Ecological dissimilarity among land-use/land-cover types improves a heterogeneity index for predicting biodiversity in agricultural landscapes | Ambio Skip to main content

Advertisement

Log in

Ecological dissimilarity among land-use/land-cover types improves a heterogeneity index for predicting biodiversity in agricultural landscapes

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Land-use/land-cover heterogeneity is among the most important factors influencing biodiversity in agricultural landscapes and is the key to the conservation of multi-habitat dwellers that use both terrestrial and aquatic habitats. Heterogeneity indices based on land-use/land-cover maps typically do not integrate ecological dissimilarity between land-use/land-cover types. Here, we applied the concept of functional diversity to an existing land-use/land-cover diversity index (Satoyama index) to incorporate ecological dissimilarity and proposed a new index called the dissimilarity-based Satoyama index (DSI). Using Japan as a case study, we calculated the DSI for three land-use/land-cover maps with different spatial resolutions and derived similarity information from normalized difference vegetation index values. The DSI showed better performance in the prediction of Japanese damselfly species richness than that of the existing index, and a higher correlation between the index and species richness was obtained for higher resolution maps. Thus, our approach to improve the land-use/land-cover diversity index holds promise for future development and can be effective for conservation and monitoring efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akasaka, M., A. Takenaka, F. Ishihama, T. Kadoya, M. Ogawa, T. Osawa, T. Yamakita, S. Tagane, et al. 2014. Development of a national land-use/cover dataset to estimate biodiversity and ecosystem services. In Integrative observations and assessments: Ecological Research monograph, ed. S. Nakano, T. Yahara, and T. Nakashizuka, 209–229. Tokyo: Springer Japan.

    Google Scholar 

  • Atauri, J.A., and J.V. de Lucio. 2001. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecology 16: 147–159.

    Article  Google Scholar 

  • Benton, T.G., J.A. Vickery, and J.D. Wilson. 2003. Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecolgy & Evolution 18: 182–188.

    Article  Google Scholar 

  • Billeter, R., J. Liira, D. Bailey, R. Bugter, P. Arens, I. Augenstein, S. Aviron, J. Baudry, et al. 2008. Indicators for biodiversity in agricultural landscapes: A pan-European study. Journal of Applied Ecology 45: 141–150.

    Article  Google Scholar 

  • Bivand, R.S., V. Gomez-Rubio, and H. Rue. 2015. Spatial data analysis with R-INLA with some extensions. Journal of Statistical Software 63: 20. http://hdl.handle.net/11250/276910.

  • Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.

    Article  Google Scholar 

  • Environment Agency, Japan and Asia Air Survey Co., Ltd. 1999. The 5th national survey on the natural environment: Report of vegetation survey. Retrieved August 21, 2015, from http://www.biodic.go.jp/reports2/5th/vgtmesh/vgtmesh/5_vgtmesh.pdf (in Japanese with English summary).

  • Firbank, L.G., S. Petit, S. Smart, A. Blain, and R.J. Fuller. 2008. Assessing the impacts of agricultural intensification on biodiversity: A British perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 777–787.

    Article  Google Scholar 

  • Fischer, J., B. Brosi, G.C. Daily, P.R. Ehrlich, R. Goldman, J. Goldstein, D.B. Lindenmayer, A.D. Manning, et al. 2008. Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and Environment 6: 380–385.

    Article  Google Scholar 

  • Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, et al. 2011. Solutions for a cultivated planet. Nature 478: 337–342.

    Article  CAS  Google Scholar 

  • Gil-Tena, A., M. De Cáceres, A. Ernoult, A. Butet, L. Brotons, and F. Burel. 2015. Agricultural landscape composition as a driver of farmland bird diversity in Brittany (NW France). Agriculture, Ecosystems & Environment 205: 79–89.

    Article  Google Scholar 

  • Gottschalk, T.K., R. Dittrich, T. Diekötter, P. Sheridan, V. Wolters, and K. Ekschmitt. 2010. Modelling land-use sustainability using farmland birds as indicators. Ecological Indicators 10: 15–23.

    Article  Google Scholar 

  • Honnay, O., K. Piessens, W. Van Landuyt, M. Hermy, and H. Gulinck. 2003. Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape and Urban Planning 63: 241–250.

    Article  Google Scholar 

  • Huete, A., C. Justice, and W. van Leeuwen. 1999. MODIS Vegetation Index (MOD 13): Algorithm Theoretical Basis Document (version 3). Retrieved August 3, 2015, from http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf.

  • Imai, J., T. Kadoya, and I. Washitani. 2013. A land-cover heterogeneity index for the state of biodiversity in the Satoyama landscape: Assessment of spatial scale and resolution using participatory monitoring data in Fukui Prefecture. Japanese Journal of Conservation Ecology 18: 19–31 (in Japanese with English abstract).

    Google Scholar 

  • Japan Wildlife Research Center (JWRC). 2010. Biodiversity of Japan: A harmonious coexistence between nature and humankind. Fujiyoshida: Biodiversity Center of Japan, Nature Conservation Bureau, Ministry of the Environment.

    Google Scholar 

  • Jeanneret, P., B. Schüpbach, and H. Luka. 2003. Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agriculture, Ecosystems & Environment 98: 311–320.

    Article  Google Scholar 

  • Jeliazkov, A., A. Mimet, R. Chargé, F. Jiguet, V. Devictor, and F. Chiron. 2016. Impacts of agricultural intensification on bird communities: New insights from a multi-level and multi-facet approach of biodiversity. Agriculture, Ecosystems & Environment 216: 9–22.

    Article  Google Scholar 

  • Jetz, W., J.M. McPherson, and R.P. Guralnick. 2012. Integrating biodiversity distribution knowledge: Toward a global map of life. Trends in Ecology & Evolution 27: 151–159.

    Article  Google Scholar 

  • Jones, H.G., and R.A. Vaughan. 2010. Remote sensing of vegetation. New York: Oxford University Press.

    Google Scholar 

  • Kadoya, T., and I. Washitani. 2011. The Satoyama Index: A biodiversity indicator for agricultural landscapes. Agriculture, Ecosystems & Environment 140: 20–26.

    Article  Google Scholar 

  • Kadoya, T., S. Suda, Y. Tsubaki, and I. Washitani. 2008. The sensitivity of dragonflies to landscape structure differs between life-history groups. Landscape Ecology 23: 149–158.

    Article  Google Scholar 

  • Kadoya, T., S. Suda, and I. Washitani. 2009. Dragonfly crisis in Japan: A likely consequence of recent agricultural habitat degradation. Biological Conservation 142: 1899–1905.

    Article  Google Scholar 

  • Kass, R.E., and A.E. Raftery. 1995. Bayes Factors. Journal of the American Statistical Association 90: 773–795.

    Article  Google Scholar 

  • Katoh, K., S. Sakai, and T. Takahashi. 2009. Factors maintaining species diversity in Satoyama, a traditional agricultural landscape of Japan. Biological Conservation 142: 1930–1936.

    Article  Google Scholar 

  • Kays, R., M.C. Crofoot, W. Jetz, and M. Wikelski. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348: aaa2478. doi:10.1126/science.aaa2478.

    Article  Google Scholar 

  • Land Processes Distributed Active Archive Center (LP DAAC). 2013. MODIS 13Q1. Retrieved August 3, 2015, from https://lpdaac.usgs.gov/data_access/data_pool.

  • Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.

    Article  Google Scholar 

  • Lomba, A., C. Guerra, J. Alonso, J.P. Honrado, R. Jongman, and D. McCracken. 2014. Mapping and monitoring High Nature Value farmlands: Challenges in European landscapes. Journal of Environmental Management 143: 140–150.

    Article  Google Scholar 

  • Mcgarigal, K., and B.J. Marks. 1995. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure, General Technical Report PNW-GTR-351. Portland: US Forest Service Pacific Northwest Research Station.

    Book  Google Scholar 

  • Millennium Ecosystem Assessment. 2005. Ecosystems and human well being: Our human planet summary for decision-makers. Washington, DC: Island Press.

    Google Scholar 

  • Ministry of the Environment, Japan, 2009. Japan Integrated Biodiversity Information System (J-IBIS). Retrieved August 3, 2015, from http://www.biodic.go.jp/english/J-IBIS.html.

  • Moser, D., H.G. Yechmeister, C.H. Plutzar, N. Sauberer, T. Wrbka, and G. Grabherr. 2002. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landscape Ecology 17: 657–669.

    Article  Google Scholar 

  • Ogawa, M., A. Takenaka, T. Kadoya, F. Ishihama, H. Yamano, and M. Akasaka. 2013. Land-use classification and mapping at a whole scale of Japan based on a national vegetation map. Japanese Journal of Conservation Ecology 18: 69–76 (in Japanese with English abstract).

    Google Scholar 

  • Osawa, T., K. Kohyama, and H. Mitsuhashi. 2013. Areas of increasing agricultural abandonment overlap the distribution of previously common, currently threatened plant species. PLoS ONE 8: e79978. doi:10.1371/journal.pone.0079978.

    Article  CAS  Google Scholar 

  • Pavoine, S., and S. Dolédec. 2005. The apportionment of quadratic entropy: A useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics 12: 125–138.

    Article  CAS  Google Scholar 

  • Queiroz, C., R. Beilin, C. Folke, and R. Lindborg. 2014. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and Environment 12: 288–296.

    Article  Google Scholar 

  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Retrieved August 3, 2015, from http://www.R-project.org/.

  • Rao, C.R. 1982. Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology 21: 24–43.

    Article  Google Scholar 

  • Ricotta, C., and L. Szeidl. 2006. Towards a unifying approach to diversity measures: Bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology 70: 237–243.

    Article  Google Scholar 

  • Rodrigues, A.S.L., J.D. Pilgrim, J.F. Lamoreux, M. Hoffmann, and T.M. Brooks. 2006. The value of the IUCN Red List for conservation. Trends in Ecology & Evolution 21: 71–76.

    Article  Google Scholar 

  • Schindler, S., K. Poirazidis, and T. Wrbka. 2008. Towards a core set of landscape metrics for biodiversity assessments: A case study from Dadia National Park, Greece. Ecological Indicators 8: 502–514.

    Article  Google Scholar 

  • Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.

    Article  Google Scholar 

  • Sugimura, M., S. Ishida, K. Kojima, K. Ishida, and T. Aoki. 1999. Dragonflies of the Japanese Archipelago in color. Sapporo, Japan: Sapporo University Press (in Japanese).

    Google Scholar 

  • Tateishi, R., B. Uriyangqai, H. Al-Bilbisi, M.A. Ghar, J. Tsend-Ayush, T. Kobayashi, A. Kasimu, N.T. Hoan, et al. 2011. Production of global land cover data—GLCNMO. International Journal of Digital Earth 4: 22–49.

    Article  Google Scholar 

  • Tateishi, R., N.T. Hoan, T. Kobayashi, B. Alsaaideh, G. Tana, and D.X. Phong. 2014. Production of global land cover data—GLCNMO2008. Journal of Geography and Geology 6: 99–122.

    Article  Google Scholar 

  • Trierweiler, C., W.C. Mullié, R.H. Drent, K.-M. Exo, J. Komdeur, F. Bairlein, A. Harouna, M. de Bakker, et al. 2013. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. Journal of Animal Ecology 82: 107–120.

    Article  Google Scholar 

  • Yoshioka, A., T. Kadoya, J. Imai, and I. Washitani. 2013. Overview of land-use pattern of Japanese Archipelago with biodiversity-conscious land-use classification and Satoyama Index. Japanese Journal of Conservation Ecology 18: 141–156 (in Japanese with English summary).

    Google Scholar 

  • Yoshioka, A., Y. Miyazaki, Y. Sekizaki, S. Suda, T. Kadoya, and I. Washitani. 2014. A “lost biodiversity” approach to revealing major anthropogenic threats to regional freshwater ecosystems. Ecological Indicators 36: 348–355.

    Article  Google Scholar 

  • Zhang, Z.D., and R.G. Zang. 2011. Relationship between species richness of plant functional groups and landscape patterns in a tropical forest of Hainan Island, China. Journal of Tropical Forest Science 23: 289–298.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ogawa M, Dr. Ishihama F, and Ms. Matsuzaki S for providing data and information on the land-use/land-cover map in Ogawa et al. (2013). We also appreciate two anonymous reviewers for thoughtful comments, which greatly improved this manuscript. The GLCNMO2003 and GLCNMO2008 maps were retrieved from International Steering Committee for Global Mapping at http://www.iscgm.org/gm/glcnmo.html (accessed August 3, 2015). The MODIS 13Q1 data products were retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool (accessed August 3, 2015). This study was funded by Japan Society for the Promotion of Science (grant ID: 25740047 and 26292181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yoshioka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, A., Fukasawa, K., Mishima, Y. et al. Ecological dissimilarity among land-use/land-cover types improves a heterogeneity index for predicting biodiversity in agricultural landscapes. Ambio 46, 894–906 (2017). https://doi.org/10.1007/s13280-017-0925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-0925-7

Keywords

Navigation