Linking Remote Sensing and In Situ Ecosystem/Biodiversity Observations by “Satellite Ecology” | SpringerLink
Skip to main content

Linking Remote Sensing and In Situ Ecosystem/Biodiversity Observations by “Satellite Ecology”

In Situ/Remote Sensing Integration Working Group of J-BON

  • Chapter
  • First Online:
The Biodiversity Observation Network in the Asia-Pacific Region

Abstract

Climate change and human activity (land use change and management) are the major drivers of changes in biodiversity, which ranges from the genetic composition of a given population to the structure and functions in an ecosystem and to the ecosystems in a landscape. The structural and functional diversity of an ecosystem on a landscape or regional scale could have a serious impact on the regional to global environmental sustainability and ecosystem services. Also, those ecosystem properties could have feedback effects on the population, individual, and genetic levels (e.g., Schulze and Mooney 1994). These cross-hierarchy consequences strongly suggest the need for understanding the relations between ecosystem properties and their internal and external drivers (Noss 1990; Scholes et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Berkes F, Colding J, Folke C (2008) Navigating social-ecological systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M, Bontemps S, Leroy M, Achard F, Herold M, Ranera F, Arino O (2008) GLOBCOVER products description and validation report, MEDIAS-France, Toulouse, France

    Google Scholar 

  • Chapin FS III, Matson PA, Money HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapin FSIII, Sala OE, Burke IC, Grime JP, Hoopwer DU, Lauenroth WK, Lombard A, Mooney HA, Mosier AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998) Ecosystem consequences of changing biodiversity. BioScience 48:45–52

    Article  Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Group on Earth Observations (2008) GEO BON implementation overview. http://www.earthobservations.org/geobon.shtml

  • Hirota M, Zhang P, Gu S, Shen H, Kuriyama T, Li Y, Tang Y (2010) Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness. J Plant Res 123:531–542

    Article  CAS  PubMed  Google Scholar 

  • Ide R, Oguma H (2010) Use of digital cameras for phenological observations. Ecol Inform. doi:10.1016/j.ecoinf.2010.07.002

  • Kim J, Le D, Hong J, Kang S, Kim SJ, Moon SK, Kim JH, Son Y, Lee J, Kim S, Woo N, Kim K, Lee B, Lee BL, Kim S (2006) HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecol Res 21:881–889

    Article  Google Scholar 

  • Labiosa RG, Arrigo KR, Genin A, Monismith SG, van Dijken G (2003) The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol Oceanogr 48:2355–2368

    Article  Google Scholar 

  • Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob Change Biol 13:2329–2340

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20

    Article  PubMed  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Nagai S, Ichii K, Morimoto H (2007) Interannual variations in vegetation activities and climate variability caused by ENSO in tropical rainforests. Int J Remote Sens 28:1285–1297

    Article  Google Scholar 

  • Nagai S, Nasahara KN, Muraoka H, Akiyama T, Tsuchida S (2010) Field experiments to test the use of the normalized difference vegetation index for phenology detection. Agric Forest Meteorol 150:152–160

    Article  Google Scholar 

  • Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric Forest Meteorol 148:1136–1146

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Nishida K (2007) Phenological Eyes Network (PEN)—A validation network for remote sensing of the terrestrial ecosystems. AsiaFlux Newslett (21):9–13 (available online at http://www.asiaflux.net/newsletter.htmlnewsletter.html)

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Change Biol 15:1015–1024

    Article  Google Scholar 

  • Peters DPC, Bestelmeyer BT, Turner MG (2007) Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–796

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric Forest Meteorol 134:4–16

    Article  Google Scholar 

  • Sakai H, Suzuki R, Kondoh A (2008) Recent signal of vegetation change in Siberia using satellite data. J Jpn Soc Hydrol Water Resour 21:50–56 (in Japanese)

    Article  Google Scholar 

  • Sasai T, Ichii K, Yamaguchi Y, Nemani R (2005) Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approach using satellite data” (BEAMS). J Geophys Res 110:G02014. doi:10.1029/2005JG000045

    Google Scholar 

  • Scherer-Lorenzen M, Körner Ch, Schulze E-D (2005) Forest diversity and function. Springer, Berlin

    Book  Google Scholar 

  • Scholes RJ, Mace GM, Turner W, Geller GN, Jurgens N, Larigayuderie A, Muchoner D, Walther BA, Mooney HA (2008) Toward a global biodiversity observing system. Science 321:1044–1045

    Article  CAS  PubMed  Google Scholar 

  • Schulze E-D, Mooney HA (1994) Biodiversity and ecosystem function. Springer, Berlin

    Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on shuttle radar topography mission elevation data, ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia. Remote Sens Environ 112:2131–2144

    Article  Google Scholar 

  • Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Strassburg BBN, Kelly A, Balmford A, Davies RG, Gibbs HK, Lovett A, Miles L, Orme CDL, Price J, Turner RK, Rodrigues ASL (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv Lett 3:98–105

    Article  Google Scholar 

  • Suzuki R, Hiyama T, Asanuma J, Ohata T (2004) Land surface identification near Yakutsk in eastern Siberia using video images taken from a hedgehopping aircraft. Int J Remote Sens 25:4015–4028

    Article  Google Scholar 

  • Suzuki R, Ishii R, Kim Y (2009) Above-ground forest biomass estimation by ALOS/PALSAR over boreal forest in Alaska accompanied with ground-based forest survey. In: Proceedings of the 33rd international symposium on remote sensing of environment, Stresa, Italy, 4–8 May 2009

    Google Scholar 

  • Suzuki R, Masuda K, Dye DG (2007) Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia. Remote Sens Environ 106:387–398

    Article  Google Scholar 

  • Tarpley JD, Schneider SR, Money RL (1984) Global vegetation indices from the NOAA-7 meteorological satellite. J Clim Appl Meteorol 23:491–494

    Article  Google Scholar 

  • Tateishi R, Bayaer Ghar MA, Al-Bilbisi H, Tsendayush J, Shalaby A, Kasimu A, Hoan NT, Kobayashi T, Alsaaideh B, Rahman Md. M, Tsevengee E, Yamada Y, Kajikawa S (2008) A new global land cover map, GLCNMO. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing 2008, XXXVII, Part B7, pp 1369–1372

    Google Scholar 

  • Tenhunen JD, Kabat P (1999) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, Chichester

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature, doi: 10.1038/nature09329

  • Tsuchida S, Nishida K, Iwao K, Kawato W, Oguma H, Iwasaki A (2005) Phenological eyes network for validation of remote sensing data. J Remote Sens Soc Jpn 25:282–288 (in Japanese with English summary)

    Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Article  CAS  PubMed  Google Scholar 

  • Verschuyl JP, Hansen AJ, McWethy DB, Sallabanks R, Hutto R (2008) Is the effect of forest structure on bird diversity modified by forest productivity? Ecol Appl 18:1155–1170

    Article  PubMed  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11:217–234

    Article  CAS  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

Download references

Acknowledgments

The activities of the in situ/remote sensing integration working group are supported by many colleagues, who have contributed to the research networks, such as JaLTER/ILTER-EAP, Monitoring site 1000 (Ministry of Environment, Japan), JapanFlux, and J-BON/AP-BON. Research activities by the authors introduced in this article have been partly supported by Global Environment Research Fund of the Ministry of the Environment Japan (S-1: Integrated Study for Terrestrial Carbon Management of Asia in the twenty-first Century Based on Scientific Advancement), JSPS 21st century COE program “Satellite Ecology” and JSPS-NRF-NSFC A3 Foresight Program at Gifu University, JAXA GCOM-C project under contract 102: “Development of integrative information of the terrestrial ecosystem” (PI: Kenlo Nishida Nasahara). And the research activity is also supported by the Environment Research & Technology Development Fund (D-0909 and S-9) of the Ministry of Environment Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Muraoka .

Editor information

Editors and Affiliations

Glossary of Research Networks

AsiaFlux

Asian CO2 flux network (http://asiaflux.yonsei.ac.kr)

BON

Biodiversity Observation Network (http://www.earthobservations.org/geobon.shtml)

CTBS

The Center for Tropical Forest Science (http://www.ctfs.si.edu)

CERN

Chinese Ecosystem Research Network (http://www.cern.ac.cn:8080)

FLUXNET

(http://www.fluxnet.ornl.gov/fluxnet/index.cfm)

ILTER

International Long Term Ecological Research network (http://www.ilternet.edu)

JaLTER

Japan Long Term Ecological Research network (http://www.jalter.org/modules/database/index.php?ml_lang=en)

JapanFlux

Japan CO2 flux network (http://www.japanflux.org/index_E.html)

KLTER

Korea Long-Term Ecological Research network (http://www.klter.org/emain.htm)

PEN

Phenological Eyes Network (http://www.pheno-eye.org)

TEAM

Tropical Ecology Assessment & Monitoring Network (http://www.teamnetwork.org/en)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Muraoka, H. et al. (2012). Linking Remote Sensing and In Situ Ecosystem/Biodiversity Observations by “Satellite Ecology”. In: Nakano, Si., Yahara, T., Nakashizuka, T. (eds) The Biodiversity Observation Network in the Asia-Pacific Region. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54032-8_21

Download citation

Publish with us

Policies and ethics