What Are RESTful Web Services? - The Java EE 6 Tutorial

Document Information

Preface

Part I Introduction

1.  Overview

2.  Using the Tutorial Examples

Part II The Web Tier

3.  Getting Started with Web Applications

4.  JavaServer Faces Technology

5.  Introduction to Facelets

6.  Expression Language

7.  Using JavaServer Faces Technology in Web Pages

8.  Using Converters, Listeners, and Validators

9.  Developing with JavaServer Faces Technology

10.  JavaServer Faces Technology: Advanced Concepts

11.  Using Ajax with JavaServer Faces Technology

12.  Composite Components: Advanced Topics and Example

13.  Creating Custom UI Components and Other Custom Objects

14.  Configuring JavaServer Faces Applications

15.  Java Servlet Technology

16.  Uploading Files with Java Servlet Technology

17.  Internationalizing and Localizing Web Applications

Part III Web Services

18.  Introduction to Web Services

19.  Building Web Services with JAX-WS

20.  Building RESTful Web Services with JAX-RS

Creating a RESTful Root Resource Class

Developing RESTful Web Services with JAX-RS

Overview of a JAX-RS Application

The @Path Annotation and URI Path Templates

Responding to HTTP Methods and Requests

The Request Method Designator Annotations

Using Entity Providers to Map HTTP Response and Request Entity Bodies

Using @Consumes and @Produces to Customize Requests and Responses

The @Produces Annotation

The @Consumes Annotation

Extracting Request Parameters

Example Applications for JAX-RS

A RESTful Web Service

To Create a RESTful Web Service Using NetBeans IDE

The rsvp Example Application

Components of the rsvp Example Application

Running the rsvp Example Application

Real-World Examples

Further Information about JAX-RS

21.  JAX-RS: Advanced Topics and Example

Part IV Enterprise Beans

22.  Enterprise Beans

23.  Getting Started with Enterprise Beans

24.  Running the Enterprise Bean Examples

25.  A Message-Driven Bean Example

26.  Using the Embedded Enterprise Bean Container

27.  Using Asynchronous Method Invocation in Session Beans

Part V Contexts and Dependency Injection for the Java EE Platform

28.  Introduction to Contexts and Dependency Injection for the Java EE Platform

29.  Running the Basic Contexts and Dependency Injection Examples

30.  Contexts and Dependency Injection for the Java EE Platform: Advanced Topics

31.  Running the Advanced Contexts and Dependency Injection Examples

Part VI Persistence

32.  Introduction to the Java Persistence API

33.  Running the Persistence Examples

34.  The Java Persistence Query Language

35.  Using the Criteria API to Create Queries

36.  Creating and Using String-Based Criteria Queries

37.  Controlling Concurrent Access to Entity Data with Locking

38.  Using a Second-Level Cache with Java Persistence API Applications

Part VII Security

39.  Introduction to Security in the Java EE Platform

40.  Getting Started Securing Web Applications

41.  Getting Started Securing Enterprise Applications

42.  Java EE Security: Advanced Topics

Part VIII Java EE Supporting Technologies

43.  Introduction to Java EE Supporting Technologies

44.  Transactions

45.  Resources and Resource Adapters

46.  The Resource Adapter Example

47.  Java Message Service Concepts

48.  Java Message Service Examples

49.  Bean Validation: Advanced Topics

50.  Using Java EE Interceptors

Part IX Case Studies

51.  Duke's Bookstore Case Study Example

52.  Duke's Tutoring Case Study Example

53.  Duke's Forest Case Study Example

Index

 

What Are RESTful Web Services?

RESTful web services are built to work best on the Web. Representational State Transfer (REST) is an architectural style that specifies constraints, such as the uniform interface, that if applied to a web service induce desirable properties, such as performance, scalability, and modifiability, that enable services to work best on the Web. In the REST architectural style, data and functionality are considered resources and are accessed using Uniform Resource Identifiers (URIs), typically links on the Web. The resources are acted upon by using a set of simple, well-defined operations. The REST architectural style constrains an architecture to a client/server architecture and is designed to use a stateless communication protocol, typically HTTP. In the REST architecture style, clients and servers exchange representations of resources by using a standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight, and fast:

  • Resource identification through URI: A RESTful web service exposes a set of resources that identify the targets of the interaction with its clients. Resources are identified by URIs, which provide a global addressing space for resource and service discovery. See The @Path Annotation and URI Path Templates for more information.

  • Uniform interface: Resources are manipulated using a fixed set of four create, read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can be then deleted by using DELETE. GET retrieves the current state of a resource in some representation. POST transfers a new state onto a resource. See Responding to HTTP Methods and Requests for more information.

  • Self-descriptive messages: Resources are decoupled from their representation so that their content can be accessed in a variety of formats, such as HTML, XML, plain text, PDF, JPEG, JSON, and others. Metadata about the resource is available and used, for example, to control caching, detect transmission errors, negotiate the appropriate representation format, and perform authentication or access control. See Responding to HTTP Methods and Requests and Using Entity Providers to Map HTTP Response and Request Entity Bodies for more information.

  • Stateful interactions through hyperlinks: Every interaction with a resource is stateless; that is, request messages are self-contained. Stateful interactions are based on the concept of explicit state transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, and hidden form fields. State can be embedded in response messages to point to valid future states of the interaction. See Using Entity Providers to Map HTTP Response and Request Entity Bodies and “Building URIs” in the JAX-RS Overview document for more information.