWFOO
@ꏊb@}gw@GA@A QF @AQOT
eb@܂BYΏēgWB
nER̒W@ICJނ̕ނƑl
@b@QOPSNPQPPijPUFOO`PWFOO
@b@}gw@GA@A205
?eb@܂ BCasanovaB
46@@
JugV̎RjT
JugV͂ƂĂlĈ鍩łAOł̐Ԃɂ͂悭킩ĂȂ_܂B{Z~i[ł́AcA̐ԂɊւ錤ʂ肸Љ܂Bڂ͗c̏WɊւ錤łBJugV̗c͓̗c邠鉻wĖOŏW邱Ƃ킩܂B̕肷Ɏo܂AWKIȈӋ`ɂĂb܂B㔼ł͐̕ߐH҂Ɋւ錤Љ܂BJugV̖Kt̎ɂ́A҂ɂĕHׂꂽJugV̎c[UĂ邱Ƃ܂BƐlׂ邽߂ɁAΎs̎GؗтɐԊOZT[JݒuƂAJugV̕ߐH҂݂̂Ȃ炸At𗘗p邳܂܂Ȑ̎p𑨂邱Ƃł܂B̉fЉȂAΎs̎R̖͂ɂĂ`܂B
?@b@QOPSNPPPRijPUFOO`PWFOO
@b@}gw@GA@A205
eb@܂ B
45@@
J. Cohen (The Rockefeller University)
?The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose non identifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect non identifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities.
@b@QOPSNPOPRijXFOO`PQFOO
@b@}gw@GA@A205?
eb@܂ BQ't t[hR[g
44@@
qL iw@wE擱Ȋwj
@b@QOPSNXPWijPUFOO`PWFOO
@b@}gw@GA@A205
eb@܂ BC^ArXgցXB
43@@@@
Chris Elphick (University of Connecticut, USA)
Extinction risk in tidal marsh birds as sea levels rise: changing habitat and demographic processes
?Climate change is predicted to affect many organisms.Specialist species, especially those restricted to habitats that will?diminish under climate change, are presumably most vulnerable. ?High?latitude and high elevation species have received much attention, but?coastal species threatened by sea-level rise are also at risk.?Saltmarsh sparrows Ammodramus caudacutus are tidal marsh endemic?birds, representative of species that use coastal marshes. High tide?flooding is the main cause of nest failure, and nesting habitat is?limited to higher-elevation marshes that flood during spring tides.?Demographic data suggest a high probability of extinction by?mid-century. ?Other tidal-marsh nesting birds likely face similar?fates, albeit not so rapidly. ?Evidence also suggests that?northeastern US marsh habitats are rapidly changing in a manner?consistent with increased tidal flooding and that habitat restoration?is failing to provide suitable conditions for the most vulnerable?species that use these marshes.
Thomas W. Sherry iTulane University, USA)
Effects of nest depredation and weather on reproductive success and population control in a migratory songbird
: Are summer and winter decoupled?
Control of migrant bird populations remains poorlyunderstood. We combined a field experiment (baffles limiting accessto nests by scansorial predators) with modeling long-term nesting?success of American redstarts (Setophaga ruticilla) to assess effects?of multiple variables on nesting success and population dynamics. Theexperiment doubled nesting success, showing importance of scansorial?mammals, primarily red squirrel. Success of unbaffled nests was most?influenced by sciurid nest predator abundance and May temperature, but?also by June rainfall and nest age. Population density had no effect?on nest success in our study, but did in another redstart study?involving different predators. ?Nesting success predicted 66% of the?variation in annual summer population growth (lambda). Our resultsdocument (1) the value of identifying nest predators, (2) multiplefactors affecting reproductive success both directly and indirectly,and (3) ecological decoupling of summer predator-mediated reproductionversus winter food-limited adult survival.
Mauro Fasola (Pavia University, Italy)
Long-term trends of breeding herons and egrets, and their foraging ecology in ricefields of Italy
?Breeding herons and egret were monitored since 1972 in Northwestern Italy, an area of 57,591 km2 with large surfaces of rice cultivation (2,000 km2). The heronries increased from 40 to 130, and the nests peaked in 2000, up to 23 times the initial number for Grey Herons. This spectacular increase was due to lower human-induced mortality, to climatic changes, and to changes in rice cultivation practice. But since 2000, a decreasing trend has become evident. In order to check the influence of rice cultivation practices on population trends, we compared the results obtained in 2013-2014 with those 1977-2000, about the following topics. 1) Changes in chicks diet; some staple prey (amphibians) have diminished, while new prey of recent colonization (the invasive Procambarus clarkii) have increased. 2) Changes in the submerged rice, studied using satellite imagery; compared to 100% submersion until 1990, the submerged surface in 2013 were <50%. 3) Foraging success of the breeders in agricultural versus seminatural foraging habitats. A modeling is under way of the influence of these changes in prey availability, of the climatic changes, and of other factors, on these declining heron populations.
@b@QOPSN W PUiyjPUFOO`PWFOO
@b@}gw@GA@A111
eb@܂ B}g A EW
42@@
c S iRw w@ Ȋwj
IIcmRNkXghLɂ镉Ȃ̓KIӋ`
@@̓ʼnazȂnjꂽ߂鑈ώ@ĂB̂͐UʂĉxoǍoΎ̓ɉe邱ƂBÂAô͎̐킢̏オiȁjAskꍇ͂̋tɂȂ邱ƂiȁjALތQŕĂB̌ۂ͓̉Őł邱ƂĂĂiA҂͔rIł͂ȂjF1́ÂoɎg̍sςiself-assessment hypothesisjǴAȂǂ̎肪肩Âΐ푊̓ofAsςisocial-cue hypothesisjB̗ƁAO҂͋LwKɂs̏CłA҂͑ΐ푊̉ߋ̓ɂOofޗɂāÂsς邱ƂłB
@ł́AIIcmRNkXghL̃IXƂāAǂ̂悤ɓoɂsCKxɉe邩c_B{̃IX͑傫ȑ{AX߂킢邪AXɂ͑{͂ȂBȏ͎ΐ̏ɉeyڂȂAsko4ԁAIX̏0%߂܂ʼn邱ƂĂBŏɁAskɂǂ̂悤ȍsCNׂ̂BɁAȂCԂSԂȂ̂_IɌƂƂɁAskoIX̔ɐBpɉeyڂBɁAskoɂsC̐IE`IՂɂĂ\łB
@b@QOPSNVQSijPUFRO`PWFOO
@b@}gw@GA@A205?
eb@܂ BF[ c
41@@@
| v (AEԌnZ^[)
Iȕی̑IƐ̕zp^[ `bƉp̂킢ɂā`
@Rیݒ肷ꍇA܂܂ȎԌn̗vfՂȂ܂ނ悤ɕۑSΏےnIŁAŜƂČ̂悢یfUCƂl܂Bی̃fUĆA̕zp^[ɋˑ܂BƂȂlԍn_ɂׂĂ̎킪܂Ƃ܂ĕzĂȂA̒n_ׂĂ̎Jo[ł܂Bł͂ȂA킪݂ɂ܂ւɕzĂȂAׂĂ̎Jo[悤ƎvƑ傫Ȗʐς̕ی悪KvƂȂ܂B
?́A܂܂ȎJo[邽߂ɂǂꂾ̖ʐς̕ی悪KvȂ̂ƂpԊw̖ɂāA̕z̑֊W̉͂ƂbIȖɎg݂͂߂܂BZ~i[ł́AՂȂJo[ی̍Â̕z̑ւƕKvȕیTCY̊WA̕zp^[^Cv@A{ł̂܂܂ȕތQiV_A`EAg{AށAMށAWނȂǁj̕zɂЂޓ\̒o݂̎ȂǂɂďЉ܂Bzp^[̉͂̕@_A̒nIȕz̗ɂĂӌ邱Ƃy݂ɂĂ܂B
@b@QOPSNTP5ijPUFRO`PWFRO
@b@}gw@GA@A205
eb@܂ BN[YB
40 @@@
R @iAXe_Rwj
IĂƁAЂЂƎŶւ̔Q܂B悭ڂ鍩ٓނȂǂ̎ŶّƂ͑ΏƓIɁAL~~YƂY̓̐IɂẮAꂽm܂B̂ŁAŶ̔ɐBԂ́A낢냆j[NȔł錤́uvł܂BȎŶ̐Iy邽߂ɁA{Z~i[ł́AZɌR鎄̔m_ЉƎv܂B́AŶ̕ނɂ镶AWLmAKCpĎČzOEzvZXĂ܂BɁAtB[hsA쐶Wcɂ闐x𐄒肵܂BāA(1) {ł͑̃TCYƗIXX邩Ƃzp^[E@(2) z̔ɐBɂ͌z̒@\dvȖʂ@(3) z肩琸傤^pNƎ̌zɃIX@\邱ƂȂǂAVɂ킩Ă܂B
@b@QOPSNTPQijPUFRO`PWFRO
@b@}gw@GA@A107
eb@܂BGʂB
39 @@@E3Z~i[EnȊwZ~i[Ƌ?
C i`wj
̊S͕Ӌ̐ ԂƌniłA܂Ő[CEɁEȂǂ̂ɌɐׂĂB܂݂́ATCY̋Ɍ\TCYӋ\Ƃ ̋ɔΏۂƂĂAhߏۃtB^[ʂ蔲鏬Ȕ̔|{݂ĂB̌ʁAIɏTCYʼn߂imA lȍזE`ԂȔlXȊ番ꂽB͍̔jxł̐VnłȂɂ͂܂܂m݂̐ 邱Ƃ\B{\ʂāA܂ł̃tB[hЉƂƂɁAӋ̐lc_B
@b@QOPSNQPXijPUFRO`PWFOO
@b@@{قPERK@Qc
eb@܂BB
38@@u}gwejAgbNyE蒅 QOZ~i[vƋ
IV ikw kAWAZ^[ۑSwj
?
Ǔ iȊwفEAj
37@@@34nȊwZ~i[Ƌ
㓡 Y iwECCmj
36@@@RRnȊwZ~i[Ƌ
쌴 i EԌnZ^[j
35
isYƑw Ȋwj
ƈd iw _wȊwȁj
33? ? ??31 nȊwZ~i[Ƌ
Oiw CCmj肽\pɊׂɁCĂ̒ɐgBǂꂾ邱Ƃcł́CREɑ݂錊́CN̂߂ɍĂ̂ł傤HCɌ閳Ғœ̑́Č`҂̐ꏊƂȂłȂCCʂOIɊg邽ߊCꐶԌnɑ傫ȉeyڂ܂D{\ł́Clѐ[Cɂ鑃ɂĂ̍ŐV̌ʂC̉͂ńgBꂽԁh𖾂炩ɂЉ܂D
32 ? ??30 nȊwZ~i[Ƌ
dc N iȊwفjÐ㖖̑ʐŎɂ萶̑啔͎łA܂ł̐Ԍn͉œIȑŌB̌A͂ǂŁAǂ̂悤ɐAlԌn͂ǂ̂悤ɉĂ̂BVAɓ̃v[GiCBjnɂ͎OIO̒nwLzAn̕ϑJL^ĂB҂ɂ钲E̊TЉB
31 ? ?29 nȊwZ~i[Ƌ
al iXёj
lY~ƌAV̐lY̔lY~voAR̐lgWF[vo܂Bg&WF[ƌAǂl Y~āAX肵܂B͂ĂA}ł́AO̐Ԍnւ̉e傫ȖƂȂĂ܂B̂߁ANIO ̋쏜ƂsĂ܂BAOԌnŏdvȋ@\ʂĂꍇA쏜̂̂Ԍnɉe^邱Ƃ ܂BႦAM쏜ɂ́AߐHꂽOAɖ邱Ƃ܂B́AlY~̋쏜ƒ̕ۑS̘b𒆐SɁAO 쏜̌ƉeɂĂЉ܂B
?
Ύ iE_wȊwj
͂܂ō̔ɐBsɓɋČsȂĂ܂Bޗe[}DɑIł߁A܂Ƃ܂肪܂B͍uԂ߂ɂ̂ŁÂ܂Ƃ܂̈ʂɂĂƂƂ߂ȂbĂ݂悤Ǝv܂Buł͑傫3̘b܂B܂AHRKlV̐eqւ̓sɂĂb܂BɁAԂ̐IݍpłɐBɂĂb܂B}]EVp␔f炢킩Ƃ܂BŌɁAݒsȂĂO̘b܂BԂƍ̊WɂĂ킩ƂȒPɂb܂B
ۉƍKi}gEj
e b uO`vł܂B
IRviE_wȊwj
?
RiR`Ej
?
XؐviA]iBEj
?
M炳iE@Ej
?
Jzꂳi_ƁEHiYƋZp@\@앨j
?
\qi_ƑZ^[j
?
אMOiYƋZpj
Y^iXёj
R^lij
?
ΐnȊwZ~i[ ^ ΑށEveBXgtH[ ^ ΐiԊwZ~i[ Ê
?
?
cioϑj
?
17?
jiswEHEȊwj
?
CV ~iȊw Aj
15 i21 nȊwZ~i[ƋÁj
ɓ m i XNZ^[j
?
rc [ iE@Ej
iwECCmj
B|WV iEtRCJSTj
[S iBwj
?
?
TYij
?
rchmiXёj
c qi_Ɛj
?
y uiEj
xFij
?
nFi_ƊZpj
GiȊw }gAj
X^ꂳiEj
RY傳iȊw }gAj
?
?