56

rMiE擱Ȋw/wUSPDj

Ɍt͂邩Hɂ`BƂ̐ԓIK

𐟂܂΂ǂȏꏊłKƌĂقǕ鉹B̖͒‚BssɂRɂ_ɂC͂ƂĂӂĂāCG߂킸‚킵Bt̖K鏬̂H̕Ƃ郂Y̍‚B͖‚ɂĂ܂܂ɃR~jP[VƂĂB
@CȂɐg߂Ȓ̖‚Cǂ̂悤ȈӖCނ̐ɐBɂĂǂ̂悤ɖ𗧂Ă̂Cɕ܂ĂB̖‚͎̌tƂǂ̂悤ɎĂāCǂ̂悤ɈقȂ̂낤H?
@́CVWEJȒނΏۂɖ‚̈Ӗ`B̓KIӋ`ĂB{uł́C‚ɂ݂鉹\ِ̓╶@KɒڂC炪̓`Bɂǂ̂悤ɂCM҂юM҂ɂǂ̂悤ȓKx̗v炷̂CŐV̌ʂ܂߂ďЉB܂CsԊwCrFmȊwCw̗ZIȃAv[`̃R~jP[Vɂǂ̂悤ȐiW炵邩C̉”\ɂ‚Ăc_B

@b@QOPUN@Q PQijPSFROJn

@b@}gw@GA APOV

eb@

55@@}gwejAgbNyE蒅ƎZ~i[Ƃ̋ÂłB

i򕌑@pȊw@ʋ͌)

ЉɂۗނƂ̊񐶂Ƌ

ׂĂ̐͒PƂŐĂ킯ł͂ȂA̐‹ȂǂƑ݂ɉe
āAlXȌ`lĐĂ܂BЉɂĂlłA
ݍp͐lԂ̖ڂɂ͒ڌ邱Ƃ̂łȂۗނƂ̊֌W܂݂܂BۗނƂǂ̂悤
܂荇‚邩́AЉɂƂĂ͍ŏdvۑƂȂĂ܂B
@̔\ł́Aaۂɑ΂΍RiƂĎЉǂ̂悤Ȑp
̗pĂ̂ɂ‚āAAAn`AVAŔƂЉ܂BāA
Љł݂鋤ɂ‚āAۗނłLmR͔|VAŒe
ɂ‚ĈꕔЉ܂B̊񐶂Ƌ̌ʂāA̐邽߂̐p
ʔ`ł΂ƍlĂ܂B

@b@QOPTN@PQ PWijPTFOO`PVFOO

@b@}gw@GA A110

eb@܂ B..

.

54@@nȊwZ~i[Ƃ̋ÂłB

򌫑Y (Œ PD)

ꎿ̉aʕϓɑ΂ꐶQW̉F㑍wQ{wɂ鐶͂ƒnw

̐ jN (}g ‹ mے)

ɓcnɕz锒lwQ̊⑊ƉΑw

@b@QOPTN@PO ROiyjPUFRO`PXFOO

@b@}gw@tGA 7A105u`

eb@܂ B

x Y (Biol. Sci., Univ. of Cincinnati)

q̐_osw
--oe̍s"Đ_oI"ڎw--
@E̓ɋʂ̂ЂƂ‚͐_o߂]ɂ݂_on̒łB̂悤ȓɂĊoEsEFm𐬗鐶JjY𗝉邽߂ɂ́A̐_oזEVivXڑ邱Ƃō\ꂽ_oHԂ̓A^CŒׂ邱ƂsŒłB܂qxs̃JjY𗝉A邢͍s̐_oՂǂ̂悤ɐiĂ̂邤łA_oH\זE̍\Em邱ƂdvłBA]_oH\X̍זEׂĂ𓯒肵Aԕ\Ő_o𑪒E͂邱Ƃ́AMނȂNj]ł͂قƂǎs”\łBpqHirudóAsS_oHo͂^o͂Ɏ܂ŏڍׂɒׂ邱Ƃ”\ȎƂāA50NȏO痘pꑱĂBX̓q̐_o߂ɂقڑSĂ̐_oזE瓯ɂ_oL^͂gĐ_oÍhs߁A^dʃC[WO@mB̋ZpɂAǏpȔ˂VjsƂqvȍsɊւזEWc̐_oԗIɑ肷邱ƂɐB{uł́A_oswɂB̌ƂKroghfs principle𓱓ƂāAq𗘗p_osẘTiȂqȂ̂Hjn߂B̂ŁAXm\hW[ЉAg_oJjYh̔rEiw̉”\ɂ‚ĂysB

T@(Xё wUʌ)

JṼR~jP[VT鍩̍I݂ȏ񗘗p헪

@́CREɑ݂ǂ̂悤ɗpĈӂ܂肷̂낤D̍sK肷̂́ClȏłD̏ếC̊ołDi̗joāĆC݂̍IȊoeVXe\zĂD̎dg݂ivZX𖾂炩ɂ邱ƂŁC̈ӎvVXěmCނ̊鐢E_Ԍ邱Ƃł邩ȂD

R~jP[V́CVOiiMjƌĂ΂h‘̊Ԃł肷邱ƂŐDVOi𐳊mɎMCM邽߂ɂ́CꂽoeVXe̍\zK{łD́CJV̑lŃj[NȃR~jP[VnfƂāCpVOiVXeCi1jǂ̂悤ȃvZXoĐi𐋂Ci2jǂꂾIɗpĂ邩C𖾂炩ɂ錤ɎgłD{uł́CقȂӂ‚̏ʂɂR~jP[V̗āCJV̍I݂ȏ񗘗p헪̐ivZXƍIȃVXeɂ‚ĂЉD

̃|X^[

@b@QOPTN@X SiyjPUFPT`

@b@}gw@GA@A 211

eb@܂ B

52

R V ( 쐶یǗ )

A{Ɨ񐶖I̓KIȈӎv
@H҂ɂƂĕߐH̉͐ɒڊ^dvȐ헪łBAߐH҂ɂƂāAH҂𔭌p邽߂̍̉a헪͏dvłBH|H֌WɂāAH҂̕ߐHɂ鎀S̑啔̕ߐHҎɂċNꍇAH҂͂̕ߐHҎɓ헪‚Ƃ҂BŁA΂ߐH҂Aaɓ̉a헪‚ƍl炦B{uł́AA{Ƃ̗݂̂𗘗p闑񐶖IpǍЉBA{͗񐶖IANZXɂʉ̐[ʒuɗYݕt邱Ƃŗ񐶂̕pxቺBA𔺂Yɂ͗lXȃRXg݂B ƎYɂӎvA񐶂̃XNƐ̃RXg璲ʂЉB܂A񐶖ÍAʉɑ݂A肪̏ȂA{𔭌Ȃ΂ȂȂB񐶖I̐̈ӎvɂvɂ‚ĂЉB

̃|X^[
@b@QOPTN@U PRiyjPTFPT`PVFOO

@b@}gw@GA@A 205

eb@܂ B

51

V (_nEW[E@E‹wU)

Cϓł̎RیɂۑSw

@Rی́A␶Ԍn̒nIz‚܂łςȂƂÓIȍlɊÂāAeɐݒuĂBAiC󂪕ϓ钆Łĵ悤ȑO͒ʗpȂȂ”\ߔN͎wEĂB܂AC ϓɔēn番zgĂwpuOvƌȂ̂ƂVȖサ‚‚BCϓɑ΂KƂĂ̈ڏZxAgȋCɓK`q̐lדIȓƂg݂ɂ‚ĂA^ۗ_B

@{Z~i[ł́ACϓɕtۑSw̉ۑbA܂uیԂ̉LɂAvƂÓTIȍl⌻悸ЉB̏ŁACOŌi݂‚‚uCϓƎ㐫]vAuΘbɂ鐶ԌnViI\vAu̎ۑS邽߂̓KvARی惌xł̋Cϓւ̓KɌ@ŋ߂̎ЉB{ŊɐϋɓIɎg܂Ă̏zKn̐ 蓙́A̎ɂ͊܂߂ȂB̔\ʂA㓖Yłǂ̂悤Ȍl邩ɂ‚ċc_B

̃|X^[

@b@QOPTN@SROi؁jPUFOO`PWFOO

@b@}gw@GA@A 205

eb@܂ B


50

KY (ME)

KUɂG`̖T
KÚAP̑c悩瑽lȐԊwIjb`ɓK̎킪}ɐi錻ۂłÃJjYɌĂB‚̑\IȓKUŁAȔɋNԂł̎G`lȌ`̏o𑣂Alȃjb`ւ̋}ȓK𑣐iĂBԊwIjb`ގ‘̓mœތzX΁AG`jb`̑lƘAĎ퐔AKUɎƗ\zBȂAG`͎Ԃ̈`IAl}ƂĂAKKU𑣐iƂ͌ȂBŖ{ł́AG`ɂēKUi”\𗝘_IɌ؂ȀT邽߁A‘̃x[XEfɂKŨV~[VsBlXȏŃV~[VJԂʁAG`KUɂĉʂ͐ԊwIjb`ɊÂތz̋Ɉˑĕω邱ƂBތz̋x̂ƂAeԂ̎핪ۂȂG‘̌Q`AԓIlƎ퐔Ƃɑ邱Ƃ\ꂽB
̃|X^[

@b@QOPTN@SQSijPUFOO`PWFOO

@b@}gw@GA@A107?

eb@܂ BXyCoonce, ?(񎟉: SEl񂿂)

49

Eric Wajnberg ( INRA, France )

Genetic Algorithms.
What are they, and how can we use them in solving problems in population biology
?Genetic Algorithms are numerical, computer-assisted methods used to find values of parameters that maximize a given criterion. They are inspired by Darwinfs theory of evolution, and are thus simulating an evolutionary process to get to the best (fittest) solutions. These methods were invented in the seventies, and ?since then ?they have been used in a variety of fields, including optimizing military weapons, designing aircrafts, robotics, and even art, to mention just a few. There are now progressively being used to solve problems in ecological science, and especially in behavioral ecology, i.e., to find optimized behaviors animals should adopt to maximize their reproductive output. The seminar will present didactically what Genetic Algorithms are and how they work. Then, a couple of examples showing how we are using them to address problems dealing with the behavioral ecology of parasitoid insects will be presented.
̃|X^[
Date: Tue.Apr. 7thin 2015@(16:00-18:00)
Place: room A205 @ Laboratory of Advanced Research A (A), Univ. of Tsukuba

@b@QOPTN@SVi΁j@PUFOO|PWFOO

@ꏊb@}gw@GA@A QF @AQOT

eb@܂BYΏēgWB

48

ejAgbNZ~i[Ƃ̋

( ߋEw _w Ԋw )

nER̒W@ICJނ̕ނƑl

E͂܂܂svc–𖾂ȎۂɖĂA𖣗Ă܂B̐ ԂsAl̂ȂɔAǂ݉Ƃl܂B
RԌnɂ͎ɑ̐Ă܂A̐g߂ɂ邯ǓɖڗȂ݂ł邽߂ɁAuGv̎łЂƂɂĂ܂킪܂B
{uł́AuGvƌĂ΂W̒ICJނグȂlȐԂƕނ̂낳ɂ‚ĂbĂ炢܂B

|X^[͂(NbNƊg債܂)

b@QOPTN@PQPi؁jPTFRO|PVFOO

ꏊb@}gw@_ъwn@FUOVc

eb܂B

47

v Zq ( ȊwفElތAwUʌ )

Slowest Life-History ~IE[^̔ɐB~
IE[^(Pongo_sp.)̓qgɋ߉ȑ^ސl(쒷)̈ŁAAWA ̔MщJтɐĂBő̎㐫AoYԊu͗Mނ Œ(6~9N)AMނł͒uY̓^nvXAIE[^͚MށE 쒷ނ̒łۂ𐔑ĂB\҂͂10NA{lI {̓ȂǂŁAIE[^̎̔ɐBԂĂB{Z~i [ł́A\Ҏǧʂ‚AYꂼ̓قȔɐB헪A ̌H‹ɑ΂āAIEsIɃIE[^ǂ̂悤ɓK ̂Aqg(Homo sapiens)܂ދ߉ƔrAIE[^̓قȐjA Ԃ̐ijƂ݂B


̃|X^[

@b@QOPSNPQPPi؁jPUFOO`PWFOO

@b@}gw@GA@A205

?eb@܂ BCasanovaB

46@@

(@wAwUʌ)@

JugV̎RjT

JugV͂ƂĂlĈ鍩łAOł̐Ԃɂ͂悭킩ĂȂ_܂B{Z~i[ł́AcA̐ԂɊւ錤ʂ肸Љ܂B–ڂ͗c̏WɊւ錤łBJugV̗c͓̗c邠鉻wĖOŏW邱Ƃ킩܂B̕𓯒肷Ɏo܂AW‚KIȈӋ`ɂ‚Ăb܂B㔼ł͐̕ߐH҂Ɋւ錤Љ܂BJugV̖Kt̎ɂ́A҂ɂĕHׂꂽJugV̎c[UĂ邱Ƃ܂BƐl𒲂ׂ邽߂ɁA‚Ύs̎GؗтɐԊOZT[JݒuƂAJugV̕ߐH҂݂̂Ȃ炸At𗘗p邳܂܂Ȑ̎p𑨂邱Ƃł܂B̉fЉȂA‚Ύs̎R̖͂ɂ‚Ă`܂B

̃|X^[

?@b@QOPSNPPPRi؁jPUFOO`PWFOO

@b@}gw@GA@A205

eb@܂ B

45@@

J. Cohen (The Rockefeller University)

Taylor's power law of fluctuation scaling and abrupt biotic change

??Recent paleoclimatic and paleoecological studies and the 2013 National Academy of Sciences report on Abrupt Impacts of Climate Change: Anticipating Surprises highlight the need to understand better, and develop early warnings of, abrupt changes in the environment and abrupt changes in biota associated with smooth changes in the environment. I will describe recently discovered theoretical examples that predict that smooth changes in the environment can produce abrupt changes (infinite jumps) in a key parameter of Taylor's power law of fluctuation scaling, one of the most widely verified empirical patterns in ecology. A comparable real-world singularity could adversely affect fisheries, forestry, agriculture, conservation, and public health.

R. M. Dorasio (SESC U.S. Geol. Survey )

Accounting for Imperfect Detection and Survey Bias in Statistical Analysis of Presence-only Data

During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining species presence locations observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence-only data, but these models have largely ignored the effects of imperfect detection and survey bias.?I describe a model-based approach for the analysis of presence-only data that accounts for errors in detection of individuals and for biased selection of survey locations.
?I develop a hierarchical, statistical model that allows presence-only data to be analyzed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detections of individuals encountered during opportunistic surveys and the detections of individuals encountered during planned surveys.
?Using mathematical proof and simulation-based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyze presence-only data in conjunction with counts observed in planned surveys. I show that a relatively small amount of high-quality data (from planned surveys) can be used to leverage the information in presence-only observations, which usually have broad spatial coverage but may not be in- formative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence-only data is widely applicable. In addition, since the point-process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions.

M. L. Taper (Montana State University)

Data-cloning for likelihood based inference for hierarchikal models in ecology:confidence intervals, hypothesis testing, and model selection.
?The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidance available as to when and why the parameters in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural parameter non identifiability (NI) and distinguish it from other parameter estimability problems, including when parameters are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and estimable, but only weakly so (WE).

?The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose non identifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect non identifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities.

̃|X^[

@b@QOPSNPOPRijXFOO`PQFOO

@b@}gw@GA@A205?

eb@܂ BQ't t[hR[g

44@@

qL iw@wE擱Ȋwj

iNēKi؂

sA`Ԃ邢͐ԓI`̓Kỉ𖾂͐iԊw̎厲ł邪AWIƂ`̐iO̐Ŋϑ͍̂łBł́A`lדIɐi邱Ƃ”\łAɂČ`̓Ki؂邱ƂłB̃Av[`̂P‚́A牺̐̌`lבIɂĐiƂ̂łBɂ́AV~[VŌ`iƂAv[`BQ‚̃Av[`ꂼ𗘗p{uŏЉBP–ڂ̘bł́AIΗグBIΗ̂Q‚̌^i`qԂш`qIΗjAAYL]EṼX̌sɑ΂lבIp̌ʂɁAIΗ炷ỉBQ–ڂŏЉ̂́AnƎ̌`lf[^AiV~[VɂĕI؂@KpłB{ł́AlRȂ̌̒ŏ{Ȃւ̑IoȂI̋ɒ𔭒BΎɂIƔr邱Ƃ݂B

̃|X^[

@b@QOPSNXPWi؁jPUFOO`PWFOO

@b@}gw@GA@A205

eb@܂ BC^ArXgցXB

43@@@@

Chris Elphick (University of Connecticut, USA)

Extinction risk in tidal marsh birds as sea levels rise: changing habitat and demographic processes

?Climate change is predicted to affect many organisms.Specialist species, especially those restricted to habitats that will?diminish under climate change, are presumably most vulnerable. ?High?latitude and high elevation species have received much attention, but?coastal species threatened by sea-level rise are also at risk.?Saltmarsh sparrows Ammodramus caudacutus are tidal marsh endemic?birds, representative of species that use coastal marshes. High tide?flooding is the main cause of nest failure, and nesting habitat is?limited to higher-elevation marshes that flood during spring tides.?Demographic data suggest a high probability of extinction by?mid-century. ?Other tidal-marsh nesting birds likely face similar?fates, albeit not so rapidly. ?Evidence also suggests that?northeastern US marsh habitats are rapidly changing in a manner?consistent with increased tidal flooding and that habitat restoration?is failing to provide suitable conditions for the most vulnerable?species that use these marshes.

Thomas W. Sherry iTulane University, USA)

Effects of nest depredation and weather on reproductive success and population control in a migratory songbird

: Are summer and winter decoupled?

Control of migrant bird populations remains poorlyunderstood. We combined a field experiment (baffles limiting accessto nests by scansorial predators) with modeling long-term nesting?success of American redstarts (Setophaga ruticilla) to assess effects?of multiple variables on nesting success and population dynamics. Theexperiment doubled nesting success, showing importance of scansorial?mammals, primarily red squirrel. Success of unbaffled nests was most?influenced by sciurid nest predator abundance and May temperature, but?also by June rainfall and nest age. Population density had no effect?on nest success in our study, but did in another redstart study?involving different predators. ?Nesting success predicted 66% of the?variation in annual summer population growth (lambda). Our resultsdocument (1) the value of identifying nest predators, (2) multiplefactors affecting reproductive success both directly and indirectly,and (3) ecological decoupling of summer predator-mediated reproductionversus winter food-limited adult survival.

Mauro Fasola (Pavia University, Italy)

Long-term trends of breeding herons and egrets, and their foraging ecology in ricefields of Italy

?Breeding herons and egret were monitored since 1972 in Northwestern Italy, an area of 57,591 km2 with large surfaces of rice cultivation (2,000 km2). The heronries increased from 40 to 130, and the nests peaked in 2000, up to 23 times the initial number for Grey Herons. This spectacular increase was due to lower human-induced mortality, to climatic changes, and to changes in rice cultivation practice. But since 2000, a decreasing trend has become evident. In order to check the influence of rice cultivation practices on population trends, we compared the results obtained in 2013-2014 with those 1977-2000, about the following topics. 1) Changes in chicks diet; some staple prey (amphibians) have diminished, while new prey of recent colonization (the invasive Procambarus clarkii) have increased. 2) Changes in the submerged rice, studied using satellite imagery; compared to 100% submersion until 1990, the submerged surface in 2013 were <50%. 3) Foraging success of the breeders in agricultural versus seminatural foraging habitats. A modeling is under way of the influence of these changes in prey availability, of the climatic changes, and of other factors, on these declining heron populations.

̃|X^[

@b@QOPSN W PUiyjPUFOO`PWFOO

@b@}gw@GA@A111

eb@܂ B}g A EW


42@@

c S iRw w@ ‹Ȋwj

IIcmRNkXghLɂ镉Ȃ̓KIӋ`

@@̓ʼnazȂnjꂽ߂鑈ώ@ĂB‘̂͐UʂĉxoǍo΂Ύ̓ɉe邱ƂBÂAo‘͎̂̐킢̏オiȁjAskꍇ͂̋tɂȂ邱ƂiȁjALތQŕ񍐂ĂB̌ۂ͓‚̉Őł邱ƂĂĂiA҂͔rIł͂ȂjF1‚́A‘̂oɎg̍sςiself-assessment hypothesisjǴAȂǂ̎肪肩A‘̂ΐ푊̓o𔻒fAsςisocial-cue hypothesisjB̗ƁAO҂͋LwKɂs̏CłA҂͑ΐ푊̉ߋ̓ɂOo𔻒fޗɂāA‘̂sς邱ƂłB

@ł́AIIcmRNkXghL̃IXƂāAǂ̂悤ɓoɂsCKxɉe邩c_B{̃IX͑傫ȑ{AX߂킢邪AXɂ͑{͂ȂBȏ͎ΐ̏ɉeyڂȂAsko4ԁAIX̏0%߂܂ʼn邱ƂĂBŏɁAskɂǂ̂悤ȍsCN̂𒲂ׂBɁAȂCԂSԂȂ̂_IɌ؂ƂƂɁAskoIX̔ɐBpɉeyڂ𒲍BɁAskoɂsC̐IE`IՂɂ‚Ă񍐂\łB

̃|X^[

@b@QOPSNVQSi؁jPUFRO`PWFOO

@b@}gw@GA@A205?

eb@܂ BF[ c


41@@@

| v (‹AEԌn‹Z^[)

Iȕی̑IƐ̕zp^[ `bƉp̂킢ɂā`

@Rیݒ肷ꍇA܂܂Ȏ␶Ԍn̗vf𖞕ՂȂ܂ނ悤ɕۑSΏےnIŁAŜƂČ̂悢یfUCƂl܂Bی̃fUĆA̕zp^[ɋˑ܂BƂ΁Ȃlԍn_ɂׂĂ̎킪܂Ƃ܂ĕzĂȂA̒n_΂ׂĂ̎Jo[ł܂Bł͂ȂA킪݂ɂ܂ւɕzĂȂ΁AׂĂ̎Jo[悤ƎvƑ傫Ȗʐς̕ی悪KvƂȂ܂B
?́A܂܂ȎJo[邽߂ɂǂꂾ̖ʐς̕ی悪KvȂ̂ƂpԊw̖ɂāA̕z̑֊֌W̉͂ƂbIȖɎg݂͂߂܂BZ~i[ł́AՂȂJo[ی̍Â̕z̑ւƕKvȕیTCY̊֌WA̕zp^[^Cv@A{ł̂܂܂ȕތQiV_A`EAg{AށAMށAWނȂǁj̕zɂЂޓ\̒o݂̎Ȃǂɂ‚ďЉ܂Bzp^[̉͂̕@_A̒nIȕz̗ɂ‚Ăӌ邱Ƃy݂ɂĂ܂B

@̃|X^[B摜NbNƊg債܂B

@b@QOPSNTP5i؁jPUFRO`PWFRO

@b@}gw@GA@A205

eb@܂ BN[YB


40 @@@

R @iAXe_Rwj

Ŷ̔ɐB헪

IĂƁAЂЂƎŶւ̔Q܂B悭ڂ鍩ٓނȂǂ̎ŶّƂ͑ΏƓIɁAL~~YƂY̓̐Iɂ‚ẮAꂽm܂B̂ŁAŶ̔ɐBԂ́A낢냆j[NȔł錤́uvł܂BȎŶ̐I𕁋y邽߂ɁA{Z~i[ł́AZɌR鎄̔m_ЉƎv܂B́AŶ̕ނɂ镶AWLmAKCpĎČzOEzvZX𒲍Ă܂BɁAtB[hsA쐶Wcɂ闐x𐄒肵܂BāA(1) {ł͑̃TCYƗIXX邩Ƃzp^[E@(2) z̔ɐBɂ͌z̒@\dvȖʂ@(3) z肩琸傤^pN󂯎Ǝ̌zɃIX@\邱ƂȂǂAVɂ킩Ă܂B

̃|X^[B摜NbNƊg債܂B

@b@QOPSNTPQijPUFRO`PWFRO

@b@}gw@GA@A107

eb@܂BGʂB


39 @@@‚E3Z~i[EnȊwZ~i[Ƌ?

C i`wj

Ӌǂ

̊֐S͕Ӌ̐ ԂƌniłA܂Ő[CEɁEȂǂ̂Ɍ‹ɐ𒲂ׂĂB܂݂́ATCY̋Ɍ\TCYӋ\Ƃ ̋ɔΏۂƂĂAhߏۃtB^[ʂ蔲鏬Ȕ̔|{݂ĂB̌ʁAIɏTCYʼn߂imA lȍזE`ԂŠȔlXȊ‹番ꂽB‚͍̔jxł̐VnłȂɂ͂܂܂m݂̐ 邱Ƃ\B{\ʂāA܂ł̃tB[hЉƂƂɁAӋ̐lc_B

??̃|X^[B摜NbNƊg債܂B?

@b@QOPSNQPXijPUFRO`PWFOO

@b@‹@{قPERK@Qc

eb@܂BB



38@@u}gwejAgbNyE蒅 QOZ~i[vƋ

IV ikw kAWAZ^[ۑSwj

̕sȍsKǂ݉
?
RI̍lɂƂÂƁA͂̊‹ɓKsƂ悤ɐi Ɨ\܂BA̐g̉ɂ͐ɐBɂƂ čœK Ƃ͎vȂsƂĂނȂ܂B́Aꌩ ƕsȍsRI̗ꂩ肭ł ɁAi 炷ӊOƕՐɊ܂B
̔\ł́AegEVɍD܂ȂGTIŐHׂĂ ƁÃegEVɔɐBs𗐂aۂLĂ邱 Ƃɂ Č܂B̌ʂāARI̊TOg̉̎R𗝉 邽߂ɌȂc[ł邱Ƃ`ĂƎv Ă܂B?
?
??O̍ũ|X^[B摜NbNƊg債܂B?

?

Ǔ iȊwفEAj

ɐ炷A̎Oh䕨
?
O(ɁAg280-320 nmUV-B)́AADNAAA^pNȂǂɏQ^邪AɂĂ͂̐ʂᏊɔׂČɑ邱Ƃ񍐂ĂBLQȎOɑ΂ĐÁAOzPC_Ût{mChȂǂ̃tFm[t̕\Ȃǂɒ~ςāȂgDی삵Ă鎖AɃfA앨Ȃǂpɂ薾炩ƂȂĂB̈ŁAʂ̎Oɂ炳郊XN̍쐶Aɂ‚ẮAقƂǍsĂȂB{uł́ALz–쐶Ae퍂RAȂǂɒ~ς鎇Oh䕨ɊւāA҂̌𒆐Sɂ܂łɓĂmЉB?
?
??㔼̍ũ|X^[B摜NbNƊg債܂B
?
?
@ b QOPRNPQPRij@PTFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B헤VǂB
?



37@@@34񐶖nȊwZ~i[Ƌ

㓡 Y iwECCmj

񖇊Lɂ含E̐i
?
񐶂⋤ƂԂ̑ݍṕACm̎鏊ŌǍ`Ԃ̓ꉻ̑l𑣂ƍlĂ܂BCm̎vȐ̈‚ł񖇊LނłlXȊ񐶁EmĂ܂BႦ΁AMт̃TSʈɐVRKCނ͌sOɋAɕKvȉh{f̑𓾂Ă܂B܂A[CɐރVEKCނȂǂ͉w׋ۂƂ̋ɂAnh{Ȑ[Cł̗L@l”\ɂĂ܂B̂悤ȑIȊ֌W̑ɂA񐶐̍bkނȂǂɂāA񖇊LhƂėp邱Ƃ܂BAhƂĂł͂ȂA񖇊Lg̐𗘗p񐶎ҁE҂ƂĐU镑ႪmĂ܂B\҂ΏۂƂĂERKCȂ̓񖇊Lނ́ACɐޓ̑̕\⑃ɋ󂵂ĕ炷j[NȐԂĂ܂BMт̐C𒆐Sɒl𐋂ĂAȑŜł̏h͈̔͂͊Cɕ炷قƂǑSĂ̕ތQɋyт܂B{\ł́AERKCނɂďhƂ̐ɓKAl𐋂Ă̂ɂ‚āAtB[h[N╪qn͂瓾ꂽm𕝍LЉ܂B @
??
@ b QOPRNPPQOij@PVFOO`PXFOO
@ b }gw GA A QOT
e b ܂BDB

??̃|X^[i摜NbNƊg債܂j

?



36@@@RR񐶖nȊwZ~i[Ƌ

쌴 i‹ EԌn‹Z^[j

ɏt̔ʂ
\̒ቷ‹Ɋ􂷂鉻wiAJV{j̐̂ɔ\
?
̕\ʂɐԂ΂⒃FȂǂɒF錻ۂLm ĂB͎ɒWYނŁAXᑔisnow algaejƑ̂ĂBXᑔ͓ɂkɂȂǂ̋ɒnłȂAXJWirAA[bpAvXAq}AbL[R{̍R тȂǂ̐ϐ̑nł邱ƂłB̕\ʂԂȂ̂Ԑi䂫AgjƌĂсAނȂǂʂɔɐBԂȂꍇ⒆嗤 ̉ynт畑オ̍~ɂĒF錻ۂ񍐂ĂB̒Őj̈ꕔ߂̓NIvNg icryoplanktonjƂNIt@Cgicryophytesj̒̑ށAۗށAoNeA܂܂ĂB @
@ł͖N5`6̗Zɐ̐ԊF (AJV{)B̌ۂ͗ΑPhacotaceaeHemitoma sp.܂ޗqƂĂB̗q̕\ʂɕtʂ̎_Ŝ߂ɐႪԊFɒFAʐႪꍇɂ́AZᐅPml 106‘̗̂q݂ĂB܂Ŕ̐ԐAAJV{iAKBj̐̂͑傫2‚̉ɑʂĂB‚͂̑ށiX joNeABƂuސvŁA‚͖@̍zオƂuzvłB܂ŏсEi1954j XAƂĕފwIȋLڂĂ邪AAKB̔JjY‚Ă͖̌B @
@ŁAuAJV{O[vvł͔n łAKB̐̂Ƃ̔JjY𖾂炩ɂ邽߁ANlXȊϓ_猻ۂ̉𖾂݂B{Z~i[ł͔̍ʐጻۂ̕z𖾂炩ɂA nɌʐጻۂ̐Fʂiς̃^CvsAqʐ^̉͂⌻nɂmFʂĔnAKB̕zƓɂ‚Ė炩 B܂ANHK̎ދ͂̂ƌ~ɂϐቺɖLxȉt̂̐AKBq݂AZɂ͂ꂪ^̂悤ɂȂĐʂ𕢂slq WRwɂĕ߂炦B܂AdTɂĒn\ʓIɕ߂炦邱ƂɐBXɌw𒼐ڔɎŁAǂ̗lȐ ݂̂fɂĖ炩ɂA`q͂50ނɋyԉwQWł邱Ƃ˂~߂B
??
@ b QOPRNPOQWij@PUFOO`PWFOO
@ b ‹ ng𗬉c
e b ܂BB

??̃|X^[i摜NbNƊg債܂j

?



35

isYƑw Ȋwj

]ʐ̐iɂVX|gXݍpF
?
̉qɑʓIȍpyڂgXqɑ΂CΗ`qٓIɍpVXq́C̉e`qlbg[ÑW[ɗ܂邽߁Cʔɔpŏɗ}CȋfނƂȂψق邱Ƃ\D]ʐ̐iɊ^VXˑRψقƃgXˑRψق̑ΓIȏdvɂ߂@̈‚ƂāCG‘̂ɂΗ`qٓIȑΔʂƐenԂ̔ʂ̈ႢΔ䂷@񏥂ĂDȂC̎@͌G‘̂ɂΗ`qԂ̔ʂ̈ႢSăVXψقɋNCVX|gXԑݍpz肵ĂȂDV~[V͂C艻IŃVX|gXԂ̕⏞IȐiNƁCقڒȓˑRψق̒~ςnԂɃVX|gXsa炵CʂƂăVXˑRψق̏dvčς댯ꂽD̂Ƃ͂܂CWcԂ̐Bu𐬗vƂāCfI̓KIȕC艻ĨVX|gXsa̐dvł”\D
??
@ b QOPRNXQSi΁j@PVFRO`PXFOO
@ b }gw@QGA@`@QPP
e b ܂B_CjOo[ pondB
?



34

ƈd iw _wȊwȁj

͐lbg[NɂJVWKC̃^‘̌Q
?
WԌn͂ƂlדIȃCpNg󂯂ĂԌn^Cv̂ЂƂ‚ƂȂĂBjɋނ֊񐶂ƂȔɐBԂƒCVKCށiUnionoidaj͓Ɋ@Iȏ󋵂ɒʂĂA{ɂĂ171̂75%𒴂13킪‹ȃbhXgɋĂB
JVWKCiё̃CVKCށj́ALʁiMussel bedjƌĂ΂鍂x̋Ǐ‘̌Q`A͏h勛ނɂړяh勛ނE̐ɂ󓮓IȕUɂĘAĂƍlB̂߁A^‘̌QƂĂ̓Ԃ𗝉邱Ƃ́A{̗LȕۑSsĂŏdvȊbImłB
{ł́AkC鑾쐅nɂJVWKC̃^‘̌Q\c邽߁A1. WĕߊlEuԂph勛ނɂړUߒ̔cA2. ̕zf[^p‘̌Qxɉev̉͂sB̌ʁA1. h勛ނɂړ͏㗬֕΂ĂAŽxւ̈ړpɂɐĂ邱ƁA2. 㗬̌‘̈ړ|eV̑֕ϐłg㗬͐쒷hсg㗬n_h‘̌Qxɉedvȗvł邱Ƃ炩ƂȂB̌ʂ́A㗬ւ̈ړEւ̎󓮓IȕUƂ͐쐶ԌnɓƓȈړUvZXACVKCނ̃^‘̌Q̈ێɂďdvł邱ƂĂB

??
@ b QOPRNSPV@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BAWA启iX^[jB
?
??̃|X^[B摜NbNƊg債܂B
?



33? ? ??31 nȊwZ~i[Ƌ

Oiw CCmj

nʂ̉̐EuvT\lƐ[C̗\

肽\p󋵂ɊׂɁCĂ̒ɐgB΂ǂꂾ邱Ƃcł́CREɑ݂錊́CN̂߂ɍĂ̂ł傤HCɌ閳Ғœ̑́Č`҂̐ꏊƂȂ΂łȂCCʂOIɊg邽ߊCꐶԌnɑ傫ȉeyڂ܂D{\ł́Clѐ[Cɂ鑃ɂ‚Ă̍ŐV̌ʂC̉͂ńgBꂽԁh𖾂炩ɂЉ܂D

@ b QOPRNQQVij@PUFOO`PWFOO
@ b?
}gw GA A PPP
e b uƘay 炵vŊJÂ܂

??̃|X^[i摜NbNƊg債܂j


?

32 ? ??30 nȊwZ~i[Ƌ

dc N iȊwفj

OIO̊Cm‹Ɛ[VAɓł̒m

Ð㖖̑ʐŎɂ萶̑啔͎łA܂ł̐Ԍn͉œIȑŌ󂯂B̌A͂ǂŁAǂ̂悤ɐAl␶Ԍn͂ǂ̂悤ɉ񕜂Ă̂BVAɓ̃v[GiCBjnɂ͎OIO̒nwLzAn‹␶̕ϑJL^ĂB҂ɂ钲E̊TЉB

@ b QOPQNPQQOi؁j@PUFRO`PWFOO
@ b?
YƋZp7Ə@326iۃZ~i[j
e b ủvŊJÂ܂

??̃|X^[i摜NbNƊg債܂j


?

31 ? ?29 nȊwZ~i[Ƌ

al iXёj

lY~̒SŁA?`}̊O쏜̌߁`

lY~ƌ΁AV̐lY̔lY~voAR̐lgWF[vo܂Bg&WF[ƌ΁Aǂl Y~āAX肵܂B͂ĂA}ł́AO̐Ԍnւ̉e傫ȖƂȂĂ܂B̂߁ANIO ̋쏜ƂsĂ܂BAOԌnŏdvȋ@\ʂĂꍇA쏜̂̂Ԍnɉe^邱Ƃ ܂BႦ΁AM쏜ɂ́AߐHꂽOAɖ΂邱Ƃ܂B́AlY~̋쏜ƒ̕ۑS̘b𒆐SɁAO 쏜̌Ɖeɂ‚ĂЉ܂B

@ b QOPQNPPQXi؁j@PUFOO`PWFOO
@ b?
}gw GA A 107
e b uƂ񕺉qvŊJÂ܂

??̃|X^[i摜NbNƊg債܂j

?


30

Ύ iE_wȊwj

̔ɐBsƂƂ߂Ȃl

͂܂ō̔ɐBsɓɋČsȂĂ܂Bޗe[}DɑIł߁A܂Ƃ܂肪܂B͍uԂ𒷂߂ɂ̂ŁÂ܂Ƃ܂̈ʂɂ‚ĂƂƂ߂ȂbĂ݂悤Ǝv܂Buł͑傫3‚̘b܂B܂AHRKlV̐eqւ̓sɂ‚Ăb܂BɁAԂ̐IݍpłɐB‚ɂ‚Ăb܂B}]EVp␔f炢‚킩Ƃ܂BŌɁAݒsȂĂO̘b܂BԂƍ̊֌Wɂ‚Ă킩ƂȒPɂb܂B

@ b QOPQNWQTiyj@PUFOO`PWFOO
@ b?
}gw GA A 107
e b uI[NK[fvŊJÂ܂

??̃|X^[i摜NbNƊg債܂j


?

29 ?? ?27 nȊwZ~i[Ƌ

ۉƍKi}gE‹j

I-ÑOIE覐ΏՓˌɎ_J͍~̂H ?
?
I-ÑOI(K-Pg)Ei6550NOjɋNʐł覐ΏՓ˂˂ƂȂBۂɑʐłN̂覐ΏՓˌɋNu‹ϓv̂͂łA‹ϓƂẪvZX񏥂ĂBÂ̂ǂꂪ^ɏdvł͖̂mɂ͂ȂĂȂB̂ƂX͎_J̏؋ƂȂnwIwŴ‚K-PgESywɌoĂB܂ł͎_J͔I̐ɑ΂鋺ЂƂčlĂȂȀdvЉB
@@@@@@
@ b QOPQNSQOij@PUFRO`PWFRO
@ b YƋZp7Ə@ۃZ~i[i326j

e b uO`vł܂B


?

28

IRviE_wȊwj

gJQ̐Fʃp^̐i\ߐH҂ɑΉnIψ ?
?
̑̐F́Azseq֌WȂǎł̃R~jP[VƁAߐH҂ƔH҂Ȃǂ̈قȂԂŌ킳̂ɕBH҂̐Fʃp^͕ߐH̉ŁA֌WRI󂯁AvɐiBZ~i[ŏЉéAɓƈɓɐHҁiIJ_gJQj̐Fʃp^î̃XgCv͗lE̐‚jnɂĈقȂ邱ƁA̓ƂĈقȂFo•ߐHґiC^`FMށAV}wrFwrށAAJRbRFށj ɂ炳Ă邱ƁAɂ̔Hҁ\ߐHҌnǂ̂悤ȐijǂĂ̂𕪎qnnwɂ𖾂鎎݂3_łB
@@@@@@
@ b QOPQNQQTiyj@PUFOO`PWFOO
@ b }gw QGA A PPP
e b ܂BB

̃|X^[i摜NbNƊg債܂Bj


?


27

RiR`Ej

^jEcM̉Ԍ`ԂɂKԍƎԌG̉e ?
?
qÁȂɉԕ}ˑĂB}Ԃ̌`Ԃ́AAƑ҂̑ݍpɂƂďdvȌ`łA҂ⓐ҂̍s`ԓIɑΉ`Ԃ悤ɁARI󂯂ĂƍlBAqA͋߉킪󋵉ŁA΂ΎԌGNBG‘̂́Ǎ̎Ǧ`߂G̉ߒŐV`‚ƂB̂悤ȏꍇAԌ`Ԃ̐i͂}ɐ”\B{uł͖KԎҁAɓ҂ƎԌGԌ`Ԃ̐iɋyڂeAknɕz^jEcMΏۂƂĉ͂ʂɂ‚ĕ񍐂B
@@@@@@
@ b QOPQNPPXi؁j@PUFOO`PWFOO
@ b }gw QGA A QOT
e b ܂BĎRqB

̃|X^[i摜NbNƊg債܂Bj


?


26

XؐviA]iBEj

a̐Sw ?
?
Wc͌‘̂̐ɔׂėv炷ƂB̔\ł͓ɁuWcImicollective intelligencejvƂWc̗vɒڂBWcImƂ́AX̔]gݍ킹邱ƂɂAWc‘̂DꂽFm\͂ÂߐmȈӎvsƂ”\ɂȂƂ̂łB܂ł̌ł́AWc̔Fm\͂ƌ‘̂̂Ƃׂ邱ƂقƂǂȂBł́AWcӎṽfƂĂ悭g鑃Iыail{\AjpBЉ̓O[v̒asAO[v̂‚̌‘́Au‘́isuperorganismjvƌĂ΂邱ƂB̓Al̔Fm\͂vSw̎@Rj[ƌ‘̗̂ɗpāAꂼ̈ӎv茋ʂ𑪒肵Bʂ́ARj[‘̂PjIȈӎvAQj傫ȔFmv̂ARj@ׂȒmo‚ƂB猋ʂ̉pƂāAWc̐iAӎv̍œKA܂Q{bgɂ‚ĂyB
@@@@@@
@ b QOPPNPQPXij@PUFOO`PWFOO
@ b }gw QGA _ъwnF UOV
e b ܂BV[AB

̃|X^[i摜NbNƊg債܂Bj


?


25

M炳iE@Ej

r炩ɂuXv̐n ?
?
̕zϑJ̗j́AWc̗̕ĵ̂łA͐ȋłBߔNAlXȐɂ‚ĕqnnwIsAꂼ̎̕zϑJ̗jc_ĂBA{A`\͗jȊO̗lXȗvł`꓾̂łA1̈`\ł͐M̍j̋c_sB{\ł͂܂Az̉їю̈`\nVXeiGISjŔrAʂ̈`\oƂŁAuїсv̕zϑJ̗jɂ‚čl@sBɁAԃjb`fOpAqnnwI玦ꂽj؂ɂ‚ĂbBŌɂ́Auqnnwv̎̌`ƂāÂ悤ȕIAv[`Ő̕zϑJ̗jluVjnwv̌`ɂ‚Ăc_B
@@@@@@
@ b QOPPNPPPQiyj@PUFOO`PWFOO
@ b }gw QGA A POV
e b ܂B}^B

̃|X^[i摜NbNƊg債܂Bj


?


24

Jzꂳi_ƁEHiYƋZp@\@앨j

ԕюq̎Uzp^[猩N̔ɐB헪Ɋւ錤 ?
ԕƎq̎UźA{IɈړ̂łȂAAzƕzĝ߂ɈړXe[WłAԊwIɂiwIɂ[BȂÄړp^[qg̖ڂŒڂɊmF邱Ƃ͓BŖ{ł́Aԕꗱ‚DNA͂ɂĉԕe肷ZpJƂƂɁAqƎDNA͂ɂėtLtVRтɂăN̉ԕEqUzp^[𖾂炩ɂBɁA̋ZpƖOώ@킹ėp邱ƂŃN̊JԃtFmW[A󕲎ƌ̉ԕg̈ႢAɂԕ̈ړp^[Aނɂq̈ړp^[𒲂ׁAN̔ɐB헪𖾂炩ɂ邱Ƃ݂B
@@@@@@
@ b QOPPNPOQQiyj@PUFOO`PWFOO
@ b }gw QGA A POV
e b ܂BꐬB

̃|X^[i摜NbNƊg債܂Bj


?


23

\qi_ƑZ^[j

n_jނɂߐHXNƍs ?
?
ߐHXNɂH҂͍s`ԂȂǂ‘YIɕωAg̐߂悤ƂB̂悤ȉ‘Y͗lXȐŕ񍐂ĂBAtʂ𐶑ꏊƂn_jނ́AߐH҂łJu_jނ̋Ђɂ΂ΔBn_j͂ǂ̂悤ɂăJu_j̕ߐH𓦂̂낤H{Z~i[ł́AJUn_j̕ߐHsƊÅ֌WƁAߐH̎_𗍂߂邱ƂŌĂ̔z헪ɂ‚ďЉB
@@@@@@
@ b QOPPNVQiyj@PUFOO`PWFOO
@ b }gw QGA A QOT
e b ܂BꑾYB

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B


?


22

אMOiYƋZpj

̓Nނ̑lF̑ݍp𖾂 ?
?
̍ނ͑̓̕\ɋێĂB̋͏h卩ꂵ߂񐶎҂ƂȂĂꍇ邪Ah卩ɗv炷҂ƂȂĂꍇB҂̏ꍇA񐶍󂯂闘vƂ͂܂܂łAƂΉh{󂯎Aӂ⏕ĂAߐH҂aCĂłB̌ʂƂďh卩͂茵‹ɂKł悤ɂȂ̂ŁA͍ނ̑lƔɉhNv̈‚łƍlB{uł́A҂܂łɐi߂ĂJVނƃ]EVނ̌𒆐SɁAɋ̑SQmV[PX猩Ăh[Ԃ̑ݍpɃX|bg𓖂ĂďЉB
@@@@@@
@ b QOPPNUPWiyj@PUFOO`PWFOO
@ b }gw QGA _ъwnF UOV
e b ܂BSB

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B



21

Y^iXёj

}ɂĊO킪ݗɋyڂe ?
?
uꂽCmł́AƎ̐iƂ̌ŗL킪BߔNAOɂđ̌ŗL킪@ɂB{̑\IȊCmE}́Aʐςɂւ炸̌ŗL킪邽߁A߁XEYiRYjɓo^\肾BAȆ̊CmƓlAOɂe͐[łB{Z~i[ł́A‹Ȃ̌vWFNgɂčsĂʂāA}ɂO킪ݗɋyڂeЉBoꂷ镪ތQ́ALANEYVAn`AAAbAA؂ȂǑɂ킽B܂AegsbNȂn߂̂AĂǂ̂悤ɐi߂Ă̂AlIȃGs\[hĂbB
@@@@@@
@ b QOPPNTQWiyj@PUFOO`PWFOO
@ b }gw QGA ` POV
e b ܂BN̉B

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B



20

R^lij

\^‘Y̐vȐi??
?
ߔNɂȂāA̐iIہiK핪jԊwIہi‘̌QԂQW\AԌn@\jɉe^AꂪXɐiԂɃtB[hobN "eco-evolutionary feedback" ݂邱Ƃ炩ɂȂĂB{ł́A̎_ɕ\^‘YA\^‘Y̐iԂƌ‘̌QԂ̃tB[hobNɂ‚āA_Iȉ͂sB́A_킩Ă\^‘Yƌ‘̐ϓƂ̊Ԃ̊֌WƁAvNgiVjƐAvNgiCJ_j̃PX^bg|{np،̓W]ЉB
@@@@@@
@ b QOPPNSQRiyj@PUFOO`PWFOO
@ b }gw QGA ` POV
e b ܂BSB

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B

?

?


19

‚ΐnȊwZ~i[ ^ ‚ΑށEveBXgtH[ ^ ‚ΐiԊwZ~i[ Ê

Ȋʐ `How to collapse the life?`??
?
㓡avitHj@ȊʐłƏfՓ
@SitHj@V̏Փ˂N‹ϓƑʐŁ@
RSYi}gj@񕜉ߒǂ݉H ʼnߒ̃ubN{bNX
@@@@@@
@ b QOPPNRRij@PTFOO`PVFOO
@ b }gw QGA ` POV
e b ܂B@ڂ́AB

?

?


18

cioϑj

~ԂƃN̊‹Fm??
?
ς̎gݍ킹ĂłN̉~Ԃ́Aɉaߊl邽߂̃gbvłAԍsɂ‚č̉a̍œK̊ϓ_瑽̌Ȃ ĂBAԐNɂ͗DꂽoȂ킪AςԂ̎`Uɂď肵‹̏ԂFmB̈ӖŖԂ ̊Oɒ菄炳ꂽołƌB́AŏɖԌ`Ԃ̉a߂Ăƍl؋ɂ‚ďЉǍANԌɖԎ ɂ钣͂ω鎖ŖԂ̊x𒲐Ă𐧌䂵Ă鎖A܂ԃTCY̒s̎ԕψقAԂgl瓾闘 v̎ԍŐł鎖bB
@@@@@@
@ b QOPPNQTiyj@PUFOO`PWFOO
@ b }gw QGA ` PPO
e b ܂BьB

?

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B

?


17?

jiswEHEȊwj

Y̝hRIi? Jg{ނ̐q̑~o͍H
?
̌̐ix͑C`ԓIɂC@\IɂɑlĂDɂ͂낢ȑIƍlDX́CJg{ނɂāC IX̌킪EΏ̂Ȏ킩獶EΏ̂Ȏ܂ł낢ȒiK邱Ƃ𔭌DJg{ނ̃IX́CgăCoIX̐q~ oƂmĂDŁCނ̍EΏ̂Ȍ̋@\ƍEΏ̐̐iIop^[ɂ‚āCY̝hRIiƂϓ_疾炩 ɂȂƂЉD
@@@@@@
@ b QOPPNPQQiyj@PUFOO`PWFOO
@ b }gw QGA ` POV
e b ܂B@K}̖B

?

̊wfp|X^[͉̉摜NbNƌ邱Ƃł܂B

?


16

CV ~iȊw Aj

nŕGȃV_A̖
lIlbg[N핪lbg[N
?
uqȂۊǑAvłV_ÁAEɖ10000A{ɖ650̏т̐QAҐl͌ďȂȂBȂȂ΁A V_AޗƂėp邱ƂɂāAqAł͂łȂ悤Ȍ”\ɂȂ邩łBǂ悤Ɍ̂ɁAlXȎ킪Ȃgݍ킹̎G킪A{͕ωɕxށBꌩ~̍QAЂƂтz΁Aɂ߂Ė͓IȌޗƂȂBɉ āA{ł͏[lIlbg[NAOł͌ĎłȂ悤kȌ”\Ȃ̂ɂĂB{Z~i[ł́AV_Ap\҂̌Aɓ{ɂԏiADNAo[R[fBOɂ쐶źiOt́jWc̉͂ȂǂЉB
@@@@@@
@ b QOPONPQPWiyj@PUFOO`PWFOO
@ b }gw@QGA@`@QOT@
‚ƕقȂ܂B
e b ܂B@XI'ANiV[AjB
?
̊wfp|X^[́uv܂B
?
?

15 i21 nȊwZ~i[ƋÁj

ɓ m i‹ ‹XNZ^[j

UƐł̕Րɂʗɂ‚
?
̕UƐł͑ȏ̂镪ރNXɂĕՓIɂ݂錻ۂłB{͂̌ۂARIɂ錈_IȐiԂƂĐ邱ƂƁA̋@\ՓIł邱ƂAwÍAV~[V͂ɂ莦BɁAUƐłɂ萶ԌnŜJڂ邱ƂẢߒɂĕGȐԌnێ𓱂B̔\ł́A̐iԂ̃V~[VʂɏЉAIȐ܂B
@@@@@@
@ b QOPONPQSiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BXyCo ONCEB

?

wfp|X^[͉L̒ʂi‚ΐiԊwZ~i[pƐnȊwZ~i[pjB
NbNƃ_E[hł܂BiPDF`C300Kbxj

???

?


14

rc [ iE@Ej

KiS`IՂ𖾂炩ɂnn
\{YRAɂtBgNɁ\
?
nnẃAȈ`qpẍ`Iψق𖾂炩ɂ邱ƂŁA•z`̗j𖾂炩ɂĂBA`q͑SĂ ɐiĂ킯ł͂ȂARI󂯂ĐiĂ̂B̂߁Ä`qpnnwsƂŁAȈ`q z`̗j𔽉fn\𖾂炩ɂƂƂɁARỈe󂯂n\AnKɊւ`q‚oƂł͂łB{Z~i[ł́A{YRAɂnnwɁAtBgNnKɊւ邱ƂЉB
?
̊wfp|X^[́wxłB
?
@ b QOPONPPPRiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B}^B
?
?

13i20 nȊwZ~i[ƋÁj

iwECCmj

qf[^pÑ㋛̕N㐄
?
ǐɂ͌nKvłDnɎԎݒ肷ƁC`Ԍ`Qm\̕ψّx𐄒肷邾łȂCn‹̕ϓƎ̗jrł悤ɂȂDߔNɂȂđlɕKvȕqzf[^}ɒ~ςɁCΏ𑍍Iɐ荞񂾕q͂oꂵC悤₭̕N𐄒ł悤ɂȂD{Z~i[ł͍ŐV̔N㐄@ЉƂƂɁCԎtnɊÂČÑ㋛̐il@D
?
̊wfp|X^[́wxŌ܂B
?
@ b QOPONPOXiyj@PUFOO`PWFOO
@ b }gw@QGA@`@PPO
e b ܂B‚΃zB
?
?

12

B|WV iEtRCJSTj

MނɂЉiFЉI`͓𐶂ݏoH
?
\‘̂肵Q`铮́AlȗlE@\ŽЉER~jP[VQ̂ȂōsǍʂƂāAlȐŽЉ֌WA苐Iɂ͎ЉIlbg[N‘̊ԂŌ`BiEsԊẘ֐ŜЂƂ‚ƂāA̎ЉI`‘́i܂͈`qj̓Kx ɂǂ̂悤ȉeyڂAǂ̒x̂ł邩AR␫Ȃǂ̓Ƃǂ̂悤Ɋ֘A邩AƂ₢B݂܂łɁAЉI`ݏóAiQ[_ɂĊTOE͂A̎ؓIƂƂɌ؂ĂBAAs`‘YIł铮ł́AЉI`ƓKx̊֌W؂ƂłA̖𖾂ȃe[}݂ĂB\ł́Au҂݂܂łɍsĂMނɊւ錤A̎Љi𗝉鎎݂ЉB
?
̊wfp|X^[́uvŌ܂B
?
@ b QOPONXPPiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B獁ؖB
?
?

11

[S iBwj

OŐiԊw@
u^NTƃu^NTnV̋}Ȑi
?
ÓChǗȂǂ̉p̑ΏۂƂĂłȂCiԊwI̍ޗƂĂڂĂDႦ΁C̊OA͌Yn̓VG瓦Ă邽߁CVGɑ΂RቺCɐBɓ悤Ȑi}ɋNƂiEICAjC̊OAŌ؂ĂD{ɐNu^NTCԌYn̓VGĂDCu^NT̓VG̃u^NTnV1995Nɓ{ɐNCݓ{̃u^NT͌HQ󂯂ĂD{Z~i[ł́CVG̉ƍėZɔāC{ɐNu^NT̒RCǂ̂悤ɋ}ɐiĂ̂؂ȂǂЉD
?
?
삳₩ iwj
?
ZB̈`IllJjY
jKiQ̏Wc`͂̃Av[`
?
ʂɁAB̏Wc͗LB̏WcɔׂĈ`IlႢƍlBB̂ЂƂ‚ɁAZBBqAł́AZB́Aԕ`邪A󐸂Ɏq`BZBɂāAWcɈ`Iψق݂邱ƂsŒmĂ邪A̗R͂悭킩ĂȂBŁA{SyɍLz3{̖̂ZB̃jKiiLNȁjƋǏIɕz2{̂̋߉ȗLBޗɁA`}[J[pĈ`Il̔rsB{Z~i[ł́A`\f[^琄ꂽA‚̈`IllJjYɂ‚ċc_B
?
|X^[́uvŌ܂I
?
@ b QOPONVQSiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B‚ΊۈꐅYB

?

?



10

TYi‹j

ti̎Y߂Ǐ‹vƃhXP[vv
?
tíAɐBɂȂƌ΂͐Aɉ͐삩琅 H␅cւƈړYsBYꏊAꏊł鐅ćAߔN̉͐CޏꐮɂړoH̕fANIỎe󂯁As SB̂߁Atǐ‘̌Q͊낤̂ƂȂĂAlĂB{\ł́AT[o^nł镟䌧OΗ ɂčsti̍LY̌ʂɂ‚ďЉAYꏊet̐ꏊɊւǏ‹vƃhXP[vvɂ‚čl@B ʂƂɁAY|eV}bv쐬AčʓIȐݒuꏊ̒ĂsB܂ANAtiނ̈`Ij^OJnB ̌ɂ‚ĂȒPɏЉBtiނ͐YLpłA܂ňɂȂĂ߁Atiނ̈`I\`Il ͑傫ωÔ\BYAOΗRATCgƂāAtiނ̈`Ih̏󋵁Aߋ̃TvƔr`Il̕ An‘̂̎cEĐ̉”\ɂ‚Ė炩ɂ邱ƂړIƂn߂B
?
|X^[́uvŌ܂I
?
@ b QOPONUQUiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BiɂjB

?


X

rchmiXёj

?
Ĕ\͂̑މɔԐiƒnI\VfVȂ̏ꍇ\
?
Ĕ\͂́A̕UAL͈͂ɂ킽aEzҒTȂǂ”\ɂ\͂łA͔Ĕ\͂l邱ƂɂėlXȒnւƕzg債BAĊ튯̌`yшێɂ͑̃GlM[邽߁AlXȕތQɂđމĂBĔ\͂͐jƂ̊֘A[߁Aމɂ͗lXȐԌ`̐i𔺂ꍇB{\ł͂܂ł̌ɂVfVȃq^VfVȂɂĖ炩ɂꂽAĔ\͂̑މɔHEɐB`̐iɂ‚ďЉB܂AĔ\͂̑މ‘̌QԂ̈`ɗ^eɂ‚āAq^VfVȂ̕rĖ炩ɂʂɂ‚ĂЉB
?
̌fp|X^[́uR`iPNGjvŌ܂B

@ b QOPONTPTiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BƂځB
?
?

W

c qi_Ɛj

׋WolbachiåĈNL`E̐]ۂƍזEsa `̑ݍpƋi

׋ۃ{oLAiWolbachiaj́Aߑ30%ȏ̎ɊĂƂĂA g̊gUőɂȂ悤ɏh̐␶B𑀍삷邱ƂmĂB{oLÁAזEsaAIXEAXAPאBȂǂ̕@p āAX݂̂hWcɖ邱ƂłB{YL`EiEurema mandarinajɂẮAPñ{oLAɊčזE saN‘̌QƂQñ{oLAɏdăIX烁X֐]Ñ̌Q‚ĂB̃Z~i[ł́A݂܂ł̌Ŗ 炩ɂȂĂL`Eɂ{oLAɂ鐶BA̕q@\ABɂďhL`EWcxEixłǂ̂悤ȉe ̂ɂ‚ďЉB ?


@ b QOPONSQSiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BXI'ANiV[AjB
?
?

V

y uiEj

VCkiYi̎ƕsaɂˑRψق̃p^[T
?
ƕsaƂ́AqAɂĂƂʓIȎBiƎ󐸁j̈`IJjYłBƕsáAKx̒ႢBR̎q̐YhƂłɂւ炸AxJԂ󂵂ĎB̍nNƂmĂBƕsa ƎBɂ‚ẮAKIӋ`Ɋւ錤~ςĂŁA̕siǂ̂悤ȓˑRψقŜƂm͂܂Ă B{Z~i[ł́AAuiȃVCkiYiɂĎƕsaɊւˑRψقƁA̎B̐iɉʂɂ‚ďЉB܂AV~[V͂\ꂽAƕsaɊւˑRψقɂʓIȃp^[ɂ‚Ăc_sB
?
Z~i[̃|X^[́uvɂ܂
?
@ b QOPONRQViyj@PUFOO`PWFOO
@ b }gw@QGA@`@PPP
e b ܂BQԂ΂pB
?


U

xFiŒj

I 2.0FIΗ̗_IʒuÂƂ̐i
?
邱Ƃƃe邱Ƃ͂ǂ炪ς낤BʂƁA̐íu鋣vƁuɐB鋣vɂNƌB҂̉ߒi邢͋@\j́uIvƌĂ΂A_[EBȗiw̒SIe[}̈‚ƂČsĂB ́A90N̏I肩[NɂāuIvɊւc_́iXȂ́jW[Abvf[gʂĂB̒Sɑ݂̂̓IXXԂ̗Q̑ΗɒڂuIΗvƂTOłB{uł͑OɂāAuIΗv܂߂IɊւ鏔_ɂ‚Č݂̎_ ݂̐BɁAeI𗝘_玦iԂ͓ɐ₷ƂƁA̒ŊĎvȐiIɂ߂邽߂ɂ͒ʓIȌ KvƂȂ邱ƂqׂB㔼ł͍uҎgsIΗ̐iԂ̗_Iɂ‚ďЉsA핪ɐB`̈`Ilɂ鐫I Η̖ɂ‚ċc_B
?
R`ēp|X^[܂iPDF`FPMjB

@ b QOPONQQOiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV

e b ܂BьB

?


T

nF󂳂i_Ɗ‹Zpj

?

@ b QOPONPROiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B獁ؖB
?

S

GiȊw }gAj

ؓo肵AC̐iƓKT
?
Eɂ͖؂̏ŐAD񐶐HƂ͈ႢCh傩h{ێ悹C̐ȀŐUDMтł͂ʂɌCXHɂ͂ĂA‚ĂDAǂ̂悤ɖؓo肵̂CV_A⃉ȃNL\EɏЉDɃNL\Eɂ‚āCƋ߉ȒnrʁCۂꏊ̕ɊւĂ錋ʂĂDȐA̎q́CۂĂ͂߂Ĕ肷Dƒn킩Pۂ̈`q͂C|{ɂA̐řʂЉCA̐iɋۂ̕ω֗^”\D
?
uRRvNbNƍ̃Z~i[̈ē|X^[܂i7.5MBj

@ b QOOXNPPPSiyj@PUFOO`PWFOO
@ b }gw@QGA@`@QOT

e b ܂BSB
?

R

Kbi_Ɗ‹Zpj
?
_j̎Љ@ XJgW[ƌI
?
uЉ̃_jvƂt͂悭ɂ̂́Au_j̎ЉvƂtɌ˘fl͑ł낤B_jƂƋz̃}_jC[Wꂪł A}_jccKVƂ񐶐̂̂łȂAA񐶎ҁin_jtV_jjA̕ߐHҁiJu_jiKqV_jjAɂ ߐHҁin_jeO_jjAĕҁiTT_jjƁAlXłBĒɂ́AAn`ނƂ^Љ̂悤ɍ xɔBЉł͂Ȃ̂́AWc`ۈsƂЉ‚̂B{Z~i[ł́AA񐶐̃_jłn_jނ̒ŁA rIBЉƒXSn_jɂugC̕ψفvƁA{ɑXXLXSn_jɂuIƃIXm̎E s̒nIψفAĂQ^vɊւ錤ЉB
?
|X^[́A łB

@ b QOOXNPORPiyj@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂B䂸ƁB


Q

X^ꂳiEj

`q甗KIFCuLEnNTn^UĨQmψقƐi
?
̕zǵAKx𑝉傫ȗv̈‚łAVȊ‹ɓK邱ƂŒBB̂悤ȐVȊ‹ւ̓ḰAʂƂĐV `iAɂ͒nIȊuĈُIEI핪𑣐iB‚܂A‹K͐l𐶂ݏovȌ͂łBł́A ͔@ɂĕzg債AƂ̂H ߔÑQmȊw̔ẂA`q@\̐i쐶̕zgEvZXR”\ɂĂBŌ݁AfAVCkiYi ł߉ȃnNTn^UIƂ̍nԌ^łCuLn^UIΏۂɁAn獂nւ̕zgƓKỈ𖾂ɎgłB\ł́A OWcɂQm^͂Ŗ炩ƂȂĂ@\`q𕪉p^[Љ‚AԊwIɂ`q͂̈Ӌ`ɊւĂc_B
?
|X^[́A łB
?
@ b QOOXNXQU@PUFOO`PWFOO
@ b }gw@QGA@`@POV
e b ܂BƂځB


P

RY傳iȊw }gAj

ԗIԔr`\Eޑl̔閧ɔ
X80킩Ȃ郆LmV^ȃ`\Eނ́AɖkĂƓ{ōۗl𐋂ĂA܂`wIɈ₷ƁAԂ̌`ςłA‘lł邱ƂȂǂAqA̎핪Al̃vZX⃁JjY𖾂őϋ[܂DꂽfłB{\ł́AԔrƌnw̕@_ɂāA`\Eނ̋Nт̑l̔閧ɂǂ܂Ŕ邱Ƃo܂ЉBɉԌ`̑l̃p^[҂ɑ΂KƂĐĂ邱ƂŁA{Y`\E̎핪𒼐ڈNƍlԂ̓ɂ‚Ăׂ̋ŐV̒mBŌɁAQmxł̕q`wIȎ@񃂃fnł`\EނɉpAԊwIȌƑgݍ킹邱ƂłɐIȒm𓾂邩ɂ‚Ă̓W]ɂ‚ĂqׂB
?
|X^[́A łB

@ b QOOXNVPP@PUFOO`PWFOO
@ b }gw _ъwn@eUOV
e b ܂Bt艮 тB

?

?

inserted by FC2 system