Correlated neuronal discharge rate and its implications for psychophysical performance | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlated neuronal discharge rate and its implications for psychophysical performance

An Erratum to this article was published on 22 September 1994

Abstract

SINGLE neurons can signal subtle changes in the sensory environment with surprising fidelity, often matching the perceptual sensitivity of trained psychophysical observers1–10. This similarity poses an intriguing puzzle: why is psychophysical sensitivity not greater than that of single neurons? Pooling responses across neurons should average out noise in the activity of single cells, leading to substantially improved psychophysical performance. If, however, noise is correlated among these neurons, the beneficial effects of pooling would be diminished10–12. To assess correlation within a pool, the responses of pairs of neurons were recorded simultaneously during repeated stimulus presentations. We report here that the observed covariation in spike count was relatively weak, the correlation coefficient averaging 0.12. A theoretical analysis revealed, however, that weak correlation can limit substantially the signalling capacity of the pool. In addition, theory suggests a relationship between neuronal responses and psychophysical decisions which may prove useful for identifying cell populations underlying specific perceptual capacities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mountcastle, V., Talbot, W., Sakata, H. & Hyvarinen, J. J. Neurophysiol. 32, 452–484 (1969).

    Article  CAS  Google Scholar 

  2. Mountcastle, V., LaMotte, R. & Carli, G. J. Neurophysiol. 35, 122 (1972).

    Article  CAS  Google Scholar 

  3. Johnson, K., Darian-Smith, I. & LaMotte, C. J. Neurophysiol. 36, 347–370 (1973).

    Article  CAS  Google Scholar 

  4. Johnson, K., Darian-Smith, I., LaMotte, C., Johnson, B. & Oldfield, S. J. Neurophysiol. 42, 1332–1353 (1979).

    Article  CAS  Google Scholar 

  5. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. Vision Res. 23, 775–785 (1983).

    Article  CAS  Google Scholar 

  6. Bradley, A., Skottun, B. C., Ohzawa, I., Sclar, G. & Freeman, R. D. J. Neurophys. 57, 755–772 (1987).

    Article  CAS  Google Scholar 

  7. Hawken, M. J. & Parker, A. J. in Vision: Coding and Efficiency (ed. Blakemore, C.) 103–116 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  8. Vogels, R. & Orban, G. A. J. Neurosci. 10, 3543–3558 (1990).

    Article  CAS  Google Scholar 

  9. Recanzone, G. H., Merzenich, M. M. & Schreiner, C. E. J. Neurophysiol. 67, 1071–1091 (1992).

    Article  CAS  Google Scholar 

  10. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  11. Johnson, K. J. Neurophysiol. 43, 1793–1815 (1980).

    Article  CAS  Google Scholar 

  12. van Kan, P., Scobey, R. & Gabor, A. Expl Brain Res. 1985, 559–563 (1985).

    Article  Google Scholar 

  13. Newsome, W. T. & Paré, E. B. J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  14. Salzman, C. D., Murasugi, C. M., Britten, K. H. & Newsome, W. T. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  Google Scholar 

  15. Murasugi, C. M., Salzman, C. D. & Newsome, W. T. J. Neurosci. 13, 1719–1729 (1993).

    Article  CAS  Google Scholar 

  16. Worgotter, F., Daunicht, W. & Eckmiller, R. J. Neurosci. Meth. 17, 141–151 (1986).

    Article  CAS  Google Scholar 

  17. Zeki, S. M. J. Physiol., Lond. 236, 549–573 (1974).

    Article  CAS  Google Scholar 

  18. Anderson, T. An Introduction to Multivariate Statistical Analysis (Wiley, New York, 1958).

    MATH  Google Scholar 

  19. Gawne, T. & Richmond, B. J. Neurosci. 13, 2758–2771 (1993).

    Article  CAS  Google Scholar 

  20. Newsome, W. T., Britten, K. H., Movshon, J. A. & Shadlen, M. in Neural Mechanisms of Visual Perception. Proc. Retina Res. Fdn (eds Lam, D.M.-K. & Gilbert, C. D.) 171–198 (Portfolio Publishing, The Woodlands, Texas, 1989).

    Google Scholar 

  21. Celebrini, S. & Newsome, W. T. J. Neurosci. (in the press).

  22. Dubner, R., Kenshalo, D. R., Maixner, W., Bushnell, M. C. & Oliveras, J. L. J. Neurophysiol. 62, 450–457 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohary, E., Shadlen, M. & Newsome, W. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994). https://doi.org/10.1038/370140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370140a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing