A008454 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008454
Tenth powers: a(n) = n^10.
38
0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000, 25937424601, 61917364224, 137858491849, 289254654976, 576650390625, 1099511627776, 2015993900449, 3570467226624, 6131066257801, 10240000000000, 16679880978201, 26559922791424
OFFSET
0,3
COMMENTS
Totally multiplicative sequence with a(p) = p^10 for prime p. [Jaroslav Krizek, Nov 01 2009]
Fifth powers of the squares and the squares of fifth powers. - Wesley Ivan Hurt, Apr 01 2016
LINKS
Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
FORMULA
Multiplicative with a(p^e) = p^(10e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^10 for primes p. [Jaroslav Krizek, Nov 01 2009]
From Robert Israel, Mar 31 2016: (Start)
G.f.: x*(x+1)*(x^8+1012*x^7+46828*x^6+408364*x^5+901990*x^4 +408364*x^3+46828*x^2+1012*x+1)/(1-x)^11.
E.g.f.: x*exp(x)*(x^9+45*x^8+750*x^7+5880*x^6+22827*x^5+42525*x^4+34105*x^3+9330*x^2+511*x+1). (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(10) = Pi^10/93555 (A013668).
Sum_{n>=1} (-1)^(n+1)/a(n) = 511*zeta(10)/512 = 73*Pi^10/6842880. (End)
MAPLE
A008454:=n->n^10; seq(A008454(n), n=0..20); # Wesley Ivan Hurt, Jan 22 2014
MATHEMATICA
Table[n^10, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
PROG
(Magma) [n^10: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
a(n) = A123867(n) + 1.
Cf. A000290 (n^2), A000584 (n^5), A013668.
Sequence in context: A195250 A016901 A017684 * A352056 A351608 A030629
KEYWORD
nonn,easy,mult
STATUS
approved