誤差伝搬法則|インデックス・ドライバー 忍者ブログ

インデックス・ドライバー

誤差伝搬法則

×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

コメント

ただいまコメントを受けつけておりません。

誤差伝搬法則

合成リスクの根拠となっているいわゆる誤差伝搬法則を確認します。

f=f(x,y)という関数があるとし、全微分(全変数の微小変化の和)をとると

df=(∂f(x,y)/∂x)dx+(∂f(x,y)/∂y)dy

両辺自乗して

df^2=(∂f(x,y)/∂x)^2dx^2+(∂f(x,y)/∂y)^2dy^2+2(∂f(x,y)/∂x)(∂f(x,y)/∂y)dxdy

クロス項は共分散であり独立事象であれば消えますが、相関があるとして相関係数rを用いて置き換えます。

dxdy=σxy=rσxσyとして

σf^2=(∂f(x,y)/∂x)^2σx^2+(∂f(x,y)/∂y)^2σy^2+2(∂f(x,y)/∂x)(∂f(x,y)/∂y)rσxσy

ちなみにn個の場合に一般的に書くと

σf^2=Σ(∂f/∂xi)^2σi^2+ΣΣ(∂f/∂xi)(∂f/∂xj)rijσiσj (i≠j)
=ΣΣ(∂f/∂xi)(∂f/∂xj)rijσiσj (i , j=1,…,n)

基本的にdx、dyは微小量としてテイラー展開(ベキ級数展開)的なことをしているのでσが大きくなるとずれてくるようです。

(関連記事)

コメント

カレンダー

11 2024/12 01
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

最新記事

最新コメント

[02/04 Rocky]
[02/03 晩酌男]
[12/14 晩酌男]
[12/06 Rocky]
[12/05 NONAME]

ブログ内検索

アーカイブ

プロフィール

HN:
Rocky
性別:
男性
職業:
技術系

忍者ブログ広告
PR