Abstract
Background: The lipid-lowering effect of fenofibrate is accompanied by a rise in plasma homocysteine (HCY), a potential risk factor for venous thromboembolism (VTE). This study investigated the relationship between HCY and the risk of VTE in patients treated with fenofibrate.
Methods: The relationship between HCY and deep-vein thrombosis or pulmonary embolism was investigated in 9522 participants of the 5-year Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) trial. All subjects received fenofibrate during a 6-week active run-in phase before randomization. A Cox proportional-hazards model was used to assess the effect of HCY on risk of venous thromboembolic events.
Results: During active-drug run-in, HCY rose on average by 6.5 μmol/L, accompanied by a substantial rise in plasma creatinine (+12%). Fenofibrate-induced changes in HCY and creatinine were fully reversible in the placebo group but persisted in the treatment group until reversing at the end of therapy. During follow-up, 1.8% had at least one episode of deep-vein thrombosis or pulmonary embolism: 103 on fenofibrate and 68 on placebo (log-rank p=0.006). In multivariate analysis, every 5 μmol/L higher baseline HCY was associated with 19% higher risk of VTE. Fenofibrate treatment was associated with 52% higher risk, but the change in HCY with fenofibrate was not significantly associated with VTE after adjustment for baseline HCY.
Conclusions: Hyperhomocysteinemia is prospectively associated with VTE. Fenofibrate may predispose individuals with high pretreatment HCY towards VTE. The fenofibrate-induced increase in HCY did not, however, explain the risk associated with fenofibrate therapy.
References
1. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011;17:1410–22.10.1038/nm.2538http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000296779300032&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
2. Mills EJ, Rachlis B, Wu P, Devereaux PJ, Arora P, Perri D. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol 2008;52:1769–81.10.1016/j.jacc.2008.08.039Search in Google Scholar PubMed
3. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J Am Med Assoc 2001;285:2486–97.10.1001/jama.285.19.2486Search in Google Scholar
4. Biasucci LM, Biasillo G, Stefanelli A. Inflammatory markers, cholesterol and statins: pathophysiological role and clinical importance. Clin Chem Lab Med 2010;48:1685–91.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000284624600002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
5. Lippi G, Favaloro EJ, Montagnana M, Franchini M. C-reactive protein and venous thromboembolism: causal or casual association? Clin Chem Lab Med 2010;48:1693–701.10.1515/CCLM.2010.335Search in Google Scholar PubMed
6. McCullough PA, Ahmed AB, Zughaib MT, Glanz ED, Di Loreto MJ. Treatment of hypertriglyceridemia with fibric acid derivatives: impact on lipid subfractions and translation into a reduction in cardiovascular events. Rev Cardiovasc Med 2011;12:173–85.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000298901900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.3909/ricm0619Search in Google Scholar PubMed
7. Steiner G. How can we improve the management of vascular risk in type 2 diabetes: insights from FIELD. Cardiovasc Drugs Ther 2009;23:403–8.10.1007/s10557-009-6190-7Search in Google Scholar PubMed
8. Keating GM. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs 2011;11:227–47.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000293804900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
9. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849–61.10.1016/S0140-6736(05)67667-2Search in Google Scholar PubMed
10. Taskinen MR, Sullivan DR, Ehnholm C, Whiting M, Zannino D, Simes RJ, et al. Relationships of HDL cholesterol, ApoA-I, and ApoA-II with homocysteine and creatinine in patients with type 2 diabetes treated with fenofibrate. Arterioscler Thromb Vasc Biol 2009;29:950–5.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000266242700027&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1161/ATVBAHA.108.178228Search in Google Scholar PubMed
11. den Heijer M, Koster T, Blom HJ, Bos GM, Briet E, Reitsma PH, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996;334:759–62.10.1056/NEJM199603213341203Search in Google Scholar PubMed
12. den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost 2005;3:292–9.10.1111/j.1538-7836.2005.01141.xSearch in Google Scholar PubMed
13. Bozic-Mijovski M. Hyperhomocysteinemia and thrombophilia. Clin Chem Lab Med 2010;48(Suppl 1):S89–95.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000286656600009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar
14. Quere I, Chasse JF, Dupuy E, Bellet E, Molho-Sabatier P, Tobelem G, et al. [Homocysteine, 5,10-methylenetetrahydrofolate reductase and deep venous thrombosis. Survey of 120 patients in internal medicine]. Rev Med Interne 1998;19: 29–33.10.1016/S0248-8663(97)83696-XSearch in Google Scholar
15. Cattaneo M, Lombardi R, Lecchi A, Bucciarelli P, Mannucci PM. Low plasma levels of vitamin B(6) are independently associated with a heightened risk of deep-vein thrombosis. Circulation 2001;104:2442–6.10.1161/hc4501.098925Search in Google Scholar PubMed
16. Gemmati D, Previati M, Serino ML, Moratelli S, Guerra S, Capitani S, et al. Low folate levels and thermolabile methylenetetrahydrofolate reductase as primary determinant of mild hyperhomocystinemia in normal and thromboembolic subjects. Arterioscler Thromb Vasc Biol 1999;19:1761–7.10.1161/01.ATV.19.7.1761Search in Google Scholar PubMed
17. de Franchis R, Fermo I, Mazzola G, Sebastio G, Di Minno G, Coppola A, et al. Contribution of the cystathionine beta-synthase gene (844ins68) polymorphism to the risk of early-onset venous and arterial occlusive disease and of fasting hyperhomocysteinemia. Thromb Haemost 2000;84:576–82.10.1055/s-0037-1614070Search in Google Scholar
18. Ray JG, Shmorgun D, Chan WS. Common C677T polymorphism of the methylenetetrahydrofolate reductase gene and the risk of venous thromboembolism: meta-analysis of 31 studies. Pathophysiol Haemost Thromb 2002;32:51–8.10.1159/000065076Search in Google Scholar PubMed
19. The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. [ISRCTN64783481]. Cardiovasc Diabetol 2004;3:9.Search in Google Scholar
20. Lee KL, Harrell FE Jr., Tolley HD, Rosati RA. A comparison of test statistics for assessing the effects of concomitant variables in survival analysis. Biometrics 1983;39:341–50.10.2307/2531007Search in Google Scholar PubMed
21. de Bree A, van der Put NM, Mennen LI, Verschuren WM, Blom HJ, Galan P, et al. Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr 2005;59:480–8.10.1038/sj.ejcn.1602097Search in Google Scholar PubMed
22. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004;50:3–32.10.1373/clinchem.2003.021634Search in Google Scholar PubMed
23. Royston P, Altman DG. Regression using fractional polynomials of continuous covariates – parsimonious parametric modeling. Appl Stat-J Roy St C 1994;43:429–67.10.2307/2986270Search in Google Scholar
24. Ridker PM, Hennekens CH, Selhub J, Miletich JP, Malinow MR, Stampfer MJ. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 1997;95:1777–82.10.1161/01.CIR.95.7.1777Search in Google Scholar PubMed
25. Tsai AW, Cushman M, Tsai MY, Heckbert SR, Rosamond WD, Aleksic N, et al. Serum homocysteine, thermolabile variant of methylene tetrahydrofolate reductase (MTHFR), and venous thromboembolism: Longitudinal Investigation of Thromboembolism Etiology (LITE). Am J Hematol 2003;72:192–200.10.1002/ajh.10287Search in Google Scholar PubMed
26. Loscalzo J. Homocysteine-mediated thrombosis and angiostasis in vascular pathobiology. J Clin Invest 2009;119:3203–5.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000271589400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
27. Cattaneo M. Hyperhomocysteinemia and venous thromboembolism. Semin Thromb Hemost 2006;32:716–23.10.1055/s-2006-951456Search in Google Scholar PubMed
28. Jacovina AT, Deora AB, Ling Q, Broekman MJ, Almeida D, Greenberg CB, et al. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J Clin Invest 2009;119:3384–94.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000271589400021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
29. Colucci M, Cattaneo M, Martinelli I, Semeraro F, Binetti BM, Semeraro N. Mild hyperhomocysteinemia is associated with increased TAFI levels and reduced plasma fibrinolytic potential. J Thromb Haemost 2008;6:1571–7.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000258471800021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1538-7836.2008.03070.xSearch in Google Scholar PubMed
30. De Stefano V, Casorelli I, Rossi E, Zappacosta B, Leone G. Interaction between hyperhomocysteinemia and inherited thrombophilic factors in venous thromboembolism. Semin Thromb Hemost 2000;26:305–11.10.1055/s-2000-8473Search in Google Scholar PubMed
31. Samuelsson O, Lee DM, Attman PO, Knight-Gibson C, Mullen JK, Larsson R, et al. The plasma levels of homocysteine are elevated in moderate renal insufficiency but do not predict the rate of progression. Nephron 1999;82:306–11.10.1159/000045445Search in Google Scholar PubMed
32. Wollesen F, Brattstrom L, Refsum H, Ueland PM, Berglund L, Berne C. Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 1999;55:1028–35.10.1046/j.1523-1755.1999.0550031028.xSearch in Google Scholar PubMed
33. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant 2006;21:1161–6.10.1093/ndt/gfl044Search in Google Scholar
34. Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2011;54:280–90.10.1007/s00125-010-1951-1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000286001800012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
35. Luc G, Jacob N, Bouly M, Fruchart JC, Staels B, Giral P. Fenofibrate increases homocystinemia through a PPARalpha-mediated mechanism. J Cardiovasc Pharmacol 2004;43: 452–3.10.1097/00005344-200403000-00017Search in Google Scholar PubMed
36. Krysiak R, Handzlik G, Okopien B. Hemostatic effects of fenofibrate in patients with mixed dyslipidemia and impaired fasting glucose. Pharmacol Rep 2010;62:1099–107.10.1016/S1734-1140(10)70372-8Search in Google Scholar PubMed
37. Krysiak R, Okopien B. The effect of fenofibrate on lymphocyte cytokine release in patients with impaired fasting glucose and impaired glucose tolerance: a preliminary report. Atherosclerosis 2010;213:325–8.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000283356400100&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.atherosclerosis.2010.07.016Search in Google Scholar PubMed
38. Lacut K, Le Gal G, Abalain JH, Mottier D, Oger E. Differential associations between lipid-lowering drugs, statins and fibrates, and venous thromboembolism: role of drug induced homocysteinemia? Thromb Res 2008;122:314–9.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000258042300004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.thromres.2007.10.014Search in Google Scholar PubMed
39. Silvestri E, de Lange P, Moreno M, Lombardi A, Ragni M, Feola A, et al. Fenofibrate activates the biochemical pathways and the de novo expression of genes related to lipid handling and uncoupling protein-3 functions in liver of normal rats. Biochim Biophys Acta 2006;1757:486–95.10.1016/j.bbabio.2006.02.016Search in Google Scholar PubMed
40. Montanaro MA, Bernasconi AM, Gonzalez MS, Rimoldi OJ, Brenner RR. Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids 2005;73: 369–78.10.1016/j.plefa.2005.06.004Search in Google Scholar PubMed
41. Montanaro MA, Gonzalez MS, Bernasconi AM, Brenner RR. Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis. Lipids 2007;42:197–210.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000245896200003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1007/s11745-006-3006-4Search in Google Scholar PubMed
42. Aslibekyan S, Kabagambe EK, Irvin MR, Straka RJ, Borecki IB, Tiwari HK, et al. A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network. Pharmacogenet Genomics 2012;22:191–7.10.1097/FPC.0b013e32834fdd41http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000300409800004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed PubMed Central
43. Delluc A, Malecot JM, Kerspern H, Nowak E, Carre JL, Mottier D, et al. Lipid parameters, lipid lowering drugs and the risk of venous thromboembolism. Atherosclerosis 2012;220:184–8.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000298374800031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.atherosclerosis.2011.10.007Search in Google Scholar PubMed
44. Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563–74.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000277117400005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar
45. Agarwal V, Phung OJ, Tongbram V, Bhardwaj A, Coleman CI. Statin use and the prevention of venous thromboembolism: a meta-analysis. Int J Clin Pract 2010;64:1375–83.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000280974400013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1742-1241.2010.02439.xSearch in Google Scholar PubMed
46. Pai M, Evans NS, Shah SJ, Green D, Cook D, Crowther MA. Statins in the prevention of venous thromboembolism: a meta-analysis of observational studies. Thromb Res 2011;128: 422–30.10.1016/j.thromres.2011.05.012http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000296573100015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar PubMed
47. Mayer O Jr., Simon J, Holubec L, Pikner R, Subrt I. Fenofibrate-induced hyperhomocysteinemia may be prevented by folate co-administration. Eur J Clin Pharmacol 2003;59:367–71.10.1007/s00228-003-0616-0Search in Google Scholar PubMed
©2012 by Walter de Gruyter Berlin Boston