Spike-timing-dependent plasticity for neurons with recurrent connections | Biological Cybernetics Skip to main content
Log in

Spike-timing-dependent plasticity for neurons with recurrent connections

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166

    Article  PubMed  CAS  Google Scholar 

  • Burkitt AN, van Hemmen JL (2003) How synapses in the auditory system wax and wane: theoretical perspectives. Biol Cybern 89:318–332

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hawkes AG (1971) Point spectra of some mutually exciting point processes. J Roy Stat Soc B 33:438–443

    Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL, Wagner H (1998) Extracting oscillations: neuronal coincidence detection with noisy periodic spike input. Neural Comput 10:1987–2017

    Article  PubMed  CAS  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59:4498–4514

    Article  CAS  Google Scholar 

  • Kempter R, Leibold C, Wagner H, van Hemmen JL (2001b) Formation of temporal feature maps by axonal propagation of synaptic learning. Proc Natl Acad Sci USA 98(7):4166–4171

    Article  CAS  Google Scholar 

  • Kistler WM, van Hemmen JL (2000) Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Comput 12:385–405

    Article  PubMed  CAS  Google Scholar 

  • Lamperti J (1966) Probability, 2nd edn. Benjamin, New York. (1996) Wiley, New York

    Google Scholar 

  • Leibold C, Kempter R, van Hemmen JL (2001) Temporal map formation in the barn owl’s brain. Phys Rev Lett 87:248101

    Article  PubMed  CAS  Google Scholar 

  • Leibold C, Kempter R, van Hemmen JL (2002) How spiking neurons give rise to a temporal-feature map: from synaptic plasticity to axonal selection. Phys Rev E 65:051915

    Article  Google Scholar 

  • Markram H, Lübke J, Forscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Meffin H, Besson J, Burkitt AN, Grayden DB (2006) Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity. Phys Rev E73:041911

    Article  CAS  Google Scholar 

  • Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. Springer, Berlin

    Google Scholar 

  • Song F, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci 3:919-926

    Article  PubMed  CAS  Google Scholar 

  • Van Hemmen JL (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biophysics, vol 4. Elsevier, Amsterdam, pp 771–823

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Burkitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkitt, A.N., Gilson, M. & van Hemmen, J.L. Spike-timing-dependent plasticity for neurons with recurrent connections. Biol Cybern 96, 533–546 (2007). https://doi.org/10.1007/s00422-007-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0148-2

Keywords

Navigation