CWE - CWE-1273: Device Unlock Credential Sharing (4.16)
CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1273: Device Unlock Credential Sharing (4.16)  
ID

CWE-1273: Device Unlock Credential Sharing

Weakness ID: 1273
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The credentials necessary for unlocking a device are shared across multiple parties and may expose sensitive information.
+ Extended Description

"Unlocking a device" often means activating certain unadvertised debug and manufacturer-specific capabilities of a device using sensitive credentials. Unlocking a device might be necessary for the purpose of troubleshooting device problems. For example, suppose a device contains the ability to dump the content of the full system memory by disabling the memory-protection mechanisms. Since this is a highly security-sensitive capability, this capability is "locked" in the production part. Unless the device gets unlocked by supplying the proper credentials, the debug capabilities are not available. For cases where the chip designer, chip manufacturer (fabricator), and manufacturing and assembly testers are all employed by the same company, the risk of compromise of the credentials is greatly reduced. However, the risk is greater when the chip designer is employed by one company, the chip manufacturer is employed by another company (a foundry), and the assemblers and testers are employed by yet a third company. Since these different companies will need to perform various tests on the device to verify correct device function, they all need to share the unlock key. Unfortunately, the level of secrecy and policy might be quite different at each company, greatly increasing the risk of sensitive credentials being compromised.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Technical Impact: Modify Memory; Read Memory; Modify Files or Directories; Read Files or Directories; Modify Application Data; Execute Unauthorized Code or Commands; Gain Privileges or Assume Identity; Bypass Protection Mechanism

Once unlock credentials are compromised, an attacker can use the credentials to unlock the device and gain unauthorized access to the hidden functionalities protected by those credentials.
+ Potential Mitigations

Phase: Integration

Ensure the unlock credentials are shared with the minimum number of parties and with utmost secrecy. To limit the risk associated with compromised credentials, where possible, the credentials should be part-specific.

Phase: Manufacturing

Ensure the unlock credentials are shared with the minimum number of parties and with utmost secrecy. To limit the risk associated with compromised credentials, where possible, the credentials should be part-specific.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 200 Exposure of Sensitive Information to an Unauthorized Actor
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1195 Manufacturing and Life Cycle Management Concerns
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Integration
Manufacturing
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

VHDL (Undetermined Prevalence)

Verilog (Undetermined Prevalence)

Class: Compiled (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Other (Undetermined Prevalence)

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

This example shows how an attacker can take advantage of compromised credentials.

(bad code)
 
Suppose a semiconductor chipmaker, "C", uses the foundry "F" for fabricating its chips. Now, F has many other customers in addition to C, and some of the other customers are much smaller companies. F has dedicated teams for each of its customers, but somehow it mixes up the unlock credentials and sends the unlock credentials of C to the wrong team. This other team does not take adequate precautions to protect the credentials that have nothing to do with them, and eventually the unlock credentials of C get leaked.

When the credentials of multiple organizations are stored together, exposure to third parties occurs frequently.

(good code)
 
Vertical integration of a production company is one effective method of protecting sensitive credentials. Where vertical integration is not possible, strict access control and need-to-know are methods which can be implemented to reduce these risks.

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1417 Comprehensive Categorization: Sensitive Information Exposure
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-05-29
(CWE 4.1, 2020-02-24)
Parbati Kumar Manna, Hareesh Khattri, Arun Kanuparthi Intel Corporation
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Related_Attack_Patterns
2021-10-28 CWE Content Team MITRE
updated Demonstrative_Examples, Description
2022-10-13 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024