[1]
Barcena ML, Tonini G, Haritonow N, Breiter P, Milting H, Baczko I, et al. Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients. Aging Cell 2023; 22(8): e13894.
[2]
Goulart Nacácio e Silva S, Occhiutto ML, Costa VP. The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma. European Journal of Ophthalmology 2023; 33(5): 1801-5.
[3]
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13(5): 816.
[4]
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI J 2023; ;22:: 690-715.
[5]
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Frontiers in immunology 2023; 14(Nov 03): 1273570.
[6]
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22(8): 870-905.
[7]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478(1): 185-96.
[8]
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12(12)
[9]
Duan P, Hu C, Quan C, Yu T, Zhou W, Yuan M, et al. 4-Nonylphenol induces apoptosis, autophagy and necrosis in Sertoli cells: Involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways. Toxicology 2016; 341-343(341-343): 28-40.
[10]
Sohn EJ, Shin MJ, Eum WS, Kim DW, Yong JI, Ryu EJ, et al. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways. Int J Mol Med 2016; 38(1): 225-35.
[11]
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12(22): 2595.
[12]
Chong ZZ, Lin SH, Maiese K. The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cereb Blood Flow Metab 2004; 24(7): 728-43.
[13]
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169: 382-96.
[14]
Wawi MJ, Mahler C, Inguimbert N, Marder TB, Ribou AC. A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radic Res 2022; 56(3-4): 258-72.
[15]
Yuan P, Li J, Aipire A, Yang Y, Xia L, Wang X, et al. Cistanche tubulosa phenylethanoid glycosides induce apoptosis in H22 hepatocellular carcinoma cells through both extrinsic and intrinsic signaling pathways. BMC complementary and alternative medicine 2018; 18(1): 275.
[16]
Zimmerman MA, Biggers CD, Li PA. Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci 2018; 19(1): 82.
[17]
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2018; 243(6): 563-75.
[18]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy Autophagy.(4th edition)(1) Autophagy. 2021; 17: pp. (1)1-382.
[19]
Maiese K. The challenges for drug development: cytokines, genes, and stem cells. Curr Neurovasc Res 2012; 9(4): 231-2.
[20]
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[21]
Zhang Y, Zhu X, Wang G, Chen L, Yang H, He F, et al. Melatonin Rescues the Ti Particle-Impaired Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells via the SIRT1/SOD2 Signaling Pathway. Calcif Tissue Int 2020; 107(5): 474-88.
[22]
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154(4): 354-71.
[23]
Dai C, Xiao X, Li J, Ciccotosto GD, Cappai R, Tang S, et al. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS chemical neuroscience 2019; 10(1): 120-31.
[24]
Lee A, Henderson R, Arachchige BJ, Robertson T, McCombe PA. Proteomic investigation of ALS motor cortex identifies known and novel pathogenetic mechanisms. J Neurol Sci 2023; 452: 120753.
[25]
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Curr Neurovasc Res 2023; 20(3): 314-33.
[26]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[27]
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[28]
Pan YR, Song JY, Fan B, Wang Y, Che L, Zhang SM, et al. mTOR may interact with PARP-1 to regulate visible light-induced parthanatos in photoreceptors. Cell Commun Signal 2020; 18(1): 27.
[29]
Samaiya PK, Krishnamurthy S, Kumar A. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions. Mol Cell Biochem 2021; 476(12): 4421-34.
[30]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46(12): 3103-22.
[31]
Vaamonde-Garcia C, Lopez-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165: 181-95.
[32]
Xu G, Shen H, Nibona E, Wu K, Ke X, Al Hafiz MA, et al. Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Scientific reports 2019; 9(1): 18910.
[33]
Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, et al. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural regeneration research 2021; 16(8): 1628-37.
[34]
Zhao HY, Li HY, Jin J, Jin JZ, Zhang LY, Xuan MY, et al. L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Korean J Intern Med 2021; 36 (Suppl. 1): S180-95.
[35]
Ahmad R, Khan A, Rehman IU, Lee HJ, Khan I, Kim MO. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. International journal of molecular sciences 2022; 23(11): 6086.
[36]
Joshi SM, Thomas TC, Jadavji NM. Impact of increasing one-carbon metabolites on traumatic brain injury outcome using pre-clinical models. Neural regeneration research 2024; 19(8): 1728-33.
[37]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 2002; 106(23): 2973-9.
[38]
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, et al. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9: 1017650.
[39]
Groen CM, Podratz JL, Pathoulas J, Staff N, Windebank AJ. Genetic Reduction of Mitochondria Complex I Subunits is Protective against Cisplatin-Induced Neurotoxicity in Drosophila. J Neurosci 2022; 42(5): 922-37.
[40]
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. Journal of translational medicine 2023; 21(1): 297.
[41]
Hou J, Chong ZZ, Shang YC, Maiese K. FOXO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Mol Cell Endocrinol 2010; 321(2): 194-206.
[42]
Ju DT, Huang RS, Tsai BC, Su YC, Chiu PL, Chang YM, et al. Folic Acid and Folinic Acid Protect Hearts of Aging Triple-transgenic Alzheimer's Disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK Pathways. Neurotox Res 2023; 41(6): 648-59.
[43]
Li N, Yue L, Wang J, Wan Z, Bu W. MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress. Biochem Cell Biol 2020; 98(2): 208-18.
[44]
Lisco G, De Tullio A, Iovino M, Disoteo O, Guastamacchia E, Giagulli VA, et al. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023; 11(11): 2993.
[45]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Frontiers in bioscience (Landmark edition) 2020; 25(11): 1925-73.
[46]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural regeneration research 2021; 16(3): 448-55.
[47]
Cardoso S, Lopez IP, Pineiro-Hermida S, Pichel JG, Moreira PI. IGF1R Deficiency Modulates Brain Signaling Pathways and Disturbs Mitochondria and Redox Homeostasis. Biomedicines 2021; 9(2): 158.
[48]
Maiese K, TenBroeke M, Kue I. Neuroprotection of lubeluzole is mediated through the signal transduction pathways of nitric oxide. J Neurochem 1997; 68(2): 710-4.
[49]
Sedik AA, Elgohary R, Khalifa E, Khalil WKB. H IS, M BS, et al. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced Non-alcoholic Fatty Liver Disease in rats. Toxicol Mech Methods 2024; 1-19.
[50]
VS D, M S, P D, M F. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. 2024; 25(2): 718.
[51]
Xu J, Ye Y, Shen H, Li W, Chen G. Sevoflurane: an opportunity for stroke treatment. Medical Gas Research 2024; 14.
[52]
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol 2020; 132: 110831.
[53]
Chen Z, He Y, Hu F, Li M, Yao Y. Genkwanin Alleviates Mitochondrial Dysfunction and Oxidative Stress in a Murine Model of Experimental Colitis: The Participation of Sirt1. Ann Clin Lab Sci 2022; 52(2): 301-13.
[54]
Fernandes J, Uppal K, Liu KH, Hu X, Orr M, Tran V, et al. Antagonistic Interactions in Mitochondria ROS Signaling Responses to Manganese. Antioxidants 2023; 12(4): 804.
[55]
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, et al. Roles of alpha-synuclein in gastrointestinal microbiome dysbiosis-related Parkinson’s disease progression (Review). Molecular medicine reports 2021; 24(4): 734.
[56]
Maiese K. Targeting conserved pathways: mitochondrial dysfunction and beyond. Curr Neurovasc Res 2013; 10(1): 1-3.
[57]
Melecchi A, Amato R, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Restored retinal physiology after administration of niacin with citicoline in a mouse model of hypertensive glaucoma. Front Med (Lausanne) 2023; 10: 1230941.
[58]
Odnokoz O, Nakatsuka K, Wright C, Castellanos J, Klichko VI, Kretzschmar D, et al. Mitochondrial Redox Signaling Is Critical to the Normal Functioning of the Neuronal System. Front Cell Dev Biol 2021; 9: 613036.
[59]
Oliveira ALL, Santos GGL, Espirito-Santo RF, Silva GSA, Evangelista AF, Silva DN, et al. Reestablishment of Redox Homeostasis in the Nociceptive Primary Afferent as a Mechanism of Antinociception Promoted by Mesenchymal Stem/Stromal Cells in Oxaliplatin-Induced Chronic Peripheral Neuropathy. Stem cells international 2021; 2021: 8815206.
[60]
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Dev Neurobiol 2021; 81(5): 653-70.
[61]
Piao S, Lee I, Jin SA, Kim S, Nagar H, Choi SJ, et al. SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1. Biomedicines 2021; 9(1): 52.
[62]
Prasuhn J, Bruggemann N. Genotype-driven therapeutic developments in Parkinson’s disease. Mol Med 2021; 27(1): 42.
[63]
Wang J, Chen S, Zhao X, Guo Q, Yang R, Zhang C, et al. Effect of PPARgamma on oxidative stress in diabetes-related dry eye. Exp Eye Res 2023; 231: 109498.
[64]
Zhong S, Chen W, Wang B, Gao C, Liu X, Song Y, et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox biology 2023; 63: 102760.
[65]
Zhuang X, Ma J, Xu G, Sun Z. SHP-1 knockdown suppresses mitochondrial biogenesis and aggravates mitochondria-dependent apoptosis induced by all trans retinal through the STING/AMPK pathways. Mol Med 2022; 28(1): 125.
[66]
Chen L, Xu W, Zhang Y, Chen H, Han Y. Gandouling alleviates nerve injury through PI3K/Akt/FoxO1 and Sirt1/FoxO1 signaling pathway to inhibit autophagy in the rats model of Wilson’s disease. Brain Behav 2023; 13(12): e3325.
[67]
Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson’s Disease. Front Mol Neurosci 2019; 12: 299.
[68]
Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[69]
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[70]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guerin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS chemical neuroscience 2022; 13(6): 721-32.
[71]
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Critical reviews in food science and nutrition 2021; 61(22): 3857-75.
[72]
Barthels D, Prateeksha P, Nozohouri S, Villalba H, Zhang Y, Sharma S, et al. Dental Pulp-Derived Stem Cells Preserve Astrocyte Health During Induced Gliosis by Modulating Mitochondrial Activity and Functions. Cell Mol Neurobiol 2023; 43(5): 2105-27.
[73]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural regeneration research 2015; 10(4): 518-28.
[74]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[75]
Chen G, Zeng L, Yan F, Liu J, Qin M, Wang F, et al. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Frontiers in pharmacology 2022; 13: 919905.
[76]
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2023; 97(1): 217-33.
[77]
Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr Neurovasc Res 2017; 14(4): 415-20.
[78]
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[79]
McCoin CS, Franczak E, Deng F, Pei D, Ding WX, Thyfault JP. Acute exercise rapidly activates hepatic mitophagic flux. J Appl Physiol (1985) 2022; 132(3): 862-73.
[80]
Dutta RK, Jun J, Du K, Diehl AM. Hedgehog Signaling: Implications in Liver Pathophysiology. Semin Liver Dis 2023; 43(4): 418-28.
[82]
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, et al. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Frontiers in pharmacology 2021; 12: 653940.
[83]
Yang L, Cheng CF, Li ZF, Huang XJ, Cai SQ, Ye SY, et al. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway. Int J Mol Med 2023; 51(6): 49.
[84]
Rotllan N, Camacho M, Tondo M, Diarte-Anazco EMG, Canyelles M, Mendez-Lara KA, et al. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel, Switzerland) 2021; 10(12): 1939.
[85]
El-Beltagy A, Saleh AMB, Attaallah A, Gahnem RA. Therapeutic role of Azadirachta indica leaves ethanolic extract against diabetic nephropathy in rats neonatally induced by streptozotocin. Ultrastruct Pathol 2021; 45(6): 391-406.
[86]
Fang X, Song J, Chen Y, Zhu S, Tu W, Ke B, et al. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis viamiR‐16‐5p/ACSL4 axis to alleviate diabetic nephropathy. Journal of Diabetes Investigation 2023; 14(9): 1056-69.
[87]
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[88]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[89]
Mocayar Maron FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199: 105595.
[90]
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. Journal of diabetes research 2020; 2020: 7489795.
[91]
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, et al. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Scientific reports 2023; 13(1): 15133.
[92]
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022; 27(3): 950.
[93]
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. J Neurosci 2021; 41(25): 5338-49.
[94]
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37(10-12): 704-25.
[95]
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer’s Disease. Neuromolecular Med 2019; 21(1): 12-24.
[96]
Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q. Inhibition of mitochondrial fission attenuates Abeta-induced microglia apoptosis. Neuroscience 2014; 256: 36-42.
[97]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol 2003; 138(6): 1107-18.
[98]
Maiese K. Microglia: Formidable Players in Alzheimer’s Disease and Other Neurodegenerative Disorders. Curr Neurovasc Res 2023.
[99]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[100]
Cirotti C, Taddei I, Contadini C, Di Girolamo C, Pepe G, De Bardi M, et al. NRF2 connects Src tyrosine kinase to ferroptosis resistance in glioblastoma. Life Sci Alliance 2024; 7(1)
[101]
Guimera AM, Clark P, Wordsworth J, Anugula S, Rasmussen LJ, Shanley DP. Systems modelling predicts chronic inflammation and genomic instability prevent effective mitochondrial regulation during biological ageing. Exp Gerontol 2022; 166: 111889.
[102]
Maiese K. Charting a course for erythropoietin in traumatic brain injury. J Transl Sci 2016; 2(2): 140-4.
[103]
Wang N, Luo Z, Jin M, Sheng W, Wang HT, Long X, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11(10): 3117-37.
[104]
Carmona-Mora P, Ander BP, Jickling GC, Dykstra-Aiello C, Zhan X, Ferino E, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab 2021; 41(6): 1398-416.
[105]
Gallyas F Jr, Sumegi B, Szabo C. Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers 2020; 12(3): 532.
[106]
Huang C, Wen C, Yang M, Li A, Fan C, Gan D, et al. Astaxanthin Improved the Cognitive Deficits in APP/PS1 Transgenic Mice Via Selective Activation of mTOR. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2021; 16(3): 609-19.
[107]
Maiese K. Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[108]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(7): 1002.
[109]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in bioscience (Landmark edition) 2021; 26(9): 614-27.
[110]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[111]
Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, et al. Toward understanding genomic instability, mitochondrial dysfunction and aging. The FEBS journal 2019; 286(6): 1058-73.
[112]
Wasserfurth P, Nebl J, Ruhling MR, Shammas H, Bednarczyk J, Koehler K, et al. Impact of Dietary Modifications on Plasma Sirtuins 1, 3 and 5 in Older Overweight Individuals Undergoing 12-Weeks of Circuit Training. Nutrients 2021; 13(11): 3824.
[113]
Foser S, Maiese K, Digumarthy SR, Puig-Butille JA, Rebhan C. Looking to the Future of Early Detection in Cancer: Liquid Biopsies, Imaging, and Artificial Intelligence. Clin Chem 2024; 70(1): 27-32.
[114]
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD(+) synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132: 110841.
[115]
Maiese K. Mitochondria: “Mood Altering Organelles” that Impact Disease Throughout the Nervous System. Curr Neurovasc Res 2015; 12(4): 309-11.
[116]
Yaman D, Takmaz T, Yuksel N, Dincer SA, Sahin FI. Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 2020; 47(12): 9337-44.
[118]
Maiese K. Regeneration in the nervous system with erythropoietin. Frontiers in bioscience (Landmark edition) 2016; 21(3): 561-96.
[119]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[120]
Kang JQ, Chong ZZ, Maiese K. Critical role for Akt1 in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol Pharmacol 2003; 64(3): 557-69.
[121]
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Hoyer D, et al. Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS chemical neuroscience 2018; 9(4): 824-37.
[122]
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington’s Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2020; 17(1): 252-68.