Super-logarithmic depth lower bounds via the direct sum in communication complexity | computational complexity Skip to main content
Log in

Super-logarithmic depth lower bounds via the direct sum in communication complexity

  • Published:
computational complexity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Is it easier to solve two communication problems together than separately? This question is related to the complexity of the composition of boolean functions. Based on this relationship, an approach to separatingNC 1 fromP is outlined. Furthermore, it is shown that the approach provides a new proof of the separation of monotoneNC 1 from monotoneP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Andreev, On a Method for Obtaining more than Quadratic Effective Lower Bounds for the Complexity of π-Schemes.Moscow University Math. Bull. 42:1 (1987).

    Google Scholar 

  2. A. V. Aho, J. D. Ullman, and M. Yannakakis, On Notions of Information Transfer in VLSI Circuits. InProc. Fifteenth Ann. ACM Symp. Theor. Comput., 1983, 133–139.

  3. N. H. Bshouty, On the Extended Direct Sum Conjecture. InProc. Twenty-first Ann. ACM Symp. Theor. Comput., 1989, 177–185.

  4. J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall, Communication Complexity towards Lower Bounds on Circuit Depth. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 249–257.

  5. T. Feder,Personal communication, 1990.

  6. T. Feder, E. Kushilevitz, and M. Naor, Amortized Communication Complexity. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 239–248.

  7. G. Galibati andM. J. Fischer, On the Complexity of 2-Output Boolean Networks.Theoret. Comput. Sci. 16 (1981), 177–185.

    Google Scholar 

  8. J. Hastad, The Shrinkage Constant is 2. InProc. 34th Ann. IEEE Symp. Found. Comput. Sci., 1993, 114–123.

  9. J. Hastad and A. Wigderson, Composition of the Universal Relation. InAmer. Math. Soc.—DIMACS series, ed.J. Y. Cai, to appear.

  10. V. Khrapchenko, A Method of Determining Lower Bounds for the Complexity of π-Schemes.Math. Notes Acad. Sci. USSR (1971), 474–479.

  11. W. M. Kantor, On Incidence Matrices of Finite Projective and Affine Spaces.Math. Z. 124 (1972), 315–318.

    Google Scholar 

  12. M. Karchmer,Communication Complexity: A new Approach to Circuit Depth. MIT Press, 1989.

  13. M. Karchmer, E. Kushilevitz, and N. Nisan, Fractional Covers and Communication Complexity. InProc. 7th Ann. IEEE Conf. Structure in Complexity Theory, 1992, 262–274.

  14. M. Karchmer, R. Raz, and A. Wigderson, On Proving Super-Logarithmic Depth Lower Bounds via the Direct Sum in Communication Complexity. InProc. 6th Ann. IEEE Conf. Structure in Complexity Theory, 1991.

  15. M. Karchmer andA. Wigderson, Monotone Circuits for Connectivity Require Super-Logarithmic Depth.SIAM J. Disc. Math. 3:2 (1990), 255–265.

    Google Scholar 

  16. K. Mehlhorn and E. M. Schmidt, Las Vegas is Better than Determinism in VLSI and Distributive Computing. InProc. Fourteenth Ann. ACM Symp. Theor. Comput., 1982, 330–337.

  17. P. Pudlák,Personal communication, 1992.

  18. R. Raz and A. Wigderson, Probabilistic Communication Complexity of Boolean Relations. InProc. 30th Ann. IEEE Symp. Found. Comput. Sci., 1989, 562–567.

  19. A. A. Razborov, Applications of Matrix Methods for the Theory of Lower Bounds in Computational Complexity.Combinatorica 10:1 (1990), 81–93.

    Google Scholar 

  20. M. Sipser,Personal communication, 1988.

  21. M. Yannakakis, Expressing Combinatorial Optimization Problems by Linear Programs. InProc. Twentieth ACM Symp. Theor. Comput., 1988, 223–228.

  22. A. C. C. Yao, Some Complexity Questions Related to Distributive Computing. InProc. Eleventh Ann. ACM Symp. Theor. Comput., 1979, 209–213.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karchmer, M., Raz, R. & Wigderson, A. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Comput Complexity 5, 191–204 (1995). https://doi.org/10.1007/BF01206317

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206317

Key words

Subject classifications

Navigation