Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes extending Monte Carlo Localization methods with visual place recognition information in order to build a robust robot localization system. This system is aimed to work in crowded and non-planar scenarios, where 2D laser rangefinders may not always be enough to match the robot position within the map. Thus, visual place recognition will be used in order to obtain robot position clues that can be used to detect when the robot is lost and also to reset its positions to the right one. The paper presents experimental results based on datasets gathered with a real robot in challenging scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alcantarilla, P.F., Stasse, O., Druon, S., Bergasa, L.M., Dellaert, F.: How to localize humanoids with a single camera? Auton. Robots 34(1–2), 47–71 (2013). doi:10.1007/s10514-012-9312-1

    Article  Google Scholar 

  2. Angeli, A., Filliat, D., Doncieux, S., Meyer, J.-A.: Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 24(5), 1027–1037 (2008). doi:10.1109/TRO.2008.2004514

    Article  Google Scholar 

  3. Carlone, L., Bona, B.: A comparative study on robust localization: Fault tolerance and robustness test on probabilistic filters for range-based positioning. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–8 (2009)

  4. Corke, P., Paul, R., Churchill, W., Newman, P.: Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation. In: IROS, pp. 2085–2092. IEEE (2013)

  5. Dayoub, F., Duckett, T.: An adaptive appearance-based map for long-term topological localization of mobile robots. In: IEEE/RSJ International Conference onIntelligent Robots and Systems, 2008. IROS 2008, pp. 3364–3369 (2008).

  6. Doucet, A., Freitas, N.D., Murphy, K.P., Russell, S.J.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI ’00, pp. 176–183. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000). http://dl.acm.org/citation.cfm?id=647234.720075

  7. Galvez-Lopez, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012). doi:10.1109/TRO.2012.2197158

    Article  Google Scholar 

  8. Glover, A.J., Maddern, W.P., Warren, M., Reid, S., Milford, M., Wyeth, G.: Openfabmap: An open source toolbox for appearance-based loop closure detection. In: ICRA, pp. 4730–4735. IEEE (2012)

  9. Hentschel, M., Wagner, B.: An adaptive memory model for long-term navigation of autonomous mobile robots. In: Journal of Robotics (2011)

  10. Himstedt, M., Keil, S., Hellbach, S., Böhme, H.J.: A robust graph-based framework for building precise maps from laser range scans. In: ICRA, Workshop on Robust and Multimodal Inference in Factor Graphs (2013)

  11. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proc. International Conference on Robotics and Automation, ICRA, pp. 3607–3613. IEEE (2011) http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5979949

  12. Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., Burgard, W.: A navigation system for robots operating in crowded urban environments. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3225–3232 (2013)

  13. Pérez-Lara, J., Caballero, F., Merino, L.: Long-term ground robot localization architecture for mixed indoor-outdoor scenarios. In: Proceedings of the International Symposium on Robotics, ISR (2014)

  14. Pérez-Lara, J., Caballero, F., Merino, L.: Integration of Monte Carlo localization and place recognition for reliable long term robot localization. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2014). Espinho, Portugal (2014)

  15. Ruhnke, M., Kümmerle, R., Grisetti, G., Burgard, W.: Highly accurate maximum likelihood laser mapping by jointly optimizing laser points and robot poses. In: Proceedings International Conference on Robotics and Automation, ICRA (2011)

  16. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Hahnel, C.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. Int. J. Robot. Res. 19, 972–999 (2000)

    Article  Google Scholar 

  17. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)

  18. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2000)

    Google Scholar 

  19. Wallach, H.M.: Topic modeling: Beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 977–984. ACM, New York, NY, USA (2006). doi:10.1145/1143844.1143967

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pérez.

Additional information

This paper is an extension of work presented at ICARSC 2014 [14] and is partially supported by the FP7 FROG Project (Contract 288235) funded by the European Commission and the PAIS-MultiRobot Project (TIC-7390) funded by Regional Government of Andalucía

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, J., Caballero, F. & Merino, L. Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization. J Intell Robot Syst 80, 641–656 (2015). https://doi.org/10.1007/s10846-015-0198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0198-y

Keywords

Navigation