On the LambertW function | Advances in Computational Mathematics Skip to main content
Log in

On the LambertW function

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The LambertW function is defined to be the multivalued inverse of the functionwwe w. It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches ofW, an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containingW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld, On the convergence of Halley's method, Amer. Math. Monthly 88 (1981) 530–536.

    Google Scholar 

  2. American National Standards Institute/Institute of Electrical and Electronic Engineers:IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754–1985, New York (1985).

  3. J.D. Anderson,Introduction to Flight, 3rd ed. (McGraw-Hill, New York, 1989).

    Google Scholar 

  4. V.I. Arnold,Mathematical Methods for Classical Mechanics (Springer-Verlag, 1978).

  5. I.N. Baker and P.J. Rippon, Convergence of infinite exponentials, Ann. Acad. Sci. Fenn. Ser. AI Math. 8 (1983) 179–186.

    Google Scholar 

  6. I.N. Baker and P.J. Rippon, A note on complex iteration, Amer. Math. Monthly 92 (1985) 501–504.

    Google Scholar 

  7. D.A. Barry, J.-Y. Parlange, G.C. Sander and M. Sivaplan, A class of exact solutions for Richards' equation, J. Hydrology 142 (1993) 29–46.

    Article  Google Scholar 

  8. R.E. Bellman and K.L. Cooke,Differential-Difference Equations (Academic Press, 1963).

  9. W.H. Beyer (ed.),CRC Standard Mathematical Tables, 28th ed. (1987).

  10. C.W. Borchardt, Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante, J. reine angewandte Math. 57 (1860) 111–121.

    Google Scholar 

  11. N.G. de Bruijn,Asymptotic Methods in Analysis (North-Holland, 1961).

  12. C. Carathéodory,Theory of Functions of a Complex Variable (Chelsea, 1954).

  13. A. Cayley, A theorem on trees, Quarterly Journal of Mathematics, Oxford Series 23 (1889) 376–378.

    Google Scholar 

  14. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt,The Maple V Language Reference Manual (Springer-Verlag, 1991).

  15. L. Comtet,Advanced Combinatorics (Reidel, 1974).

  16. S.D. Conte and C. de Boor,Elementary Numerical Analysis, 3rd ed. (McGraw-Hill, 1980).

  17. D. Coppersmith, private communication.

  18. R.M. Corless, What good are numerical simulations of chaotic dynamical systems?, Computers Math. Applic. 28 (1994) 107–121.

    Article  Google Scholar 

  19. R.M. Corless,Essential Maple (Springer-Verlag, 1994).

  20. R.M. Corless and D.J. Jeffrey, Well, It Isn't Quite That Simple, SIGSAM Bulletin 26 (3) (1992) 2–6.

    Google Scholar 

  21. R.M. Corless, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, Lambert'sW function in Maple, The Maple Technical Newsletter 9 (1993) 12–22.

    Google Scholar 

  22. H.T. Davis,Introduction to Nonlinear Differential and Integral Equations (Dover, 1962).

  23. L. Devroye, A note on the height of binary search trees, J. ACM 33 (1986) 489–498.

    Article  Google Scholar 

  24. O. Dziobek, Eine Formel der Substitutionstheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft 17 (1917) 64–67.

    Google Scholar 

  25. G. Eisenstein, Entwicklung von αα, J. reine angewandte Math. 28 (1844) 49–52.

    Google Scholar 

  26. P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kut. Int. Közl. 5 (1960) 17–61. Reprinted in P. Erdös,The Art of Counting (1973) pp. 574–618, and inSelected Papers of Alfréd Rényi (1976), pp. 482–525.

    Google Scholar 

  27. L. Euler, De formulis exponentialibus replicatis, Leonhardi Euleri Opera Omnia, Ser. 1, Opera Mathematica 15 (1927) [original date 1777] 268–297.

    Google Scholar 

  28. L. Euler, De serie Lambertina plurimisque eius insignibus proprietatibus, Leonhardi Euleri Opera Omnia, Ser. 1, Opera Mathematica 6 (1921) [orig. date 1779] 350–369.

    Google Scholar 

  29. P. Flajolet and M. Soria, Gaussian Limiting Distributions for the Number of Components in Combinatorial Structures, J. Combinatorial Theory, Series A 53 (1990) 165–182.

    Google Scholar 

  30. F.N. Fritsch, R.E. Shafer, and W.P. Crowley, Algorithm 443: Solution of the transcendental equationwe w=x, Comm. ACM 16 (1973) 123–124.

    Article  Google Scholar 

  31. K.O. Geddes, S.R. Czapor and G. Labahn,Algorithms for Computer Algebra (Kluwer Academic Publishers, 1992).

  32. Ch.C. Gillispie (ed.),Dictionary of Scientific Biography (Scribners, N.Y., 1973).

  33. G.H. Gonnet,Handbook of Algorithms and Data Structures (Addison-Wesley, 1984).

  34. G.H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. ACM 28 (1981) 289–304.

    Article  Google Scholar 

  35. R.L. Graham, D.E. Knuth and O. Patashnik,Concrete Mathematics (Addison-Wesley, 1994).

  36. N.D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. Lond. Math. Soc. 25 (1950) 226–232.

    Google Scholar 

  37. N.D. Hayes, The roots of the equationx=(c exp)n x and the cycles of the substitution (x|ce x), Q. J. Math. 2 (1952) 81–90.

    Google Scholar 

  38. T.L. Heath,A Manual of Greek Mathematics (Dover, 1963).

  39. E.W. Hobson,Squaring the Circle (Chelsea, 1953).

  40. T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972) 603–637.

    Article  Google Scholar 

  41. S. Janson, D.E. Knuth, T. Łuczak and B. Pittel, The birth of the giant component,Random Structures and Algorithms 4 (1993) 233–358.

    Google Scholar 

  42. D.J. Jeffrey, R.M. Corless, D.E.G. Hare and D.E. Knuth, Sur l'inversion dey a e y e y au moyen de nombres de Stirling associés, C. R. Acad. Sc. Paris, Série I, 320, 1449–1452.

  43. D.J. Jeffrey, R.M. Corless and D.E.G. Hare, Unwinding the branches of the LambertW function, The Mathematical Scientist, 21, 1–7.

  44. W. Kahan, Branch cuts for complex elementary functions, InThe State of the Art in Numerical Analysis: Proc. Joint IMA/SIAM Conf. on the State of the Art in Numerical Analysis, University of Birmingham, April 14–18, 1986, eds. M.J.D. Powell and A. Iserles (Oxford University Press, 1986).

  45. J. Karamata, Sur quelques problèmes posés par Ramanujan, J. Indian Math. Soc. 24 (1960) 343–365.

    Google Scholar 

  46. R.A. Knoebel, Exponentials reiterated, Amer. Math. Monthly 88 (1981) 235–252.

    Google Scholar 

  47. D.E. Knuth and B. Pittel, A recurrence related to trees, Proc. Amer. Math. Soc. 105 (1989) 335–349.

    Google Scholar 

  48. J.H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica 3, Basel (1758) 128–168.

    Google Scholar 

  49. J.H. Lambert, Observations Analytiques, inNouveaux mémoires de l'Académie royale des sciences et belles-lettres, Berlin (1772) vol. 1, for 1770.

  50. H.G. Landau, On some problems of random nets, Bull. Mathematical Biophysics 14 (1952) 203–212.

    Google Scholar 

  51. E.M. Lémeray, Sur les raciens de l'equationx=a x, Nouvelles Annales de Mathématiques (3) 15 (1896) 548–556.

    Google Scholar 

  52. E.M. Lémeray, Sur les racines de l'equationx=a x. Racines imaginaires, Nouvelles Annales de Mathématiques (3) 16 (1897) 54–61.

    Google Scholar 

  53. E.M. Lémeray, Racines de quelques équations transcendantes. Intégration d'une équation aux différences mèlées. Racines imaginaires, Nouvelles Annales de Mathématiques (3) 16 (1897) 540–546.

    Google Scholar 

  54. R.E. O'Malley, Jr.,Singular Perturbation Methods for Ordinary Differential Equations (Springer-Verlag Applied Mathematical Sciences 89, 1991).

  55. F.D. Parker, Integrals of inverse functions, Amer. Math. Monthly 62 (1955) 439–440.

    MathSciNet  Google Scholar 

  56. G. Pólya and G. Szegö,Problems and Theorems in Analysis (Springer-Verlag, 1972).

  57. G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Mathematica 68 (1937) 145–254. English translation by Dorothee Aeppli in G. Pólya and R.C. Read,Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer-Verlag, 1987).

    Google Scholar 

  58. K.B. Ranger, A complex variable integration technique for the two-dimensional Navier-Stokes equations, Q. Applied Math. 49 (1991) 555–562.

    Google Scholar 

  59. E.L. Reiss, A new asymptotic method for jump phenomena, SIAM J. Appl. Math. 39 (1980) 440–455.

    Article  Google Scholar 

  60. J.M. Robson, The height of binary search trees, Aust. Comput. J. 11 (1979) 151–153.

    Google Scholar 

  61. L.A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Review 31 (1989) 446–477.

    Article  Google Scholar 

  62. T.C. Scott, J.F. Babb, A. Dalgarno and J.D. Morgan III, Resolution of a paradox in the calculation of exchange forces forH +2 , Chem. Phys. Lett. 203 (1993) 175–183.

    Article  Google Scholar 

  63. T.C. Scott, J.F. Babb, A. Dalgarno and J.D. Morgan III, The calculation of exchange forces: general results and specific models, J. Chem. Phys. 99 (1993) 2841–2854.

    Article  Google Scholar 

  64. O. Skovgaard, I.G. Jonsson, and J.A. Bertelsen, Computation of wave heights due to refraction and friction, J. Waterways Harbours and Coastal Engineering Division, February, 1975, pp. 15–32.

  65. R. Solomonoff and A. Rapoport, Connectivity of random nets, Bull. Math. Biophysics 13 (1951) 107–117.

    Google Scholar 

  66. D.C. Sorensen and Ping Tak Peter Tang, On the orthogonality of eigenvectors computed by divide-and-conquer techniques, SIAM J. Numer. Anal. 28 no. 6 (December 1991) 1752–1775.

    Article  Google Scholar 

  67. J.J. Sylvester, On the change of systems of independent variables, Q. J. Pure and Applied Math. 1 (1857) 42–56.

    Google Scholar 

  68. E.C. Titchmarsh,Theory of Functions, 2nd ed. (Oxford, 1939).

  69. E.M. Wright, The linear difference-differential equation with constant coefficients, Proc. Royal Soc. Edinburgh, A 62 (1949) 387–393.

    Google Scholar 

  70. E.M. Wright, A non-linear difference-differential equation, J. für reine und angewandte Mathematik 194 (1955) 66–87.

    Google Scholar 

  71. E.M. Wright, Solution of the equationze z=a, Proc. Roy. Soc. Edinburgh A 65 (1959) 193–203.

    Google Scholar 

  72. E.M. Wright, The number of connected sparsely edged graphs, J. Graph Theory 1 (1977) 317–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W.H. Enright

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corless, R.M., Gonnet, G.H., Hare, D.E.G. et al. On the LambertW function. Adv Comput Math 5, 329–359 (1996). https://doi.org/10.1007/BF02124750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02124750

Keywords

Navigation