A188137 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188137
Riordan array (1, x*(1-x)/(1-3*x+x^2)).
3
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 34, 46, 27, 8, 1, 89, 145, 107, 44, 10, 1, 233, 444, 393, 204, 65, 12, 1, 610, 1331, 1371, 854, 345, 90, 14, 1, 1597, 3926, 4607, 3336, 1620, 538, 119, 16, 1, 4181, 11434, 15045, 12390, 6997, 2799, 791, 152, 18, 1
OFFSET
1,2
COMMENTS
The column of index 0 contains a 1 followed by zeros and is not reproduced in this triangle.
The second argument of the array definition is A(x) = A000045(x/(1-x)) = A001519(x)-1.
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 26 2012
LINKS
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,m) = Sum_{k=m..n} binomial(n-1,k-1) * Sum_{i=ceiling((k-m)/2)..k-m} binomial(i,k-m-i)*binomial(m+i-1,m-1), 0<m<=n.
T(n,m) = Sum_{i=1..n-m+1} A001519(i)*T(n-i,m-1).
T(n,1) = A001519(n).
Sum_{m=1..n} T(n,m) = A007052(n-1).
G.f.: (1-3x+x^2)/(1-(3+y)*x + (1+y)*x^2). - Philippe Deléham, Jan 26 2012
EXAMPLE
Triangle begins:
1;
2, 1;
5, 4, 1;
13, 14, 6, 1;
34, 46, 27, 8, 1;
89, 145, 107, 44, 10, 1;
From Philippe Deléham, Jan 26 2012: (Start)
Triangle (0,2,1/2,1/2,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,...) begins:
1;
0, 1;
0, 2, 1;
0, 5, 4, 1;
0, 13, 14, 6, 1;
0, 34, 46, 27, 8, 1;
0, 89, 145, 107, 44, 10, 1; (End)
MAPLE
A188137 := proc(n, m) add( binomial(n-1, k-1) *add(binomial(i, k-m-i) *binomial(m+i-1, m-1), i=ceil((k-m)/2)..k-m), k=m..n) ; end proc:
seq(seq(A188137(n, k), k=1..n), n=1..10) ; # R. J. Mathar, Mar 30 2011
MATHEMATICA
t[n_, m_] := Sum[ Binomial[n - 1, k - 1]*Sum[ Binomial[i, k - m - i]*Binomial[m + i - 1, m - 1], {i, Ceiling[(k - m)/2], k - m}], {k, m, n}]; Table[t[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
PROG
(Maxima)
T(n, m):=sum(binomial(n-1, k-1) *sum(binomial(i, k-m-i) *binomial(m+i-1, m-1), i, ceiling((k-m)/2), k-m), k, m, n);
CROSSREFS
Cf. A001519 (column 1), A030267 (column 2).
Sequence in context: A096164 A201166 A318942 * A201165 A171488 A171651
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 21 2011
STATUS
approved