Abstract
Is it easier to solve two communication problems together than separately? This question is related to the complexity of the composition of boolean functions. Based on this relationship, an approach to separatingNC 1 fromP is outlined. Furthermore, it is shown that the approach provides a new proof of the separation of monotoneNC 1 from monotoneP.
Similar content being viewed by others
References
A. E. Andreev, On a Method for Obtaining more than Quadratic Effective Lower Bounds for the Complexity of π-Schemes.Moscow University Math. Bull. 42:1 (1987).
A. V. Aho, J. D. Ullman, and M. Yannakakis, On Notions of Information Transfer in VLSI Circuits. InProc. Fifteenth Ann. ACM Symp. Theor. Comput., 1983, 133–139.
N. H. Bshouty, On the Extended Direct Sum Conjecture. InProc. Twenty-first Ann. ACM Symp. Theor. Comput., 1989, 177–185.
J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall, Communication Complexity towards Lower Bounds on Circuit Depth. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 249–257.
T. Feder,Personal communication, 1990.
T. Feder, E. Kushilevitz, and M. Naor, Amortized Communication Complexity. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 239–248.
G. Galibati andM. J. Fischer, On the Complexity of 2-Output Boolean Networks.Theoret. Comput. Sci. 16 (1981), 177–185.
J. Hastad, The Shrinkage Constant is 2. InProc. 34th Ann. IEEE Symp. Found. Comput. Sci., 1993, 114–123.
J. Hastad and A. Wigderson, Composition of the Universal Relation. InAmer. Math. Soc.—DIMACS series, ed.J. Y. Cai, to appear.
V. Khrapchenko, A Method of Determining Lower Bounds for the Complexity of π-Schemes.Math. Notes Acad. Sci. USSR (1971), 474–479.
W. M. Kantor, On Incidence Matrices of Finite Projective and Affine Spaces.Math. Z. 124 (1972), 315–318.
M. Karchmer,Communication Complexity: A new Approach to Circuit Depth. MIT Press, 1989.
M. Karchmer, E. Kushilevitz, and N. Nisan, Fractional Covers and Communication Complexity. InProc. 7th Ann. IEEE Conf. Structure in Complexity Theory, 1992, 262–274.
M. Karchmer, R. Raz, and A. Wigderson, On Proving Super-Logarithmic Depth Lower Bounds via the Direct Sum in Communication Complexity. InProc. 6th Ann. IEEE Conf. Structure in Complexity Theory, 1991.
M. Karchmer andA. Wigderson, Monotone Circuits for Connectivity Require Super-Logarithmic Depth.SIAM J. Disc. Math. 3:2 (1990), 255–265.
K. Mehlhorn and E. M. Schmidt, Las Vegas is Better than Determinism in VLSI and Distributive Computing. InProc. Fourteenth Ann. ACM Symp. Theor. Comput., 1982, 330–337.
P. Pudlák,Personal communication, 1992.
R. Raz and A. Wigderson, Probabilistic Communication Complexity of Boolean Relations. InProc. 30th Ann. IEEE Symp. Found. Comput. Sci., 1989, 562–567.
A. A. Razborov, Applications of Matrix Methods for the Theory of Lower Bounds in Computational Complexity.Combinatorica 10:1 (1990), 81–93.
M. Sipser,Personal communication, 1988.
M. Yannakakis, Expressing Combinatorial Optimization Problems by Linear Programs. InProc. Twentieth ACM Symp. Theor. Comput., 1988, 223–228.
A. C. C. Yao, Some Complexity Questions Related to Distributive Computing. InProc. Eleventh Ann. ACM Symp. Theor. Comput., 1979, 209–213.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Karchmer, M., Raz, R. & Wigderson, A. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Comput Complexity 5, 191–204 (1995). https://doi.org/10.1007/BF01206317
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01206317