Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period | Climatic Change Skip to main content

Advertisement

Log in

Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980–2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50–80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15(4):955–966

    Article  Google Scholar 

  • Arora VK, Boer GJ (2005) Fire as an interactive component of dynamic vegetation models. J Geophys Res 110:G02008. doi:10.1029/2005JG000042

    Article  Google Scholar 

  • Assamoi E-M, Liousse C (2010) A new inventory for two-wheel vehicle in West Africa for 2002. Atmos Env 44(32):3985–3996

    Article  Google Scholar 

  • Barret B, Williams JE, Bouarar I, Yang X, Josse B, Law K, Pham M, Le Flochmoën E, Liousse C, Peuch VH, Carver GD, Pyle JA, Sauvage B, van Velthoven P, Schlager H, Mari C, Cammas J-P (2010) Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study. Atmos Chem Phys 10:5719–5738. doi:10.5194/acp-10-5719-2010

    Article  Google Scholar 

  • Berglen T, Myhre G, Ivar SA, Isaksen V, Vestreng SS (2007) Sulphate trends in Europe: are we able to model the recent observed decrease? Tellus 59B:773–786

    Google Scholar 

  • Bicheron P, Leroy M, Brockmann C, Krämer U, Miras B, Huc M, Niño F, Defourny P, Vancutsem C, Arino O, Ranera F, Petit D, Amberg V, Berthelot B, Gross D (2006) Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. In: Sobrino JA (ed) Proceeding of the Second International Symposium on recent advances in quantitative remote sensing. Servicio de Publicaciones. Universitat de Valencia, Valencia, pp 538–542

    Google Scholar 

  • Bond TC, Streets DG, Yarber KF, Nelson SM, Woo J-H, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109:D14203

    Article  Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Fernandes S, Trautmann N (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochemical Cycles 21:GB2018. doi:10.1029/2006GB002840

    Article  Google Scholar 

  • Boschetti L, Eva HD, Brivio PA, Gregoire JM (2004) Lessons to be learned from the comparison of three satellite-derived biomass burning products. GRL 31:L21501

    Article  Google Scholar 

  • Chevallier F, Fortems A, Bousquet P, Pison I, Szopa S, Devaux M, Hauglustaine DA (2009) African CO emissions between years 2000 and 2006 as estimated from MOPITT observations. Biogeosciences 6:103–111. doi:10.5194/bg-6-103-2009

    Article  Google Scholar 

  • Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment 41:8486–8499. doi:10.1016/j.atmosenv.2007.07.010

    Article  Google Scholar 

  • Denier van der Gon H, Visschedijk HA, Kuenen J, van der Brugh H, Dröge R, Schaap M (2010) High resolution European emission grids for anthropogenic sources for the years 2003–2007, EGU 2010 special session Monitoring Atmospheric Composition and Climate, Geophysical Research Abstracts, Vol. 12, EGU2010-10800-1

  • Etemad B, Bairoch P, Toutain J-C, Luciani J (1991) Production mondiale d’énergie 1800–1985. Genève, Librairie Droz

    Google Scholar 

  • Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Subregion (district) ans sector level SO2 and NOx emissions for India: assessment of inventories amd mitigation flexibility. Atmos Env 35:703–713

    Article  Google Scholar 

  • Garg A, Shukla PR, Kapshe M (2006) The sectoral trends of multigas emissions inventory of India. Atmospheric Environment, Elsevier Science 40(24):4608–4620

    Google Scholar 

  • Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186. doi:10.5194/bg-7-1171-2010

    Article  Google Scholar 

  • Hollingsworth A, Engelen RJ, Textor C, Benedetti A, Boucher O, Chevallier F, Dethof A, Elbern H, Eskes H, Flemming J, Granier C, Morcrette JJ, Rayner P, Peuch V-H, Rouil L, Schultz M, Simmons A, the GEMS consortium (2008) The Global Earth-system Monitoring using Satellite and in-situ data (GEMS) project: towards a monitoring and forecasting system for atmospheric composition. Bull Amer Meteo Soc 89:1147–1164. doi:10.1175/2008BAMS2355.1

    Article  Google Scholar 

  • IEA, International Energy Agency, World Energy Outlook 2009 (2009) ISBN 978-92-64-06130-9, available at http://www.iea.org

  • Isaksen ISA, Granier C, Myhre G, Berntsen TK, Dalsoren SB, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T, Eyring V, Fowler D, Fuzzi S, Jockel P, Laj P, Lohmann U, Maione M, Monks P, Prevot ASH, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson DS, Storelvmo T, Wang W-C, van Weele M, Wild M, Wuebbles D (2009) Atmospheric composition change: climate-chemistry interactions. Atmospheric Environment 43(33, ACCENT Synthesis):5138–5172. doi:10.1016/j.atmosenv.2009.08.003

    Article  Google Scholar 

  • Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem Cycles 19:GB2028. doi:10.1029/2004GB002374

    Article  Google Scholar 

  • Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008

    Article  Google Scholar 

  • Kaiser JW, Suttie M, Flemming J, Morcrette J-J, Boucher O, Schultz MG (2009) Global real-time fire emission estimates based on space-borne fire radiative power observations. AIP Conf Proc 1100:645–648. doi:10.1063/1.3117069

    Article  Google Scholar 

  • Klimont Z, Cofala J, Xing J, Wei W, Zhang C, Wang S, Kejun J, Bhandari P, Mathura R, Purohit P, Rafaj P, Chambers A, Amann M, Hao J (2009) Projections of SO2, NOx, and carbonaceous aerosols emissions in Asia. Tellus B. doi:10.1111/j.1600-0889.2009.00428.x

  • Kloster S, Mahowald NM, Randerson JT, Thornton PE, Hoffman FM, Levis S, Lawrence PJ, Feddema JJ, Oleson KW, Lawrence DM (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7:1877–1902

    Article  Google Scholar 

  • Kopacz M, Jacob DJ, Fisher JA, Logan JA, Zhang L, Megretskaia IA, Yantosca RM, Singh K, Henze DK, Burrows JP, Buchwitz M, Khlystova I, McMillan WW, Gille JC, Edwards DP, Eldering A, Thouret V, Nedelec P (2010) Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atoms Chem Phys 10:855–876

    Article  Google Scholar 

  • Kupiainen K, Klimont Z (2007) Primary emissions of fine carbonaceous particles in Europe. Atmospheric Environment 41(10):2156–2170. doi:10.1016/j.atmosenv.2006.10.06

    Article  Google Scholar 

  • Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10. doi:10.5194/acp-10-7017-2010, 7017-7039

  • Lei Y, Zhang Q, He KB, Streets DG (2010) Primary aerosol emission trends for China, 1990–2005. Atmos Chem Phys Discuss 10:17153–17212. doi:10.5194/acpd-10-17153-2010

    Article  Google Scholar 

  • Liousse C, Guillaume B, Grégoire JM, Mallet M, Galy C, Pont V, Akpo A, Bedou M, Castéra P, Dungall L, Gardrat E, Granier C, Konaré A, Malavelle F, Mariscal A, Mieville A, Rosset R, Serça D, Solmon F, Tummon F, Assamoi E, Yoboué V, Van Velthoven P (2010) Western african aerosols modelling with updated biomass burning emission inventories in the frame of the AMMA-IDAF program. Atmos Chem Phys Discuss 10:7347–7382. doi:10.5194/acpd-10-7347-2010

    Article  Google Scholar 

  • Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque J-F, Grégoire J-M, Pétron G (2010) Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment 44:1469–1477

    Article  Google Scholar 

  • Mitchell BR (1992) International historical statistics, Europe, 1750–1988. Macmillan, 942 pp

  • Moss RH, Edmonds JA, Hibbard K, Manning M, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson A, Weyant J, Wilbanks T (2010) The Next Generation of Scenarios for Climate Change Research and Assessment. Nature. doi:10.1038/nature08823

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1°x1° fire history reconstruction for the 20th century. Glob Chang Biol 11:398–420

    Article  Google Scholar 

  • Muller J-F, Stavrakou T (2005) Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmos Chem Phys 5:1157–1186

    Article  Google Scholar 

  • Novakov T, Ramanathan V, Hansen JE, Kirchstetter TW, Sato M, Sinton JE, Sathaye JA (2003) Large historical changes of fossil-fuel black car bon aerosols. Geophys Res Lett 30(6):1324. doi:10.1029/2002GL016345

    Article  Google Scholar 

  • Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics 7:4419–4444

    Article  Google Scholar 

  • Olivier JGJ, Berdowski JJM (2001) Global emissions sources and sinks. In: Berdowski J, Guicherit R, Heij BJ (eds) The climate system, pp 33–78. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands. ISBN 90 5809 255 0

  • Olivier JGJ, Van Aardenne JA, Dentener F, Ganzeveld L, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources. Environ Sci, 2 (2–3):81–99. doi:10.1080/15693430500400345

    Google Scholar 

  • Parrish DD (2006) Critical evaluation of US on-road vehicle emission inventories. Atmos Environ 40:2288–2300. doi:10.1016/j.atmo-senv.2005.11.033

    Article  Google Scholar 

  • Petron G, Granier C, Khattatov B, Yudin V, Lamarque JF, Emmons L, Gille J, Edwards DP (2004) Monthly CO surface sources inventory based on the 2000–2001 MOPITT satellite data. Geophys Res Lett 31:L21107. doi:10.1029/2004GL020560

    Article  Google Scholar 

  • Schöpp W, Klimont Z, Suutari R, Cofala J (2005) Uncertainty analysis of emission estimates in the RAINS integrated assessment model. Environmental Science and Policy 8:601–635

    Article  Google Scholar 

  • Schultz M, Rast S, van het Bolscher M, Pulles T, Pereira J, Spessa A, Dalsøren S, van Nojie T, Szopa S (2007) REanalysis of the TROpospheric chemical composition over the past 40 years, A long-term global modeling study of tropospheric chemistry funded under the 5th EU framework programme. Tech. rep., EU-Contract No. EVK2-CT-2002-00170, http://www.retro.enes.org/reports/D1-6final.pdf

  • Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer J, Held AC, Pereira JM (2008) Global emissions from wildland fires from 1960 to 2000. Global Biogeochem Cycles 22:GB2002. doi:10.1029/2007GB003031

    Article  Google Scholar 

  • Smith SJ, Andres R, Conception E, Lurz J (2004) Sulfur Dioxide Emissions: 1850–2000 (JGCRI Report. PNNL-14537)

  • Smith SJ, van Aardenne J, Klimont Z, Andres R, Volke A, Delgado Arias S (2010) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys Discuss 10:16111–16151. doi:10.5194/acpd-10-16111-2010

    Article  Google Scholar 

  • Stern, D.I. (2006) Reversal of the trend in global anthropogenic sulfur emissions, Global Environ Change, 16:207–220

    Article  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809. doi:10.1029/2002JD003093

    Article  Google Scholar 

  • Streets DG, Bond TC, Lee T, Jang C (2004) On the future of carbonaceous aerosol emissions. J Geophys Res 109(D24):D24212. doi:10.1029/2004JD004902

    Article  Google Scholar 

  • Streets D, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T, Shi G (2008) Aerosol trends over China, 1980–2000. Aerosol Res 88:174–182

    Google Scholar 

  • Stroppiana D, Brivio PA, Grégoire J-M, Liousse C, Guillaume B, Granier C, Mieville A, Chin M, Pétron G (2010) Comparison of global inventories of monthly CO emissions derived from remotely sensed data. Atmos Chem Phys Discuss 10:17657–17697. doi:10.5194/acpd-10-17657-2010

    Article  Google Scholar 

  • Tanimoto H, Sawa Y, Yonemura S, Yumimoto K, Matsueda H, Uno I, Hayasaka T, Mukai H, Tohjima Y, Tsuboi K, Zhang L (2008) Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data. Atmos Chem Phys 8:3867–3880. doi:10.5194/acp-8-3867-2008

    Article  Google Scholar 

  • Tansey K, Gregoire JMC, Defourny P, Leigh R, Pekel J-F, van Bogaert E, Bartholomé E, Bontemps S (2008) A new, global, multi-annual (2000–2007) burned area product at 1 km resolution and daily intervals. Geophys Res Lett 35:L01401, doi:10.1029/2007GL031567

  • Taylor KE, Stouffer RJ, Meehl GA (2008) A Summary of the CMIP5 Experiment Design, https://cmip.llnl.gov/cmip5/docs/Taylor_CMIP5_dec31.pdf

  • Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 21:GB4018. doi:1029/2006GB002868

    Article  Google Scholar 

  • Tummon F, Solmon F, Liousse C, Tadross M (2010) Simulation of the climatic impacts of the natural aerosol loading over southern Africa during the biomass burning season using RegCM3, accepted for publication in. J Geophys Res

  • UNFCCC, Updated UNFCCC reporting guidelines on annual inventories (2006) FCCC/SBSTA/2006/9, available at: http://unfccc.int/resource/docs/2006/sbsta/eng/09.pdf.

  • UNSTAT (1997) The United Nations energy statistics database, Tech. rep., Stat. Div., New York

  • US Environmental Protection Agency (2001) Procedures document for National Emissions Inventory, Criteria Air Pollutants, 1985–1999. Tech. rep., EPA-454/R-01-006, US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA. Available at http://www.epa.gov/ttn/chief/trends/

  • van Aardenne JA, Dentener FJ, Olivier JGJ, Klein Goldewijk CGM, Lelieveld J (2001) A 1 × 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochemical Cycles 15(4):909–928

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6:3423–3441

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys Discuss 10:16153–16230. doi:10.5194/acpd-10-16153-2010

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Thomson A, Riahi K, Kainuma M, Matsui T, Hurtt GC, Lamarque J-F, Meinshausen M, Smith S, Granier C, Rose SK, Hibbard KA (2011) Representative Concentration Pathways: an overview. Climatic Change. This Issue. doi:10.1007/s10584-011-0148-z

  • Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681

    Article  Google Scholar 

  • Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. JGR 110:D24311

    Article  Google Scholar 

  • Xu Y, Williams RH, Socolow RH (2009) China’s rapid deployment of SO2 scrubbers. Energy Environ Sci 2:459–465

    Article  Google Scholar 

  • Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D, Duan L, Lei Y, Wang LT, Yao ZL (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. doi:10.5194/acp-9-5131-2009

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the support of the MACC European Union's Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 218793, as well as the support of the FP7 CityZen project, under Grant Agreement no. 212095 and the FP7 PEGASOS project, under Grant Agreement 265148. We also thank the FP7 ACCENT European Network, which provided funding for meetings to develop the ACCMIP emissions dataset. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors would like to thank Josh Drukenbrod from the US EPA for providing the most recent details on US emissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Granier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granier, C., Bessagnet, B., Bond, T. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change 109, 163 (2011). https://doi.org/10.1007/s10584-011-0154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-011-0154-1

Keywords

Navigation