Real-Time Synthesis of Body Movements Based on Learned Primitives | SpringerLink
Skip to main content

Real-Time Synthesis of Body Movements Based on Learned Primitives

  • Conference paper
Statistical and Geometrical Approaches to Visual Motion Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

  • 1328 Accesses

Abstract

The synthesis of realistic complex body movements in real-time is a difficult problem in computer graphics and in robotics. High realism requires the accurate modeling of the details of the trajectories for a large number of degrees of freedom. At the same time, real-time animation necessitates flexible systems that can react in an online fashion, adapting to external constraints. Such online systems are suitable for the self-organization of complex behavior by the dynamic interaction between multiple autonomous characters in the scene. In this paper we present a novel approach for the online synthesis of realistic human body movements. The proposed model is inspired by concepts from motor control. It approximates movements by superposition of movement primitives (synergies) that are learned from motion capture data applying a new blind source separation algorithm. The learned generative model can synthesize periodic and non-periodic movements, achieving high degrees of realism with a very small number of synergies. For obtaining a system that is suitable for real-time synthesis, the primitives are approximated by the solutions of low-dimensional nonlinear dynamical systems (dynamic primitives). The application of a new type of stability analysis (contraction theory) permits the design of complex networks of such dynamic primitives, resulting in a stable overall system architecture. We discuss a number of applications of this framework and demonstrate that it is suitable for the self-organization of complex behaviors, such as navigation, synchronized crowd behavior and dancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)

    Article  Google Scholar 

  2. Witkin, A., Popovi\(\acute{c}\), Z.: Motion warping. In: Proc. ACM SIGGRAPH 1995, vol. 29, pp. 105–108 (1995)

    Google Scholar 

  3. Gleicher, M.: Retargetting motion to new characters. In: Proc. ACM SIGGRAPH 1998, pp. 33–42 (1998)

    Google Scholar 

  4. Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: Assembling run-time animation. ACM Trans. on Graphics, SIGGRAPH 2003 22(3), 702 (2003)

    Google Scholar 

  5. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Trans. on Graphics, SIGGRAPH 2003 22(3), 402–408 (2003)

    Article  MATH  Google Scholar 

  6. Grzeszczuk, R., Terzopoulos, D., Hinton, G.: Neuroanimator: Fast neural network emulation and control of physics based models. In: Int. Conf. on Comp. Graph. and Interactive Techniques, Proc. ACM SIGGRAPH 1998, pp. 9–20 (1998)

    Google Scholar 

  7. Shao, W., Terzopoulos, D.: Artificial intelligence for animation: Autonomous pedestrians. Proc. ACM SIGGRAPH 2005 69(5-6), 19–28 (2005)

    Google Scholar 

  8. Hsu, E., Pulli, K., Popovi\(\acute{c}\), J.: Style translation for human motion. ACM Trans. on Graphics, SIGGRAPH 2005 24(3), 1082–1089 (2005)

    Google Scholar 

  9. Chai, J., Hodgins, J.: Performance animation from low-dimensional control signals. ACM Trans. on Graphics, SIGGRAPH 2005 24(3), 686–696 (2005)

    Article  Google Scholar 

  10. Bernstein, N.A.: The coordination and regulation of movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  11. Flash, T., Hochner, B.: Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15(6), 660–666 (2005)

    Article  Google Scholar 

  12. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in neural motor behaviours. Proc. Natl. Acad. Sci. 102(8), 3076–3081 (2005)

    Article  Google Scholar 

  13. Ivanenko, Y., Poppele, R., Lacquaniti, F.: Five basic muscle activation patterns account for muscle activity during human locomotion. Journal of Physiology 556, 267–282 (2004)

    Article  Google Scholar 

  14. Santello, M., Flanders, M., Soechting, J.: Postural hand synergies for tool use. Journal of Neuroscience 18(23), 10105–10115 (1998)

    Google Scholar 

  15. Safanova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. on Graphics, Proc. SIGGRAPH 2004 23(3), 514–521 (2004)

    Article  Google Scholar 

  16. Park, A., Mukovskiy, A., Omlor, L., Giese, M.A.: Synthesis of character behaviour by dynamic interaction of synergies learned from motion capture data. In: The 16-th Int. Conf. in Central Europe on Comp. Graphics, Visualization and Computer Vision 2008, WSCG 2008, pp. 9–16 (2008)

    Google Scholar 

  17. Park, A., Mukovskiy, A., Omlor, L., Giese, M.A.: Self organized character animation based on learned synergies from full-body motion capture data. In: International Conference on Cognitive Systems, CogSys 2008 (2008)

    Google Scholar 

  18. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. Proc. ACM SIGGRAPH 1995 22, 91–96 (1995)

    Google Scholar 

  19. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. of London, Biol. Sci. 358(1431), 537–547 (2003)

    Article  Google Scholar 

  20. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. Adv. Neural Inf. Process Systems 15, 1547–1554 (2002)

    Google Scholar 

  21. Omlor, L., Giese, M.A.: Extraction of spatio-temporal primitives of emotional body expressions. Neurocomputing 70, 10–12 (2007)

    Article  Google Scholar 

  22. Omlor, L., Giese, M.A.: Blind source separation for over-determined delayed mixtures. Adv. in Neural Inf. Process Systems 19, 1049–1056 (2006)

    Google Scholar 

  23. Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: Theory and applications for autonomous robot architectures. Robotics and Autonomous Systems 16(2-4), 213–245 (1995)

    Article  Google Scholar 

  24. Buchli, J., Righetti, L., Ijspeert, A.J.: Engineering entrainment and adaptation in limit cycle systems - from biological inspiration to applications in robotics. Biological Cybernetics 95(6), 645–664 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fod, A., Matari\(\acute{c}\), M.J., Jenkins, O.C.: Motor primitives in vertebrates and invertebrates. Autonomous Robots 12(1), 39–54 (2002)

    Google Scholar 

  26. Soechting, J., Lacquaniti, F.: Invariant characteristics of a pointing movement in man. Journal of Neuroscience 1, 710–720 (1981)

    Google Scholar 

  27. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42(2) (1981)

    Google Scholar 

  28. Vapnik, N.V.: Statistical Learning Theory. Wiley Interscience, Hoboken (1998)

    Google Scholar 

  29. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  30. Wang, W., Slotine, J.J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics 92(1), 38–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Warren, W.: The dynamics of perception and action. Psychological Review 113(2), 358–389 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giese, M.A., Mukovskiy, A., Park, AN., Omlor, L., Slotine, JJ.E. (2009). Real-Time Synthesis of Body Movements Based on Learned Primitives. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics