Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results | Climate Dynamics Skip to main content

Advertisement

Log in

Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldrian E, Dümenil Gates L, Jacob D, Podzun R, Gunawan D (2004) Long term simulation of the Indonesian rainfall with the MPI Regional Model. Climate Dyn 22:795–814

    Article  Google Scholar 

  • Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note-282 NCAR, Boulder, CO 80307

  • Arribas A, Gallardo C, Gaertner MA, Castro M (2003) Sensitivity of Iberian Peninsula climate to land degradation. Climate Dyn 20:477–489

    Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR technical Note NCAR/TN-417+STR. National Center for Atmospheric Research, Boulder, Colorado, pp 150

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Wea Rev 113:2108–2121

    Article  Google Scholar 

  • Brankovic C, Gregory D (2001) Impact of horizontal resolution on seasonal integrations. Climate Dyn 18:123–143

    Article  Google Scholar 

  • Bringfelt B, Räisänen J, Gollvik S, Lindström G, Graham LP, Ullerstig A (2001) The land surface treatment for the Rossby Centre Regional Atmospheric Climate Model version 2 (RCA2) Reports Meteorology and Climatology, 98. Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, pp 40

  • Castro M, Fernández C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: JI Díaz, JL Lions (eds) Mathematics, climate and environment. Masson, Paris, pp 230–253

    Google Scholar 

  • Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421:805–806

    Article  PubMed  Google Scholar 

  • Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Plan Change 44:107–117

    Article  Google Scholar 

  • Christensen JH, van Meijgaard E (1992) On the construction of a regional atmospheric climate model. DMI Technical Report 92–14. Available from DMI, Lyngbyvej 100, Copenhagen Ø, Denmark

  • Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. DMI Scientific Report 96–4. Available from DMI, Lyngbyvej 100, Copenhagen Ø, Denmark

  • Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia—present climate. J Climate 11:3204–3229

    Article  Google Scholar 

  • Christensen JH, Ra J, Iversen T, Bjorge D, Christensen OB, Rummukainen M (2001a) A synthesis of regional climate change simulations—a Scandinavian perspective. Geophys Res Lett 28(1):1003–1006

    Article  Google Scholar 

  • Christensen JH, Christensen OB, Schultz JP (2001b) High resolution physiographic data set for HIRHAM4: an application to a 50 km horizontal resolution domain covering Europe. DMI Technical Report 01–15. Available from DMI, Lyngbyvej 100, Copenhagen Ø, Denmark

  • Cox P, Betts R, Bunton C, Essery R, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn 15:183–203

    Article  Google Scholar 

  • Cubasch U, Waszkewitz J, Hegerl G, Perlwitz J (1995) Regional climate changes as simulated in time-slice experiments. Clim Change 31:273–300

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D (2003) Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Climate Dyn 20:107–126

    Google Scholar 

  • Déqué M, Gibelin AL (2002) High versus variable resolution in climate modelling. Res Activ Atmos Ocean Model 32:704–705

    Google Scholar 

  • Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Climate Dyn 11:321–339

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones R (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn 14:173–189

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model, NCAR Technical Note, NCAR/TN-387+STR, 72 pp

  • Döscher R, Willén U, Jones C, Rutgersson A, Meier H, Hansson E, Graham M (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) The importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105:14841–14861

    Article  Google Scholar 

  • Ducoudré N, Kaval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Climate 6:248–273

    Article  Google Scholar 

  • Dümenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. In: O’Kane JP (ed) Advances in theoretical hydrology EGS series of hydrological sciences 1. Elsevier, Amsterdam, pp 129–157

    Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: Choosing a configuration for a large scale model. Quart J Roy Meteor Soc 122:689–719

    Article  Google Scholar 

  • Fox-Rabinowitz MS, Tackacs LL, Govindajaru RC, Suarez MJ (2001) A variable resolution stretched grid GCM: regional climate simulation. Mon Wea Rev 129:453–469

    Article  Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108 (D3), 4124 doi:101029/2002JD002287

    Google Scholar 

  • Fukutome S, Frei C, Lüthi D, Schär C (1999) The interannual variability as a test ground for regional climate simulations over Japan. J Meteor Soc Japan 77:649–672

    Google Scholar 

  • Gaertner MA, Christensen OB, Prego JA, Polcher J, Gallardo C, Castro M (2001) The impact of deforestation on the hydrological cycle in the western Mediterranean: an ensemble study with two regional climate models. Climate Dyn 17:857–873

    Article  Google Scholar 

  • Gallardo C, Arribas A, Prego JA, Gaertner MA, Castro M (2001) Multi-year simulations with a high resolution regional climate model over the Iberian Peninsula: current climate and 2xCO2 scenario. Quart J Roy Meteor Soc 127:1659–1682

    Article  Google Scholar 

  • Garand L (1983) Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J Atmos Sci 40:230–244

    Article  Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dyn 20:327–339

    Google Scholar 

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Climate 3:941–963

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2) Part I: Boundary layer and radiative transfer processes. Mon Wea Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Mearns LO, Shields C, McDaniel L (1998) Regional nested model simulations of present day and 2×CO2 climate over the central plains of the USA. Clim Change 40:457–493

    Article  Google Scholar 

  • Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:6403–6423

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004a) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: Present day climate (1961–1990). Climate Dyn 22:733–756

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004b) Means, trends and interannual variability in a regional climate change experiment over Europe. Part II: Future climate scenarios (2071–2100). Climate Dyn 22:839–858

    Article  Google Scholar 

  • Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: Tests in single column and general circulation models. Quart J Roy Meteor Soc 123:1153–1183

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Re 121:764–787

    Article  Google Scholar 

  • Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation of globalGCM boundary conditions from 1 km land use satellite data. MPI Report 289, Max-Planck Institut für Meteorologie

  • Hagemann S, Machenhauer B, Jones RG, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Climate Dynamics, in press

  • Heck P, Lüthi D, Wernli H, Schär C (2001) Climate impacts of European-scale anthropogenic vegetation changes: a study with a regional climate model. J Geophys Res-Atmos 106(D8):7817–7835

    Article  Google Scholar 

  • Hennemuth B, Rutgersson A, Bumke K, Clemens M, Omstedt A, Jacob D, Smedman AS (2003) Net precipitation over the Baltic Sea for one year using models and data-based methods. Tellus 55A:352–367

    Article  Google Scholar 

  • Hsie EY, Anthes RA, Keyser D (1984) Numerical simulation of frontogenesis in a moist atmosphere. J Atmos Sci 41:2581–2594

    Article  Google Scholar 

  • Hulme M, Conway D, Jones PD, Jiang T, Barrow EM, Turney C (1995) Construction of a 1961–90 European climatology for climate modelling and impacts applications. Int J Climatol 15:1333–1363

    Article  Google Scholar 

  • IPCC (2001) Climate change. The scientific basis. Cambridge Univ Press, pp 881

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2001) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emission scenarios. Hadley Centre Technical Note 22:62

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxyde. Quart J Roy Meteor Soc 123:265–292

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004a) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK, pp 35

    Google Scholar 

  • Jones CG, Ullerstig A, Willén U, Hansson U (2004b) The Rossby Centre regional atmospheric climate model (RCA). Part I: Model climatology and performance characteristics for present climate over Europe. Ambio 33(4–5):199–210

    Article  PubMed  Google Scholar 

  • Kain J, Fritsch JM (1990) A one dimensional entraining/detraining plume models and its application to convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation models. Meteor Monographs 10, Americ Meteor Soc Boston, MA

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note, NCAR/TN-420+STR, pp 152

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Climate 11:1131–1149

    Article  Google Scholar 

  • Kjellström E, Döscher R, Meier HEM, Banks H (2004) Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments. Nordic Hydrology, submitted

  • Laprise R, Caya D, Frigon A, Paquin D (2003) Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Climate Dynamics 21:405–421

    Article  Google Scholar 

  • Lehmann A, Lorenz P, Jacob D (2004) Exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters 2004GL020830

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI Technical Report 252:24

    Google Scholar 

  • Lin SJ, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Wea Rev 124:2046–2070

    Article  Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1095

    Article  Google Scholar 

  • Lorant V, Royer JF (2001) Sensitivity of equatorial convection to horizontal resolution in aqua-planet simulations with variable-resolution GCM. Mon Wea Rev 129:2730–2745

    Article  Google Scholar 

  • Machenhauer B, Windelband M, Botzet M, Hesselbjerg-Christensen J, Déqué M, Jones RG, Ruti P, Visconti G (1998) Validation and analysis of regional present-day climate and climate change simulations over Europe. MPI Report (Hamburg) 275:87

    Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea. Application to the salt inflow. J Geophys Res 108,C8:3273

    Article  Google Scholar 

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon Wea Rev 120:978–1002

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Wea Rev 118:847–873

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department, Technical Memorandum No. 206, October 1994, 41 pp, European Centre for Medium Range Weather Forecasts, Reading, UK

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2004) European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Climate Dyn 22:13–31

    Article  Google Scholar 

  • Rasch PJ, Kristjansson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate 11:1587–1614

    Article  Google Scholar 

  • Rencher AC (2002) Methods of multivariate analysis. 2nd edition. Wiley series in probability and statistics: 708

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Wea Rev 120:303–325

    Article  Google Scholar 

  • Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—Part 1. MPI Report 349:127

    Google Scholar 

  • Sanchez E, Gallardo C, Gaertner M, Arribas A, Castro A (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change, in press

  • Savijärvi H (1990) Fast radiation parameterization schemes for mesoscale and short-range forecast models. J Appl Meteor 29:437–447

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a Regional Climate Model. J Climate 12:722–741

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Semmler T, Jacob D, Schlünzen KH, Podzun R (2004) Influence of sea ice treatment in a regional climate model on boundary layer values in the Fram Strait region. Month Weather Rev 132:985–999

    Article  Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Quart J R Met Soc 116:435–460

    Article  Google Scholar 

  • Statton RA (1999) A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn 15:9–28

    Article  Google Scholar 

  • Stendel M, Roeckner E (1998) Impacts of horizontal resolution on simulated climate statistics in ECHAM4. MPI Report 253:57

    Google Scholar 

  • Stephens GL (1978) Radiation profiles in extended water clouds: II Parameterizaton schemes. J Atmos Sci 35:2123–2132

    Article  Google Scholar 

  • Stephenson DB, Doblas-Reyes FJ (2000) Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus 52A:300–322

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atm Phys 82:75–96

    Article  Google Scholar 

  • Sud YC, Walker GK (1999) Microphysics of clouds with the Relaxed Arakawa-Schubert cumulus scheme (McRAS). Part I: Design and evaluation with GATE Phase III data. J Atmos Sci 56:3196–3220

    Article  Google Scholar 

  • Sundquist H (1978) A parameterization scheme for non-convective condensation including precipitation including prediction of cloud water content. Quart J R Met Soc 104:677–690

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Article  Google Scholar 

  • Van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA40 surface scheme. ECMWF TechMemo 295

  • Vidale PL, Lüthi C, Frei D, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res Atmos 108 (D18), 4586 doi:101029/2002JD002810

  • Whetton PH, Katzfey JJ, Hennessy KJ, Wu X, Mc Gregor JL, Nguyen K (2001) Developing scenarios of climate change for Southeastern Australia: an example using regional climate model output. Clim Res 6:181–201

    Article  Google Scholar 

  • White PW (2002) Physical processes (cycle 24R4). IFS documentation. ECMWF, Reading

Download references

Acknowledgements

This work was supported by the European Commission Programme Energy, Environment and Sustainable Development under contract EVK2-2001-00156 (PRUDENCE). The French contribution was partly supported by the GICC-IMFREX contract of the Department of Environment (MEDD). The authors are grateful to Dr. O. B. Christensen (DMI) for preparing the database with regional scenarios.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Déqué.

Appendix

Appendix

1.1 Multidimensional scaling

The aim of this method is to plot onto one (or a few) plane(s) several points which belong to a high-dimensional vector space, so that the distances in the projection plane are as close as possible to the actual distances between the points. A simple to understand application of this technique is to represent the main European cities on a map on which the distance in cm between the cities is not proportional to the actual distance in km, as in a typical road map, but to the shortest travel time by train. In the present study, it is applied to graphically synthesize a series of numerical model fields over Europe.

Let X(i,x) be the value of field X (e.g. 2 m temperature in DJF) for model i (i=1,..., n) at location x (x representing here the latitude longitude pair). Let s(x) be the surface of the mesh corresponding to x. The mean field (centroid) is:

$${\overline{X}}(x)=\frac {1} {n}{\sum\limits_{i=1}^{n}}X(i,x)$$
(3)

and the matrix to be diagonalized is:

$$V_{ij}=\sum\limits_{x}s(x)(X(i,x)-{\overline X}(x))(X(j,x)-{\overline X}(x))$$
(4)

Let ν k (i) be the kth eigenvector (with norm 1) associated to the eigenvalue λ k (the eigenvalues being sorted in decreasing order. Then the kth axis for the projection is:

$$A_{k}(x)=\sum\limits_{i=1}^{n}\nu_{k}(i)(X(i,x)-{\overline X}(x))$$
(5)

The point representing model i is \(({\sqrt{\lambda_{1}}}\nu_{1}(i),{\sqrt{\lambda_{2}}}\nu_{2}(i))\) and the coordinates of the point representing a new field Y(x) (k=1 or 2):

$$y_{k}=\frac {1}{{\sqrt{\lambda_{k}}}}\sum_{x}s(x)A_{k}(x)(Y(x)-{\overline X}(x))$$
(6)

In the case of a non-euclidean distance, Eqs. 3, 4, 5, 6 are no more valid since we use the array d ij of the distances between the models, which is no more a quadratic combination of the array X(i,x). Equation 4 is replaced by

$$V_{ij}=\frac{1}{2}\left(\frac{1}{n}\sum\limits_{h}d^{2}_{hj}+\frac{1}{n}\sum\limits_{k}d^{2}_{ik}-d^{2}_{ij}-\frac{1} {n^{2}}\sum\limits_{hk}d^{2}_{hk}\right)$$
(7)

and the eigenvectors of \(V_{ij}\) scaled by the square root of the (sorted) eigenvalues provide the coordinates of the representative points. In this paper, we use only euclidean distances.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Déqué, M., Jones, R.G., Wild, M. et al. Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Climate Dynamics 25, 653–670 (2005). https://doi.org/10.1007/s00382-005-0052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0052-1

Keywords

Navigation